• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates

    2024-01-25 07:13:02HuapingZang臧華平BaozhenWang王寶珍ChenglongZheng鄭程龍LaiWei魏來QuanpingFan范全平ShaoyiWang王少義ZuhuaYang楊祖華WeiminZhou周維民LeifengCao曹磊峰andHaizhongGuo郭海中
    Chinese Physics B 2024年1期

    Huaping Zang(臧華平), Baozhen Wang(王寶珍), Chenglong Zheng(鄭程龍), Lai Wei(魏來),Quanping Fan(范全平), Shaoyi Wang(王少義), Zuhua Yang(楊祖華),?,Weimin Zhou(周維民), Leifeng Cao(曹磊峰), and Haizhong Guo(郭海中),?

    1Key Laboratory of Material Physics,Ministry of Education,School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    2National Key Laboratory for Laser Fusion,Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621900,China

    3School of Engineering Physics,Shenzhen Technology University,Shenzhen 518118,China

    Keywords: optical vortex,single-focus,spiral zone plate,topological charges

    1.Introduction

    Optical vortices (OVs) are known to be singular phase structures that carry orbital angular momentum (OAM).[1,2]Considering the consequently unique inherent properties,such as zero on-axis intensity and Poynting vector spirals,[3]their application is an important research topic for particle trapping and manipulation,[4,5]optical information coding and transmission,[6,7]phase-contrast microscopy[8,9]and stimulated emission depletion microscopy.[10]Specifically,OVs retain an angle-dependent spiral phase calledΦ=P?, wherePis the topological charge (TC),?represents the azimuth angle.[11–13]Various effective methods, such as computer holography,[14]spiral phase plate (SPP),[15]spiral zone plates (SZPs),[16–18]metasurface,[19]spatial light modulators(SLM),[20]spiral photon sieves (SPS),[21]have been investigated and adopted to generate OVs.

    In recent years, the OVs with helical phase beams from extreme ultraviolet to x-ray region have attracted the particular attention of physicists by extending microscopic and spectral applications to atomic or nanoscale.[22]The torque generated by the OAM beams can provide additional degrees of freedom to the interaction between light and matter,[1]and make important progress in the study of dynamic detection of chiral systems,[23]coherent symmetry and stack diffraction imaging,[24]and the dichroism induced by OAM.[25]An accessible way to create extreme ultraviolet and x-ray beams carrying OAM is to develop the nonlinear process of high-harmonic generation,[26]guaranteeing important practical application prospects for the study of forbidden transitions in atomic and molecular physics and high-energy density physics.[27]Nevertheless,previous theoretical and experimental results both reveal that the topological charges(TCs)of high-harmonic vortices are usually uncontrollable and increase with harmonic order.[28,29]

    In particular,the SZPs,which combine the radial Hilbert transform filtering operation with the Fresnel zone plates(FZPs) focusing operation, provide an efficient methodology for producing helical beams with OAM considering their outstanding characteristics of compact size,light weight,and degree of design flexibility.[30]According to the typical principle, arbitrary amount of OAM can also be imparted on any harmonic beam.However, due to the fabrication reasons and volume diffraction effects,the spatial resolution of the conventional transmissive focusing devices such as FZPs and SZPs cannot be less than 10 nm.[31,32]The subsequently proposed elliptical reflection zone plates(ERZPs)have overcome these shortcomings with high resolution, and are an optimum and important breakthrough to monochromatic and the low energy band of the ultrafast betatron radiation.[33]

    Despite all this, the ERZPs and SZPs both exhibit the characteristic as multifocal lenses,and therefore the spectrum of which will be contaminated by the unavoidable higher foci.In addition,the diffraction efficiency will be reduced and additional artifacts will be introduced,limiting their extensive applications in ultra-high precision x-ray or extreme ultraviolet spectral analysis technology.[34,35]To alleviate such spurious effects originating from the higher-order foci induced by the inherent binary nature of diffraction optical elements(DOEs),Gabor zone plates(GZPs)and improved GZPs were proposed to eliminate the interference of higher-order foci with an ideal sinusoidal transmittance between the transparent and opaque zones.[36–43]

    Enlightened by these proposals, in this work we present a new strategy to combine the merit of ERZPs and the advantage of SZPs in establishing a specific single optical element,termed elliptical reflective annulus quadrangle-element coded spiral zone plates (ERAQSZPs).According to our physical design, a series of randomly distributed annulus quadrangleshaped nanometer structure apertures are adopted to replace the abrupt structures of the ERZPs to realize the desired sinusoidal reflectance.Based on the Kirchhoff diffraction theory and convolution theorem,[44]the focusing performance of such optics has been analyzed theoretically and numerically.Relative to the multi-foci irradiance generated by the ERZPs,on the one hand, the new idea can generate OVs with controllable OAM, and on the other hand can suppress the unavoidable higher-order foci with a purity and high-resolution spectrum.Such a device performs as an ideal GZP.However,the continuous surface was refined by simple binary structures.Moreover, it is known that the reflective device is fabricated on a bulk substrate and it adopts the grazing incidence mode.Hence,to obtain the same focus size,the width of the outmost zone is larger than that of the transmissive one and the difficulty in fabrication will be reduced.In addition, the focusing properties can be further improved by appropriately adjusting the parameters, such as zone number and the size of the consisted primitives.The present findings are expected to open a new avenue toward improving the performance of optical capture,[45]x-ray fluorescence spectra,[46,47]and forbidden transition.[48]

