• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effective transmittance of Fabry–Perot cavity under non-parallel beam incidence

    2024-01-25 07:13:02YinShengLv呂寅生PinHuaXie謝品華JinXu徐晉YouTaoLi李友濤andHuaRongZhang張華榮
    Chinese Physics B 2024年1期
    關(guān)鍵詞:全面提高語(yǔ)文課程素養(yǎng)

    Yin-Sheng Lv(呂寅生), Pin-Hua Xie(謝品華),,3,?, Jin Xu(徐晉),You-Tao Li(李友濤), and Hua-Rong Zhang(張華榮)

    1School of Environmental Science and Optoelectronic Technology,University of Science and Technology of China,Hefei 230026,China

    2Key Laboratory of Environment Optics and Technology,Anhui Institute of Optics and Fine Mechanics,HFIPS,Chinese Academy of Sciences,Hefei 230031,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: Fabry–P′erot(FP)resonant cavity,interference transfer function,Airy function,non-parallel beam incidence

    1.Introduction

    A Fabry–P′erot (FP) cavity is typically composed of two parallel mirror surfaces, allowing multiple beam reflections and generating multi-beam interference.[1,2]FP cavity is widely utilized in various fields, such as precise interferometric measurements,[3]high-resolution spectroscopy[4–6]and fiber sensing,[7–9]due to its ability to increase the optical path length and its unique interference transfer function.Under ideal conditions, when a parallel beam is incident on the FP cavity,its interference transfer function can be accurately predicted by the Airy function.[10,11]However, in practical situations, achieving an ideal parallel beam is challenging, and the non-parallel incidence of the beam has a significant impact on precise spectroscopic measurements using FP cavities, particularly in applications where tilted beam incidence or spectral scanning through angle adjustment of the FP cavity is required.Therefore,considering the divergence angle of the beam is particularly important in understanding the influence on the interference transfer function of the FP cavity.

    In previous studies, we utilized the angular dependence of the transmission spectrum structure of an FP etalon to achieve selective measurement of SO2gas by changing the angle of incidence.[5,6,12]However, further investigations revealed that when using higher-precision FP cavities,the interference transfer function(ITF)of the FP cavity is significantly affected by the beam divergence angle.Previous research by Vargas-Rodriguezet al.considered the variations in the ITF of the FP cavity when a focused beam is normally incident.[13]Marqueset al.employed angular spectrum analysis to establish a model and studied the effects of mirror parallelism,planarity and the ITF for Gaussian beam focusing.[14–17]However, most of these studies focused on laser applications with small divergence angles and normal incidence.[18–20]There is relatively limited research on the general case of non-parallel beam incidence, particularly for large divergence angles and tilted beam incidence.Furthermore, investigating the impact of non-parallel beam incidence on the ITF for FP cavities with different physical parameters would be valuable.This research would contribute to better determining the appropriate FP cavity parameters for practical applications.

    To quantitatively evaluate the impact of non-parallel incident beams on the ITF of FP cavities,this study established a geometric model and derived a formula for the ITF of FP resonant cavities when non-parallel beams are incident.In this study,it was assumed that non-parallel beams have a certain divergence angle,and the positive and negative values of the divergence angle correspond to the convergence and divergence of the beams, respectively.The accuracy of the model was verified through experiments.Subsequently, the study quantitatively investigated the effects of the divergence angle and tilt angle on the interference transfer, and analyzed how the parameters of the resonant cavity,such as mirror reflectivity and cavity length,affect the ITF when the incident beam is non-parallel.The research in this study is significant for the design and precise measurement of FP interferometers.

    2.Theory

    In general,an FP resonant cavity consists of two mirrors placed parallel to each other,and the ITF of the resonant cavity is described by the Airy function.The basic form of the ITF is as follows:

    whereR1andR2are the reflectivities of the two mirrors that form the FP resonant cavity.Without considering factors such as absorption in the mirror coatings,the theoretical peak value of the ITF of the FP cavity is given by

    In most cases,the FP cavity is made up of two mirrors with the same reflectivity.When the reflectivities are the same,the interference peak has a theoretical peak transmittance of 100%(without considering absorption and scattering effects).Differences in mirror reflectivities will directly lead to a reduction in the peak transmittance of the ITF of the FP resonant cavity.In this study,we assume thatR1=R2=R.