    2.Design and method

    In this paper,we start with the physical design of elliptical reflective spiral zone plates(ERSZPs), as shown in Fig.1(b),and combine the merits of ERZPs,as shown in Fig.1(a),with the advantages of SZPs to preserve the capability to produce OVs and disperse different incident energies with larger dimensions.Consequently, the reflectance of the ERSZPs can be represented as follows:

    wherev=(R1/R2+1)/(R1/R2?1),N=?Pφ/π+2(n?1),R1andR2are the object distance and image distance,respectively.Herefis the focal length,θis the grazing incidence angle,λis the designed central wavelength,Pandφrepresent the TCs and the azimuth,respectively.

    Nevertheless, the binary reflectance, which takes on the values of 0 and 1 between the adjacent transparent and opaque grooves for a conventional ERZPs, will lead to the interference of higher foci.To obtain the desired single-focus characteristics as that of the ideal GZPs, we further complete the design of proposed ERAQSZPs by appropriately arranging a large number of annulus quadrangle-shaped structure primitives instead of the abrupt reflections to construct a reflective single-focus optical element.

    Specifically, we divide the annular ring of the ERSZPs intoMprimitives on average.These closely connected primitives form an elliptical ring band, and the field angle of the primitives is approximately 2π/M.The radial size of each primitive is half of the width of the elliptical band, so the radial size of the primitives with different bands is different.Then,the size of the primitive should be appropriately selected and optimized to achieve the sinusoidal reflectivity of the device without increasing the computational difficulty.Significantly, given that ERZPs can be seen as the superposition of the meridional and the sagittal direction gratings, the typical proposed ERAQSZPs have also been endowed with two focusing directions, i.e., the sagittal and meridional directions.Meanwhile, the meridional direction determines the spectral and the focusing resolutions in the spectral direction, while the sagittal direction determines the spatial resolution, which can reach sub-nanometer in the spatial direction of the detector plane.Hence,if the incident beams include different wavelengths modulated by ERAQSZPs,then the generated OVs can be dispersed and focused on different positions along the optical axis without the interference of the higher foci.

    In detail, the expression of the ERAQSZPs with excellent single-focus focusing performance can be represented as follows:

    The parameters in Eq.(2) have the same representations as those in Eq.(1).According to our physical design, the alternative transparent and opaque zones have been substituted by lots of staggered annulus quadrangle nanometer apertures to realize the desired sinusoidal reflectance.Therefore,we introduce a random item whose value varies from 0 to 1 in Eq.(2)to control the positions and arrangement of the consisted primitives.The structure of ERAQSZPs is presented in Fig.1(c).

    Fig.1.(a) Schematic view of ERZPs.(b) Schematic view of ERSZPs.(c) Schematic view of ERAQSZPs with annular quadrilateral-elements.The illustration is a partial element enlarged view.

    Generally, in the diffraction process of ERAQSZPs, the incident beam is a grazing incidence,as illustrated in Fig.2(a),which can dramatically reduce the requirements for the effective size of the outmost ring, as well as the fabrication difficulty.In addition, to clearly identify the single-order focusing performance of the ERAQSZPs,we present a comparison of integral curves of reflectance of ERAQSZPs and the ERSZPs in Fig.2(b).Consequently, by comparing with the binarization reflectance of ERSZPs,we can readily deduce that the reflectance of ERAQSZPs can realize an approximately sinusoidal variation such as that of the ideal Gabor zone spiral plates(GSZPs),indicating that it is an effective monochromator for incident irradiation in the generation of phase singularity.

    Fig.2.(a) Focusing principle diagram of ERAQSZPs.(b) Comparison of reflectivity function distribution curves between ERSZPs (blue) and ERAQSZPs(yellow).

    3.Numerical results and discussion

    To evaluate the advantages of the proposed physical design, based on the Kirchhoff diffraction theory and convolution theorem, the focusing performance of the ERAQSZPs was analyzed.As we mentioned above,the nonlinear process of high-harmonic generation(HHG)is an effective method to generate extreme ultraviolet and x-ray OVs.Hence,in our calculation,we select the 19-order incident energy(29.83 eV)of HHG with 1.57 eV center energy generated by infrared laser and rare gas Ar to carry out the corresponding verification.In particular, to obtain symmetrical circular profile single-focus OVs, the ratio of the length of the meridional direction and sagittal direction of the ERAQSZPs has a certain restriction and should be appropriately chosen.In this simulation, the values of the meridian length and the sagittal length have been,respectively,adopted as 42 mm and 3.2 mm,and it can be further optimized to achieve a better phase structure.The object and image distances are 0.75 m and 1.5 m,respectively.In addition, to satisfy the requirements of total reflection of metal materials, the grazing incidence angle is set to 4°.The specific parameters of ERAQSZPs during the diffraction process are shown in Table 1.In addition,it is important to ensure that the focusing characteristics of optics devices are affected by the numerical aperture (NA) in the sagittal direction and the meridian direction:

    whereαis the maximum cone angle of light energy emitted from the zone plate,calculated by Rayleigh criterion,and the resolution is

    According to the grating spectral resolution formula,the spectral resolution of ERZPs is affected by the number of zones

    Theoretically, the greater the number of annular zones in ERZPs,the better the spectral resolution of ERZPs.However,an excessive number of zones will increase the processing difficulty.Meanwhile, there is an upper limit on the number of zones,which satisfies equation[33]nmax=Δtpulse/Δtλ,i.e.,its time scale determines the maximum number of zones in the design of ERZPs.When the number of zones is 50,the theoretical spectral resolution can reach 25.