    In Eq.(1),?represents the phase difference between two successive light beams emitted from the resonant cavity.For the case of parallel light incidence, the phase difference between two successive light beams emitted from the resonant cavity isφ=2πndcosα/λ,wherenrepresents the refractive index of the medium inside the resonant cavity,dis the cavity length,λis the wavelength of the incident light, andαrepresents the propagation direction of light inside the resonant cavity, which is the inclined angle between the incident light and the normal to the FP cavity.The FP resonant cavity with a fixed refractive indexnand cavity lengthdis called the FP etalon sample.The Airy distribution function in Eq.(1)can be rewritten as

    The finesse coefficientFis usually defined asF=4R/(1?R)2.The finesse of an FP resonator is affected by the mirror reflectivityR,with a higher reflectivity resulting in more interfering light in the resonator and a sharper interference peak in the resonator’s ITF.

    2.1.Theoretical model

    The theoretical ITF of the FP cavity in Eq.(3)can only be directly used for parallel light incidence,as shown in Fig.1(a).However, in practical situations, it is difficult to achieve perfect parallel incidence of the beam passing through the FP cavity,and the incident beam will always have some convergence(Fig.1(b)) or divergence (Fig.1(c)).Here, we assume that the beam enters the FP resonant cavity at a cone angle and quantify the non-parallelism of the beam with the size of the incident half-cone angleθ.When the beam converges,θis positive, and when the beam diverges,θis negative.We assume that the beam is entirely contained within a cone with a maximum divergence angle ofθmax.When the tilt angle between the cone axis and the normal of the FP cavity isα, as shown in Fig.1(d),the transmission function of the beam passing through the FP cavity can be calculated.The FP cavity ITF in Eq.(3)still applies to beams at any angle.At this time,the actual cone angleθof the beam in the cone and the rotation angle?along the incident cone axis can be calculated for the actual incident angleγof any light ray in the incident cone,using the geometric relationship shown in Fig.1(d), with the cone tilt angleα:

    Therefore,for all incident beams within the entire cone angle of the beam,it can be considered as any incident beam within the cone angle of the beam, and its incident tilt angle within the cone angle isγ.The transfer function of the beam can be obtained by integrating within the cone range(polar angleθ ∈[0,θmax], azimuth angle? ∈[0,2π]), which gives the FP cavity ITF when the non-parallel beam is normally incident:

    Fig.1.(a)Parallel light incident on an FP cavity;(b)converging beam incident on an FP cavity,with a divergent angle θ >0 and a tilt angle α;(c)diverging beam incident on an FP cavity,with a divergent angle θ <0 and a tilt angle α;(d)non-parallel beam obliquely incident model.θmax is the maximum divergent half-cone angle,α is the tilt angle,γ is the angle between any beam inside the cone and the normal of the FP cavity,θ is the polar angle and ? is the azimuthal angle.

    2.2.Model verification

    To validate the accuracy of the model for simulating FP cavities with non-parallel beam incidence,we designed an experimental setup, as shown in Fig.2(a).The setup includes a custom FP etalon with a cavity length of 0.513 mm and an inner surface reflectivity of 95%in the 1600–1700 nm wavelength range.We used a tunable laser(Santec TSL-550)to perform continuous wavelength scanning in the 1598–1610 nm range to measure the ITF of the FP cavity.The laser output,which had a maximum divergence angle of about 0.03°after collimation, was used to simulate the theoretical calculation results with a maximum divergence angle of 0.03°.A laser power meter(VEGA PD300-IR)was used to receive the entire laser spot behind the FP etalon.To change the incident angle of the beam, we placed the FP etalon on a rotating stage and adjusted the tilt angle of the FP etalon by rotating the stage.The experimental results are shown in Figs.2(b) and 2(c).Figure 2(b)shows the measured and simulated results obtained by scanning the wavelength continuously from 1600 nm to 1610 nm and changing the tilt angle of the FP etalon to 0°,1°, 2°, 3°and 4°.The upper figure shows the measured results,while the lower figure shows the simulated results.Both show good agreement with each other,with a system error of about 17%,possibly due to the influence of membrane absorption and scattering.Figure 2(c)shows the measured results of the transmittance, with the laser output wavelength fixed at 1600 nm and the tilt angle of the FP etalon changed continuously.These results are consistent with the model calculation results.The experiment demonstrates that the model we have established can accurately simulate the case of non-parallel beam incidence in FP cavities.