    Generally,the paraxial approximation is valid when NA<0.4 and because the NA of the proposed system in this manuscript is much less than 0.4, the Fresnel diffraction and Kirchhoff diffraction formula can both be applied.However,the Fresnel diffraction formula is a simplified approximation of the Kirchhoff diffraction formula and considering the grazing incidence mode of the reflective device, we perform the calculation in the manuscript based on the Kirchhoff diffraction formula.

    Table 1.Parameters of the ERAQSZPs.

    The distribution of complex amplitudeU(P0)behind the diffraction plane can be expressed as

    whereAis a constant,t(x,z) is the reflection of ERAQSZPs,k=2π/λrepresents the wave number,r21is the distance from the light source to a point on the zone plates,andr01is the distance from the observation point to the proposed zone plates.After calculating the complex amplitude, the light intensity distributionI(P0)can be obtained fromI(P0)=|U(P0)|2.

    Based on Eq.(6), the focusing performance of ERAQSZPs and ERSZPs are presented in Fig.3 under the same conditions.In detail, figures 3(a) and 3(c) illustrate the images and intensity profiles for the ERSZPs and proposed ERAQSZPs,respectively.Meanwhile,because the ERZPs have a large area,and therefore unavoidably bring a massive amount of computational effort,it is also necessary to approximate and simplify the Kirchhoff diffraction integral formula.

    From the comparison in Fig.3, it can be deduced that both the conventional ERSZPs and proposed ERAQSZPs can generate a circular optical vortex in the image plane.In addition,we also calculated that the ERAQSZPs preserve the same resolution as those of the ERSZPs along the meridian direction and the sagittal direction, which are 21 μm and 19 μm,respectively.According to Eq.(4),the theoretical spatial resolution in the sagittal direction and the meridian direction of ERAQSZPs are 21.27μm and 18.78μm, respectively.Compared with the value according to Eq.(4), the deviation is lower to 0.9%, indicating a good agreement between our numerical calculation and theoretical prediction.Moreover, by comparing the ERAQSZPs with a different zone number, say 100, which has a focusing size of 15 μm (FWHM), we have also concluded that the spectral resolution can be significantly improved by optimizing the parameters of the zone plates.

    Nevertheless, as we mentioned above, it is known to us that considering the abrupt reflection with that of the conventional binary DOEs, ERZPs and ERSZPs unavoidably act as a multifocal lens, which may suffer from multifocal properties.Namely,the generated OVs beam from the ERSZPs will inevitably superimpose harmonic components whose wavelength is 1/?(?=1,2,3,...) times of the fundamental wave wavelength, which lowers the diffraction efficiency and also increases the background noise.To alleviate these spurious effects originating from the higher foci,ERAQSZPs were proposed to avert the interference of higher-order foci with an ideal sinusoidal reflectance, such as that of ideal GSZPs between the transparent and opaque grooves.

    Furthermore,it is noticeable that for conventional ERZPs,to protect the focal spot from the pollution of zeroth diffraction order,a part of the ERZPs has been adopted and the area of the zeroth order diffraction is sufficiently far away from the focal spot.However, in our physical design, to pursue an excellent focusing performance,as well as circular symmetrical phase structure of the OVs, the overall effective area of the ERAQSZPs has been exploited.Typically, in numerical process, we also select the incident beam containing the energy ofEand 3Efor a direct comparison and validation.From Figs.3(b)and 3(d),we can deduce that apart from the optical vortex imaged by the first primary foci of the ERSZPs,the optical vortex imaged by the third order foci is also overlapped at the same coordinate position.In contrast to the overlapping of the OVs with different higher-order foci, such as those of the ERSZPs,the higher-order foci have been suppressed to lower than three orders of magnitude compared with the intensity of first primacy focus of the ERAQSZPs.This enables it to be an effective alternative to direct a new avenue toward improving the performance of optical image processing,optical capture, x-ray fluorescence spectra, forbidden transition, and so on.Concurrently,we have also calculated the diffraction efficiency of ERSZPs and ERAQSZPs, which are 9.6%and 6%,respectively.Compared with the ERSZPs,although a resultant relative lower transmissive or reflective energy will influence and slightly reduce the diffraction efficiency of the first primacy foci,the ERAQSZPs still exhibit the desired diffraction efficiency which is very close to the value of ideal single-focus GZPs at 6.25%.

    Note that to verify the superior performance of the ERAQSZPs as an excellent monochromator, the energy resolution that has to be achieved to separate two adjacent harmonics is also an important factor.To more accurately determine the spectral resolution of ERAQSZPs under Eq.(5),we chose the energy of chromatic light sources to be 29.83 eV and 29.83±1.2 eV (corresponding wavelengths are 41.311 nm,41.569 nm, and 39.961 nm, respectively).The simulation diagram is shown in Fig.4, and the three adjacent harmonics can be precisely separated, with a spectral resolution ofλ/Δλ=24.86, which agrees well with the theoretical calculation (λ/Δλ=n/2=25).With the increase of the number of zone of the ERAQSZPs,its spectral resolution will also be better.In our calculations, the theoretical spectral resolution of ERAQSZPs can reach about 500 whenn=1000.Because of the long calculation time, no further simulation has been done.These results pave the way to generate attosecond vortices with controllable OAM.

    Fig.3.The intensity distributions on the image plane and the focusing characteristics in the meridian and sagittal directions of ERSZPs(a)and ERAQSZPs(c),respectively,at the design incident intensity of E=29.83 eV;(b)and(d)are the focusing diagram and diffraction intensity peak distribution of ERSZPs and ERAQSZPs at the incident intensity of E and 3E,respectively.

    To accurately determine the focus position and image plane, and enable OVs with different incident energies to be imaged at different positions,based on the grating method,[49]we explore a new approach to perform the calculation.

    In the grating method, to calculate its first-order diffraction, we assume thatn-band (transparent) and (n ?1)-band(opaque)are one period of the grating,the period of the grating can be written as

    According to Eq.(7), if the number of annular bands isn,the central energy isE1(λ1), and the focusing position corresponding to the central energy isf, then we can calculate the value of the grating perioddn.When the selected energy isE2(λ2), which is different from the central energy, the expression of the focusing positionf2ofE2can be obtained by using the grating formula sin(θ)=λ/dn:

    The energy resolution that has to be achieved to separate two adjacent harmonics varies fromE/ΔE=8.5 at 26.69 eV(harmonic 17) toE/ΔE=11.5 at 36.11 eV (harmonic 23), considering that two adjacent harmonics have ΔE=3.14 eV separation.Based on the spectral resolution calculated above,EAQSZPs can achieve this energy resolution.During simulation validation,based on the Eqs.(7)and(8),we further confirm and examine the excellent performance of the ERAQSZPs as an effective monochromator by dispersing and focusing the HHG with different harmonic orders.We carry out the verification by employing 19-order (29.83 eV) generated by infrared laser and rare gas Ar as the central energy to explore the corresponding focus positions of 17-order(26.69 eV),21-order (32.97 eV) and 23-order (36.11 eV).As illustrated in Fig.5,it is obvious that after modulating by the ERAQSZPs,there are not only sequence circular higher harmonic OVs with different energies can be generated on different image planes but the OVs can also be dispersed and focused on different positions without the interference of higher-order foci by other harmonic orders.

    Fig.4.The distribution diagram of the spectral direction intensity of 28.63 eV,29.83 eV,and 31.03 eV from left-hand to right-hand.

    Additionally, in considering that the optical vortex carrying OAM can transfer energy to other physical objects, the focusing characteristics of ERAQSZPs with different TCs are further investigated.The intensity profiles, vortex distributions,and phase distributions of the focused beams in the first primacy image planes with different TCs of ERAQSZPs are schematically exhibited in Fig.6.Specifically, considering the optical device with an integer TC gives an isotropic vortical focus, whenP=1, the vortex beam is characterized by a central dark region, the isosurface presents a helical structure which increases by 2πwith each loop around the center of the beam.WhenP=2, the phase increases by 4πfor every loop around the center of the vortex beam,indicating that it can be widely used in the fields of isotropic edge enhancement.In addition, the size and radii of the OVs can be increased with the increasing TCs.Nevertheless,the amplitude or phase gradient features in some orientations are more interesting than others.Consequently, anisotropic edge-enhanced imaging technology is required.In particular, in our physical design, the ERAQSZPs can be freely designed with integral and factional TCs.It is apparent from the second column of Fig.6 that for the case of fractional TCs, the intensity distribution is an uneven screw and the symmetry of the focusing process will be broken down, indicating it to be an effective way to generate orientation-selective anisotropic vortex foci.Importantly,according to our calculation,the performance of the single-order focusing of ERAQSZPs exhibits high stability with negligible fluctuation under different TCs,i.e.,maintaining three orders of magnitude suppression ratio.In addition,to further evaluate the quality of laser beams with OAM,[50]we have also calculated the mode purity of the generated OVs with TCs ofP=1 andP=2, which are 69.4% and 62.6%,respectively.These findings imply that the present approach holds promising prospects in practical applications,such as in optical tweezers and optical spanners for particle manipulation.

    Fig.5.Focus distribution and spectral direction intensity distribution of different energy wavelengths incident on ERAQSZPs.