    Fig.2.(a)Experimental setup;(b)test transmittance(upper graph)and model simulation results(lower graph)of FP cavity at tilt angles of 0°,1°,2°,3° and 4°;(c)test and simulation results of the transmittance of the FP cavity at 1600 nm as the tilt angle increases.

    3.Results and discussion

    This study, based on theoretical model calculations, discusses the influence of divergence angle,tilt angle and FP cavity standard parameters(reflectance,cavity length)on the ITF in an FP cavity system composed of two plane mirrors filled with air media with a refractive index of 1.The FP etalon has a fixed cavity length of 0.5 mm and the mirrors are coated with a reflective film with a reflectivity of 0.95 in the range of 1600–1700 nm, without considering the effects of absorption and scattering extinction of the film.We assume that the aperture of the FP cavity is much larger than the cross-sectional diameter of the beam passing through the FP cavity, and that the detector completely receives the light intensity at the detection end.We specifically focus on the case of non-parallel beam incidence.

    To compare the changes in the effective transmittance of the FP cavity with parameter variations, we define visibility,sensitivity and trueness as follows:

    總之,語(yǔ)文教學(xué)要想方設(shè)法讓學(xué)生“動(dòng)”起來(lái)。只有在反復(fù)的實(shí)踐當(dāng)中,不斷提高學(xué)生綜合運(yùn)用能力,才能全面提高學(xué)生的語(yǔ)文素養(yǎng),才能切實(shí)落實(shí)《語(yǔ)文課程標(biāo)準(zhǔn)》精神。

    The visibility is defined as the maximum peak transmittance of the interference fringe.The sensitivity is defined as the ratio of visibility to the full width at half maximum(FWHM)of the peak,with higher sensitivity indicating a sharper interference fringe.The trueness is defined as the difference between the wavelength of the interference fringe and the theoretical peak position for parallel light incidence.A negative trueness indicates a shift of the interference fringe towards shorter wavelengths,while a positive trueness indicates a shift towards longer wavelengths.

    3.1.The effect of divergence angle

    To analyze the effect of non-parallelism of the incident beam on the FP cavity’s ITF,we quantify the non-parallelism of the incident beam with the cone angleθ.Assuming the incident beam is normal to the FP cavity (α=0°), simulation results,as shown in Fig.3,indicate thatθ=0 corresponds to the case of parallel light incidence,where the theoretical peak transmittance of the ITF is 1 and the interference peak is the narrowest.As the cone angle of the incident beam increases,it can be observed from Figs.3(a)and 3(b)that the transmittance of the FP cavity shows three trends: (i) the peak transmittance decreases,as shown in Fig.3(c);(ii)the interference peak widens, as shown in Fig.3(d); and (iii) the interference peak gradually shifts towards the short-wavelength direction.Meanwhile, under normal incidence, the interference peak is symmetrical in shape.

    Fig.3.(a),(b)Changes in FP transmittance with increasing divergent angle;(c)decrease in visibility with increasing divergent angle;(d)increase in the full width at half maximum of the interference peak with increasing divergent angle; (e)shift of trueness towards shorter wavelengths with increasing divergent angle;(f)decrease in sensitivity with increasing divergent angle.

    The condition for the beam to resonate inside the FP cavity is that the optical path of the beam circulating in the cavity is an integer multiple of the wavelength,

    wheremis an integer that represents the order of multiplebeam interference.The resonance wavelengths corresponding to the same interference order are associated with the propagation direction of the beam inside the FP resonant cavity.Therefore, the FP cavity is understood to be an angular spectral filter.[15]When there is a divergence angle,the propagation direction of the beam inside the FP cavity is no longer the sameθ.For the case of parallel incidence with a cone angleθmax,the beams entering the FP cavity include all propagation directions within the angle range of 0 toθmax.Interference of the same order occurs at multiple resonance wavelengths, resulting in broadening of the interference peak.As the cone angle increases,the proportion of beams with the same propagation direction in the cone angle decreases, leading to a decrease in the interference peak value.At the same time, with the increase of the cone angle, the wavelength corresponding to the same interference order decreases,causing the interference peak to shift towards shorter wavelengths.Since the propagation direction of the incident beam is aligned with the normal direction of the FP cavity when parallel incidence occurs,the beams inside the cone angle are symmetrically distributed with respect to the normal direction of the FP cavity,resulting in a symmetric interference peak shape.