    4.Conclusion

    In this work,by combining the ERZPs with single-focus SZPs, we have established a methodology that was have termed ERAQSZPs to generate zero axial irradiance without the interference of higher-order foci, from x-rays to extreme ultraviolet regions.In contrast to the abrupt structures (for example) of the ERZPs, the central idea is to realize the desired sinusoidal reflectance by properly arranging a series of randomly distributed annulus quadrangle-shaped nanometer structure apertures.Based on the Fresnel–Kirchhoff diffraction theory and convolution theorem, the focusing performance of the ERAQSZPs has been calculated in detail.Relative to the multi-foci irradiance generated by the ERZPs, our new idea can generate OVs with controllable OAM, and can suppress the unavoidable higher-order foci with a purity and high-resolution spectrum.Typically, according to our physical design,the ERAQSZPs are fabricated on a bulk substrate.Therefore,our new idea can significantly reduce the difficulty in the fabrication process,making it a potential alternative for generating attosecond vortices with controllable OAM.These findings are expected to open a new avenue toward improving the performance of optical image processing,optical capture,x-ray fluorescence spectra,forbidden transition,and so on.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12174350, 12275253, and 12275250), the Program of Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics(Grant No.6142A04200107),and the National Natural Science Foundation,Youth Fund(Grant No.12105268).