    3.2.The effect of tilt angle

    The effect of the tilt angle on the ITF of the FP cavity for non-parallel,oblique incident beams has been demonstrated in model validation experiments.The results show that with increasing tilt angle and the presence of beam divergence, the peak value of the FP interference fringes gradually decreases while the fringes become wider.Here,we further simulate the trend of the ITF as a function of the tilt angle at the same divergence angle(θ=0.3°),as shown in Fig.4(a).With increasing tilt angle,the FP interference peak value decreases,the fringes become wider, and they shift towards shorter wavelengths.Figure 4(b)shows the trend of the angular transmittance function of the FP cavity at the same wavelength (λ@1600 nm)with increasing divergence angle, revealing that the position of the interference peak remains basically unchanged while the angular range widens and the peak value decreases as the divergence angle increases.Figure 4(c) shows the trend of a single interference peak as a function of the divergence angle at a tilt angle ofα=1°.With increasing divergence angle,at the same tilt angle, the peak value of the interference fringes decreases,the width increases and the interference peak shape is no longer symmetric.

    Fig.4.The influence of tilt angle on the ITF of the FP cavity when non-parallel beams are incident.(a)Changes in the ITF of the FP cavity with increasing tilt angle at a divergent angle of θ =0.3°;(b)trend of angle-scanned transmittance at 1600 nm with increasing divergent angle;(c)curve of a single interference peak with varying divergent angle at a tilt angle of α=1°;(d)schematic diagram of a beam with a maximum divergent cone angle of θmax obliquely incident with a tilt angle of α,where the yellow region represents the actual incident angle γ >α,the green region represents the actual incident angle γ <α and the red region represents the area where the maximum tilt angle with the FP normal as the axis is α.

    For oblique incidence,when a beam with a maximum divergence angle ofθmaxenters the FP cavity at an oblique angleα,as shown in Fig.4(d),the actual incident angleγof any light ray within the beam cone is within the angular range of

    The yellow region in Fig.4(d) represents the area where the incident angleγ >α,and the green region represents the area whereγ <α.The polar angle of the axis of the beam cone is denoted byθmax.According to Eq.(9), for the same interference order,as the tilt angleαincreases,the interference peak wavelength position shifts towards shorter wavelengths.When there is a divergence angle,the maximum width of the interference peak for the same interference order is given by

    Therefore,both an increase in the tilt angleαand an increase in the maximum divergence angleθmaxof the incident beam in oblique incidence will lead to broadening of the interference peak.The asymmetry of the interference peak broadening can be attributed to the inconsistency between the regions where the actual incidence angleγis greater thanαand where it is less thanα.Specifically, an actual incidence angleγgreater thanαwill cause the resonant wavelength position to shift towards shorter wavelengths, whileγless thanαwill cause the resonant wavelength to shift towards longer wavelengths.When the energy of the beam is symmetrically distributed in the cone section,the proportion of the region where the actual incidence angleγis greater thanαis always larger than that whereγis less thanαin oblique incidence.This will result in greater broadening towards shorter wavelengths than towards longer wavelengths on the interference peak,leading to asymmetry in the shape of the interference peak.

    3.3.The effect of FP cavity reflectivity

    Fig.5.The influence of FP cavity reflectivity on ITF.(a) The curve of FP interference fringe changing with divergent angle for different reflectivity values of 0.6,0.7,0.8,0.9,0.95;(b)the change of visibility with FP cavity reflectivity for different divergent angles;(c)the change of the full width at half maximum with FP cavity reflectivity for different divergent angles;(d)the change of trueness with FP cavity reflectivity for different divergent angles;(e)the change of sensitivity with FP cavity reflectivity for different divergent angles.

    The higher the mirror reflectivity of the FP cavity, the more light beams undergo interference inside the resonant cavity,resulting in higher finesse and narrower interference peak width.However,when the incident light has a divergence angle, the peak transmittance decreases more significantly, and reducing the reflectivity can provide higher peak transmittance for non-parallel incident beams at the cost of increased interference width.Therefore,for high-finesse FP resonant cavities(high mirror reflectivity), the incident beam divergence angle has a greater impact on the ITF.This suggests that if there are certain requirements for the peak transmittance and interference peak position of the FP ITF under non-parallel beam incidence,the mirror reflectivity of the FP cavity can be appropriately reduced to sacrifice some finesse and obtain greater tolerance for non-parallel incident beams.

    3.4.The effect of FP cavity length

    Changes in the cavity length of the FP cavity directly affect the resonant frequency of the cavity.In order to ensure that the interference peak is at the same wavelength position,we simulated the case where the cavity length is increased by integer multiples.In this case, the interference order corresponding to the same interference wavelength position increases by the same multiple.Figure 6 shows the ITF curve as a function of the divergence angle for cavity lengths of 0.5 mm,1 mm,2 mm and 4 mm.In Figs.6(c)and(d),more interference peaks appear in the same wavelength range,which is due to the decrease in the free spectral range (FSR) of the FP cavity with increasing interference order,

    When the FP cavity lengthdincreases by a factor ofk, according to Eq.(9),the interference order corresponding to the same interference wavelength position increases by a factor ofk.Then,the FSR changes as follows:

    Therefore,we can conclude that when the FP cavity length increases by an integer multiple,the FSR decreases at the same rate for high-order interference.

    Fig.6.The influence of FP cavity length on the ITF when non-parallel beams with a tilt angle of α =1° are obliquely incident.(a)The ITF varies with the divergence angle for a cavity length of d=0.5 mm;(b)the ITF varies with the divergence angle for a cavity length of d=1 mm;(c)the ITF varies with the divergence angle for a cavity length of d=2 mm;(d)the ITF varies with the divergence angle for a cavity length of d=4 mm.

    In this discussion,we focus on a single interference peak at the same interference wavelength position.Figure 7(a)shows that with the same tilt angle ofα=1°, the longer FP cavity has a significantly lower ITF as the divergent cone angle increases.The FWHM of the interference peak, shown in Fig.7(b), decreases with increasing cavity length at lower divergent angles(θ <0.2°),mainly due to the increase in interference order.However,when the divergent angle is greater than 0.2°,the trend of decreasing FWHM with increasing cavity length is no longer obvious,and the FWHM increases with increasing divergent angle.When the cavity length is 4 mm,as shown in Fig.6(d), when the divergent angle increases to 0.7°, the interference peak width is close to FSR, and the interference peak becomes flat.As shown in Fig.7(c),the trueness of the interference peak wavelength position for shorter FP cavities is less affected by the divergent angle of the beam.Figure 7(d)shows that in the presence of a divergent angle,an increase in cavity length reduces the sensitivity of the interference peak,except for parallel beam incidence.The change in cavity length corresponds to a change in FP interference order.The high spectral resolution of the FP cavity mainly comes from high-order interference, which is more susceptible to the influence of non-parallel incident beams.Therefore,in practical applications,a balance needs to be struck between the precision of high-order interference and the non-parallel incidence of the incident beam.

    Fig.7.(a) The visibility changes with the FP cavity reflectivity for different cavity lengths; (b) the FWHM changes with the FP cavity reflectivity for different cavity lengths; (c) the trueness changes with the FP cavity reflectivity for different cavity lengths; (d) the sensitivity changes with the FP cavity reflectivity for different cavity lengths.