    高清视频免费观看一区二区| 亚洲午夜精品一区,二区,三区| 免费高清在线观看日韩| 午夜免费观看网址| 热99久久久久精品小说推荐| 国产亚洲欧美在线一区二区| 老司机影院毛片| 老司机影院毛片| 午夜福利在线免费观看网站| 成年动漫av网址| av中文乱码字幕在线| 国产野战对白在线观看| 国产亚洲精品第一综合不卡| 婷婷精品国产亚洲av在线 | 国产精品二区激情视频| 日韩三级视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美激情高清一区二区三区| 精品免费久久久久久久清纯 | 女性被躁到高潮视频| 在线观看免费视频日本深夜| 国产精品免费视频内射| 亚洲午夜精品一区,二区,三区| 一区二区三区国产精品乱码| 人妻丰满熟妇av一区二区三区 | 啦啦啦视频在线资源免费观看| xxxhd国产人妻xxx| 窝窝影院91人妻| 无限看片的www在线观看| 99国产精品一区二区三区| 自线自在国产av| 亚洲久久久国产精品| 国产黄色免费在线视频| 黑人欧美特级aaaaaa片| 一区二区三区激情视频| 国产欧美日韩精品亚洲av| 18在线观看网站| 国产激情久久老熟女| 老司机深夜福利视频在线观看| 999久久久国产精品视频| 深夜精品福利| 一级作爱视频免费观看| 在线观看免费高清a一片| 国产99白浆流出| 国产91精品成人一区二区三区| 久久久久久久久久久久大奶| 国产片内射在线| 国产精品99久久99久久久不卡| 99re在线观看精品视频| a级毛片在线看网站| 18禁观看日本| 视频区欧美日本亚洲| 99香蕉大伊视频| 黄片播放在线免费| 91字幕亚洲| 日韩三级视频一区二区三区| 99久久精品国产亚洲精品| 色综合婷婷激情| 黑人巨大精品欧美一区二区蜜桃| 99国产综合亚洲精品| 国产国语露脸激情在线看| 精品少妇久久久久久888优播| 精品国产亚洲在线| 亚洲精品美女久久av网站| 久久九九热精品免费| 亚洲精品国产色婷婷电影| 国产精品98久久久久久宅男小说| 亚洲av美国av| 国产欧美日韩综合在线一区二区| netflix在线观看网站| www.自偷自拍.com| 91av网站免费观看| 国产精品久久电影中文字幕 | 国产一区二区三区在线臀色熟女 | 在线国产一区二区在线| 波多野结衣av一区二区av| 欧美日韩亚洲综合一区二区三区_| 国产精品秋霞免费鲁丝片| 国产1区2区3区精品| 12—13女人毛片做爰片一| 亚洲精品美女久久久久99蜜臀| 久久精品亚洲av国产电影网| 美女福利国产在线| 无遮挡黄片免费观看| 久久国产精品大桥未久av| 国产精品秋霞免费鲁丝片| netflix在线观看网站| 国产亚洲精品第一综合不卡| 亚洲av欧美aⅴ国产| √禁漫天堂资源中文www| 老司机在亚洲福利影院| 午夜福利,免费看| 两性夫妻黄色片| 国产在线精品亚洲第一网站| 三上悠亚av全集在线观看| 大香蕉久久网| 久久久国产成人精品二区 | 99re在线观看精品视频| 欧美日韩成人在线一区二区| 丁香六月欧美| 午夜福利视频在线观看免费| 一级片免费观看大全| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 亚洲男人天堂网一区| 色精品久久人妻99蜜桃| 国产区一区二久久| 又黄又爽又免费观看的视频| 日韩欧美国产一区二区入口| 国产亚洲欧美在线一区二区| 777米奇影视久久| 亚洲国产精品合色在线| 欧美激情 高清一区二区三区| 久久九九热精品免费| 99精品在免费线老司机午夜| 久久国产乱子伦精品免费另类| 黄频高清免费视频| 伦理电影免费视频| 亚洲 国产 在线| 99精国产麻豆久久婷婷| svipshipincom国产片| 国产视频一区二区在线看| 在线免费观看的www视频| 国产熟女午夜一区二区三区| 国产在视频线精品| 久久天堂一区二区三区四区| 热99re8久久精品国产| 日韩免费高清中文字幕av| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| 久久精品国产综合久久久| 亚洲国产毛片av蜜桃av| 男人的好看免费观看在线视频 | 午夜视频精品福利| 黄色视频,在线免费观看| 中文字幕色久视频| 亚洲精品国产区一区二| 久久人妻熟女aⅴ| 法律面前人人平等表现在哪些方面| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 高清av免费在线| 在线观看免费视频日本深夜| 大陆偷拍与自拍| 老司机福利观看| 女同久久另类99精品国产91| 国产一区二区三区在线臀色熟女 | 水蜜桃什么品种好| 精品人妻熟女毛片av久久网站| 热99re8久久精品国产| 欧美性长视频在线观看| 男女床上黄色一级片免费看| 国产麻豆69| 曰老女人黄片| 岛国毛片在线播放| 夜夜夜夜夜久久久久| 老司机在亚洲福利影院| 国产一区二区三区综合在线观看| 99久久综合精品五月天人人| 热re99久久精品国产66热6| 久久久国产精品麻豆| 91麻豆av在线| 天天躁夜夜躁狠狠躁躁| 色精品久久人妻99蜜桃| 在线播放国产精品三级| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕在线视频| 国产又爽黄色视频| 成年人免费黄色播放视频| 99国产精品一区二区蜜桃av | 亚洲专区中文字幕在线| 欧美黄色片欧美黄色片| 日韩人妻精品一区2区三区| 正在播放国产对白刺激| 久久久久国产精品人妻aⅴ院 | bbb黄色大片| 最新美女视频免费是黄的| 国产精品国产高清国产av | x7x7x7水蜜桃| 50天的宝宝边吃奶边哭怎么回事| 黑人巨大精品欧美一区二区mp4| 国产男女超爽视频在线观看| 人人妻人人澡人人看| 高清在线国产一区| 久久国产亚洲av麻豆专区| 一级黄色大片毛片| 亚洲三区欧美一区| 久热这里只有精品99| 狠狠狠狠99中文字幕| 亚洲一区高清亚洲精品| 韩国av一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 亚洲av日韩精品久久久久久密| 亚洲熟女精品中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲三区欧美一区| 日韩欧美三级三区| 大香蕉久久成人网| 欧美久久黑人一区二区| 国产精品亚洲一级av第二区| 