    4.Conclusion and perspectives

    This study investigates the behavior of non-parallel light beams passing through an FP cavity ITF.The theoretical model is constructed assuming that the incident non-parallel light enters the FP cavity with a certain cone angle of divergence, and the transmission function with a certain cone angle of divergence is derived.An experiment is designed to verify the accuracy of the theoretical model by measuring the transmission function of a laser beam passing through an FP etalon with a known divergence angle under various laser wavelengths and FP tilt angles.The experimental results are in good agreement with the simulated results of the theoretical model.Based on the model,the effects of divergence angle,tilt angle and FP parameters(reflectivity,cavity length)on the ITF are analyzed.The results show that an increase in the divergence angle leads to a decrease in the ITF peak,broadening of the interference peak,and a shift towards the short wavelength direction.An increase in the tilt angle with a divergence angle present also leads to broadening of the interference peak and an asymmetric peak structure.Increasing the reflectivity of the FP cavity mirror can produce finer interference peak structures but is more susceptible to the non-parallel incident light.On the other hand, an increase in cavity length corresponds to an increase in interference orders,and the fine interference peak structures formed by high-order interference are also more susceptible to non-parallel incident light.In conclusion,when designing and using FP cavities(especially for FP cavity tilt applications,such as angle scanning spectroscopy),a balance between fine interference peaks and collimated incident light should be considered.Sacrificing some spectral resolution (such as reducing mirror reflectivity or cavity length,and lowering interference orders) often leads to greater tolerance to non-parallel incident light.This research on nonparallelism has significant implications for the design of FP cavities, such as MEMS-based FP micro spectrometers, and the precise measurement of FP cavities for applications such as spectral measurements based on FP angle scanning.Furthermore, based on the findings of this study, it may be possible to calculate the laser divergence angle by measuring the transmission of interference peaks using the FP cavity angle scanning method.

    Acknowledgements

    We gratefully acknowledge Mr Yingjie Ye for providing the laser used in the experiments.

    Project supported by the National Natural Science Foundation of China(Grant No.U19A2044),the National Natural Science Foundation of China (Grant No.41975037), and the Key Technologies Research and Development Program of Anhui Province(Grant No.202004i07020013).