一进一出好大好爽视频| 成人手机av| 黑人操中国人逼视频| 少妇被粗大的猛进出69影院| 欧美丝袜亚洲另类 | 亚洲午夜理论影院| 亚洲成av片中文字幕在线观看| 日本撒尿小便嘘嘘汇集6| 一级黄色大片毛片| 90打野战视频偷拍视频| 黄色丝袜av网址大全| 嫩草影视91久久| 老鸭窝网址在线观看| 日日夜夜操网爽| av欧美777| 欧美人与性动交α欧美精品济南到| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 一级片'在线观看视频| 美女视频免费永久观看网站| a级毛片在线看网站| 亚洲中文日韩欧美视频| 国产av一区二区精品久久| 日本wwww免费看| av免费在线观看网站| 色94色欧美一区二区| 国产片内射在线| 十八禁高潮呻吟视频| 最新的欧美精品一区二区| 天天躁日日躁夜夜躁夜夜| 他把我摸到了高潮在线观看| 老司机福利观看| 亚洲专区中文字幕在线| 久久午夜亚洲精品久久| av免费在线观看网站| 老司机影院毛片| 久久国产精品人妻蜜桃| www.自偷自拍.com| 国产伦人伦偷精品视频| 国产片内射在线| 飞空精品影院首页| 午夜福利在线免费观看网站| 黄片播放在线免费| 国产一区在线观看成人免费| 女人精品久久久久毛片| 亚洲专区中文字幕在线| 男人操女人黄网站| 亚洲成人免费电影在线观看| 天堂中文最新版在线下载| 看免费av毛片| 国产免费av片在线观看野外av| 操美女的视频在线观看| 自线自在国产av| 日韩大码丰满熟妇| 亚洲色图av天堂| 午夜福利在线免费观看网站| 啦啦啦在线免费观看视频4| 在线观看免费视频网站a站| 99热国产这里只有精品6| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 亚洲专区字幕在线| 国产一区二区激情短视频| 夫妻午夜视频| 免费少妇av软件| 国产成人av教育| 亚洲欧美激情在线| 亚洲国产精品一区二区三区在线| 亚洲中文日韩欧美视频| 国产精品九九99| 国产aⅴ精品一区二区三区波| www.自偷自拍.com| 国产精品美女特级片免费视频播放器 | 天堂中文最新版在线下载| 啦啦啦在线免费观看视频4| 丰满的人妻完整版| 国产男女内射视频| 亚洲国产看品久久| 欧美一级毛片孕妇| 国产成人系列免费观看| 十分钟在线观看高清视频www| 999精品在线视频| 色精品久久人妻99蜜桃| 午夜激情av网站| 欧美激情高清一区二区三区| 在线观看舔阴道视频| 亚洲久久久国产精品| 国产精品欧美亚洲77777| 国产野战对白在线观看| 亚洲成a人片在线一区二区| 国产成人欧美| 在线观看免费日韩欧美大片| 国产精品国产高清国产av | 精品少妇一区二区三区视频日本电影| av网站免费在线观看视频| 久久精品国产综合久久久| 国产一区二区三区综合在线观看| 搡老乐熟女国产| 精品一区二区三卡| 欧美一级毛片孕妇| 搡老岳熟女国产| 精品一区二区三区四区五区乱码| 嫩草影视91久久| 一区在线观看完整版| 国产亚洲av高清不卡| 高清黄色对白视频在线免费看| 咕卡用的链子| 日韩视频一区二区在线观看| 久久青草综合色| 宅男免费午夜| 久久久久精品国产欧美久久久| 国产又爽黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 乱人伦中国视频| 一级作爱视频免费观看| 久久久精品区二区三区| 一区二区三区精品91| 成年版毛片免费区| cao死你这个sao货| av电影中文网址| 人人妻人人澡人人爽人人夜夜| 欧美最黄视频在线播放免费 | 极品教师在线免费播放| 天天躁日日躁夜夜躁夜夜| 亚洲av日韩精品久久久久久密| 夜夜躁狠狠躁天天躁| 黄片小视频在线播放| 多毛熟女@视频| 日韩 欧美 亚洲 中文字幕| 女人精品久久久久毛片| 亚洲成人免费av在线播放| x7x7x7水蜜桃| 精品亚洲成a人片在线观看| 久久精品熟女亚洲av麻豆精品| 99久久精品国产亚洲精品| 大型黄色视频在线免费观看| 成人黄色视频免费在线看| 亚洲精品在线美女| tocl精华| 婷婷成人精品国产| 亚洲av欧美aⅴ国产| 亚洲成人手机| 久热这里只有精品99| 国产熟女午夜一区二区三区| 香蕉久久夜色| 精品国产一区二区三区四区第35| 18在线观看网站| 亚洲色图综合在线观看| 国产野战对白在线观看| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| 岛国在线观看网站| 国产一区二区三区综合在线观看| 91麻豆av在线| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 成人精品一区二区免费| 日韩欧美一区二区三区在线观看 | 日日摸夜夜添夜夜添小说| 国产淫语在线视频| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 国产高清videossex| www.自偷自拍.com| 最新的欧美精品一区二区| 午夜福利影视在线免费观看| 天堂动漫精品| 成人三级做爰电影| 亚洲精品在线美女| 亚洲av日韩在线播放| 国产人伦9x9x在线观看| 悠悠久久av| 黄色视频,在线免费观看| 一级片'在线观看视频| 国产精品久久久久久精品古装| 最近最新中文字幕大全免费视频| 亚洲精品久久午夜乱码| 日韩 欧美 亚洲 中文字幕| bbb黄色大片| 又紧又爽又黄一区二区| 90打野战视频偷拍视频| 国产高清国产精品国产三级| 国产野战对白在线观看| 欧美日韩视频精品一区| 色老头精品视频在线观看| 国产午夜精品久久久久久| 多毛熟女@视频| 午夜免费成人在线视频| 超色免费av| 757午夜福利合集在线观看| 色94色欧美一区二区| 久久人妻av系列| 在线观看一区二区三区激情| aaaaa片日本免费| 亚洲精品在线观看二区| 中出人妻视频一区二区| 午夜福利乱码中文字幕| 中文字幕最新亚洲高清| 亚洲成av片中文字幕在线观看| 免费在线观看日本一区| 91成年电影在线观看| 精品久久久精品久久久| cao死你这个sao货| 亚洲中文字幕日韩| 操出白浆在线播放| videos熟女内射| 亚洲成国产人片在线观看| 国产在线观看jvid| 免费av中文字幕在线| 91麻豆精品激情在线观看国产 | 天堂俺去俺来也www色官网| 午夜精品在线福利| 久久精品国产a三级三级三级| 十分钟在线观看高清视频www| 啦啦啦免费观看视频1| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人爽人人添夜夜欢视频| 国产成人免费无遮挡视频| 天天添夜夜摸| 在线十欧美十亚洲十日本专区| av网站免费在线观看视频| 国产亚洲av高清不卡| 亚洲色图 男人天堂 中文字幕| 12—13女人毛片做爰片一| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 国产精品久久电影中文字幕 | 熟女少妇亚洲综合色aaa.| 久久久精品免费免费高清| 丰满迷人的少妇在线观看| 成年人免费黄色播放视频| 9191精品国产免费久久| 欧美在线一区亚洲| 黄网站色视频无遮挡免费观看| 欧美人与性动交α欧美精品济南到| 亚洲av成人不卡在线观看播放网| 在线观看免费视频网站a站| 村上凉子中文字幕在线| 精品熟女少妇八av免费久了| 亚洲精品国产区一区二| 国产欧美日韩一区二区精品| 国产精品久久久久久精品古装| 久久亚洲真实| 午夜激情av网站| 大型av网站在线播放| 久久久久国产精品人妻aⅴ院 | 高清在线国产一区| 美女午夜性视频免费| 精品久久蜜臀av无| 国产野战对白在线观看| 国产成人免费观看mmmm| 十八禁高潮呻吟视频| 午夜老司机福利片| 老熟妇仑乱视频hdxx| a在线观看视频网站| 国产精品国产高清国产av | 亚洲欧美一区二区三区久久| 天堂√8在线中文| 成人18禁高潮啪啪吃奶动态图| 午夜福利,免费看| 亚洲情色 制服丝袜| 一进一出好大好爽视频| 国产片内射在线| 国产真人三级小视频在线观看| 女人被狂操c到高潮| 亚洲少妇的诱惑av| 在线观看日韩欧美| 久久国产精品影院| 精品国产乱码久久久久久男人| 脱女人内裤的视频| 久久久精品免费免费高清| 国产亚洲欧美98| 悠悠久久av| 18在线观看网站| 久久精品亚洲熟妇少妇任你| 日韩三级视频一区二区三区| av一本久久久久| 国产真人三级小视频在线观看| 99久久国产精品久久久| 久久久精品区二区三区| 亚洲五月天丁香| 9热在线视频观看99| 夜夜爽天天搞| 色老头精品视频在线观看| 久久99一区二区三区| 中文字幕精品免费在线观看视频| 国产有黄有色有爽视频| 精品卡一卡二卡四卡免费| av有码第一页| av国产精品久久久久影院| 亚洲男人天堂网一区| 中文字幕最新亚洲高清| 国产精品国产av在线观看| 日本wwww免费看| 女同久久另类99精品国产91| 国产精品久久视频播放| 9热在线视频观看99| 狠狠婷婷综合久久久久久88av| 我的亚洲天堂| 91麻豆精品激情在线观看国产 | 午夜成年电影在线免费观看| 天天影视国产精品| 欧美一级毛片孕妇| 午夜福利欧美成人| 国产成人啪精品午夜网站| 久热这里只有精品99| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| 成人三级做爰电影| 一区福利在线观看| 亚洲性夜色夜夜综合| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 夜夜夜夜夜久久久久| 男女午夜视频在线观看| aaaaa片日本免费| 涩涩av久久男人的天堂| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| 国产成人av教育| 亚洲全国av大片| 国产成人一区二区三区免费视频网站| 久久久久久久国产电影| 黄色片一级片一级黄色片| 三上悠亚av全集在线观看| av福利片在线| 日韩制服丝袜自拍偷拍| 热99re8久久精品国产| 大型黄色视频在线免费观看| 国产熟女午夜一区二区三区| 欧美成人午夜精品| 久久精品国产亚洲av高清一级| av不卡在线播放| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 午夜福利免费观看在线| 在线十欧美十亚洲十日本专区| 波多野结衣一区麻豆| 日本欧美视频一区| 窝窝影院91人妻| 亚洲黑人精品在线| 欧美+亚洲+日韩+国产| 男女高潮啪啪啪动态图| 亚洲人成77777在线视频| 一边摸一边做爽爽视频免费| 99久久精品国产亚洲精品| 久久中文看片网| 一级毛片高清免费大全| 亚洲五月天丁香| 亚洲伊人色综图| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜制服| 亚洲精品中文字幕在线视频| 高清av免费在线| 成人亚洲精品一区在线观看| 国产亚洲av高清不卡| 十分钟在线观看高清视频www| 男女床上黄色一级片免费看| 女性被躁到高潮视频| 99热国产这里只有精品6| 国产av一区二区精品久久| 午夜91福利影院| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频在线观看免费| 精品国产乱子伦一区二区三区| 男女下面插进去视频免费观看| 好男人电影高清在线观看| 亚洲欧洲精品一区二区精品久久久| 一个人免费在线观看的高清视频| 侵犯人妻中文字幕一二三四区| 国产亚洲欧美98| 亚洲熟妇中文字幕五十中出 | ponron亚洲| 高清在线国产一区| 欧美激情高清一区二区三区| 飞空精品影院首页| 黑人猛操日本美女一级片| 大陆偷拍与自拍| 超碰97精品在线观看| 国产男女内射视频| 成在线人永久免费视频| 国产一区二区三区视频了| 欧美日韩亚洲国产一区二区在线观看 | cao死你这个sao货| 国产亚洲一区二区精品| 国产麻豆69| 国产91精品成人一区二区三区| 亚洲一区二区三区不卡视频| 久久久久国内视频| 999久久久国产精品视频| 成年女人毛片免费观看观看9 | 久久影院123| 久久99一区二区三区| av线在线观看网站| 淫妇啪啪啪对白视频| 亚洲aⅴ乱码一区二区在线播放 | 午夜亚洲福利在线播放| 黄色 视频免费看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品av久久久久免费| 国产无遮挡羞羞视频在线观看| 高清av免费在线| 国产av精品麻豆| 欧美 日韩 精品 国产| 国产人伦9x9x在线观看| 久久精品国产亚洲av高清一级| www.自偷自拍.com| 淫妇啪啪啪对白视频| 日韩人妻精品一区2区三区| 亚洲美女黄片视频| 一级毛片精品| 在线观看免费日韩欧美大片|