    猜你喜歡
    全面提高語(yǔ)文課程素養(yǎng)
    必修上素養(yǎng)測(cè)評(píng) 第四測(cè)
    必修上素養(yǎng)測(cè)評(píng) 第三測(cè)
    韓長(zhǎng)賦 全面提高黨的建設(shè)質(zhì)量為 農(nóng)業(yè)農(nóng)村現(xiàn)代化提供保證
    增強(qiáng)整體性系統(tǒng)性科學(xué)性 全面提高應(yīng)急管理水平
    必修上素養(yǎng)測(cè)評(píng) 第八測(cè)
    必修上素養(yǎng)測(cè)評(píng) 第七測(cè)
    大學(xué)語(yǔ)文課程的“思化”品質(zhì)認(rèn)識(shí)
    全面提高新形勢(shì)下宗教工作水平
    民族大家庭(2016年3期)2016-03-20 14:52:22
    項(xiàng)目教學(xué)法在小學(xué)語(yǔ)文課程中的應(yīng)用
    語(yǔ)文課程改革深化中的學(xué)校擔(dān)當(dāng)
    国产精品久久久久久久久免| 精品久久久久久久末码| 成人三级黄色视频| 人妻制服诱惑在线中文字幕| 亚洲三级黄色毛片| 好男人在线观看高清免费视频| 男女边吃奶边做爰视频| 欧美日韩在线观看h| 成人亚洲欧美一区二区av| 99精品在免费线老司机午夜| 国产亚洲欧美98| 久久九九热精品免费| 黄色视频,在线免费观看| 欧美bdsm另类| 永久网站在线| 国产白丝娇喘喷水9色精品| 国产精品99久久久久久久久| 国产精品一区二区免费欧美| 亚洲人成网站在线播| 欧美色欧美亚洲另类二区| 亚洲婷婷狠狠爱综合网| 噜噜噜噜噜久久久久久91| 国产亚洲91精品色在线| 久久欧美精品欧美久久欧美| 三级国产精品欧美在线观看| 中文资源天堂在线| 国产色爽女视频免费观看| 成人亚洲精品av一区二区| 精品一区二区三区视频在线| 免费搜索国产男女视频| 国产精品人妻久久久影院| www日本黄色视频网| 亚洲精品日韩在线中文字幕 | 欧美中文日本在线观看视频| 精品一区二区三区视频在线| 亚洲aⅴ乱码一区二区在线播放| 精品久久国产蜜桃| 91麻豆精品激情在线观看国产| 村上凉子中文字幕在线| 男人舔奶头视频| 2021天堂中文幕一二区在线观| 久久久久久九九精品二区国产| 一级黄色大片毛片| 大香蕉久久网| 亚洲性久久影院| 久久鲁丝午夜福利片| 美女被艹到高潮喷水动态| 精品人妻一区二区三区麻豆 | av黄色大香蕉| 精品午夜福利视频在线观看一区| 精品无人区乱码1区二区| 国产精华一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产精品国产高清国产av| 国产精品国产高清国产av| 日韩av不卡免费在线播放| 国产真实伦视频高清在线观看| 国产成年人精品一区二区| 国产一区二区在线av高清观看| 亚洲五月天丁香| 97超级碰碰碰精品色视频在线观看| 一级av片app| 亚洲精品久久国产高清桃花| av卡一久久| 免费观看的影片在线观看| 久久久国产成人精品二区| 高清毛片免费看| 久久久a久久爽久久v久久| 亚洲av中文字字幕乱码综合| 国产成人a区在线观看| 国产v大片淫在线免费观看| 精品一区二区三区视频在线| 少妇猛男粗大的猛烈进出视频 | 久久精品国产99精品国产亚洲性色| 国产片特级美女逼逼视频| 卡戴珊不雅视频在线播放| 久久久久久国产a免费观看| 久久99热这里只有精品18| 色在线成人网| av在线蜜桃| 一级黄色大片毛片| 色5月婷婷丁香| 日韩欧美国产在线观看| 啦啦啦啦在线视频资源| 精品一区二区三区视频在线| 午夜免费激情av| 日韩成人av中文字幕在线观看 | 色av中文字幕| 国产成人aa在线观看| 97热精品久久久久久| 18禁在线播放成人免费| 黑人高潮一二区| 日韩欧美一区二区三区在线观看| 久久欧美精品欧美久久欧美| 亚洲电影在线观看av| 久久久久国产网址| 国产欧美日韩精品一区二区| 亚洲国产精品国产精品| aaaaa片日本免费| 国产成人影院久久av| 免费观看人在逋| 国国产精品蜜臀av免费| 香蕉av资源在线| 有码 亚洲区| 嫩草影院精品99| 欧美性猛交黑人性爽| 免费看美女性在线毛片视频| 免费观看人在逋| 麻豆国产97在线/欧美| 在线免费十八禁| 亚洲自偷自拍三级| 国产亚洲91精品色在线| 在线免费观看的www视频| 久久精品影院6| 91久久精品国产一区二区三区| 亚洲av成人av| 亚洲精品成人久久久久久| 悠悠久久av| 人妻夜夜爽99麻豆av| 在线a可以看的网站| 亚洲av二区三区四区| 变态另类成人亚洲欧美熟女| 人妻制服诱惑在线中文字幕| 网址你懂的国产日韩在线| 久久亚洲国产成人精品v| 日韩一区二区视频免费看| 又黄又爽又刺激的免费视频.| 中文字幕免费在线视频6| 国产精品久久久久久久久免| 国产美女午夜福利| 免费观看的影片在线观看| 色播亚洲综合网| 亚洲aⅴ乱码一区二区在线播放| 淫秽高清视频在线观看| 国产国拍精品亚洲av在线观看| 久久久久久伊人网av| 亚洲精品一区av在线观看| 亚洲国产高清在线一区二区三| 不卡视频在线观看欧美| 午夜免费男女啪啪视频观看 | 久久久久久久久中文| 亚洲精品乱码久久久v下载方式| 99热全是精品| 别揉我奶头~嗯~啊~动态视频| 免费观看的影片在线观看| 99久久无色码亚洲精品果冻| 听说在线观看完整版免费高清| 淫秽高清视频在线观看| 久久久久久国产a免费观看| 国产一区二区三区在线臀色熟女| 中国国产av一级| 观看美女的网站| 18禁在线无遮挡免费观看视频 | 国产精品国产高清国产av| 在线a可以看的网站| 中文亚洲av片在线观看爽| 欧美一区二区精品小视频在线| 久久精品人妻少妇| 日韩欧美一区二区三区在线观看| 亚洲无线在线观看| 国内精品宾馆在线| av黄色大香蕉| 精品久久久久久久人妻蜜臀av| 亚洲中文日韩欧美视频| 国产激情偷乱视频一区二区| 国产探花在线观看一区二区| 国产精品一区二区免费欧美| 人妻丰满熟妇av一区二区三区| 国产在线男女| 亚洲成av人片在线播放无| 欧美日本视频| 国产亚洲精品综合一区在线观看| 亚洲精华国产精华液的使用体验 | 欧美另类亚洲清纯唯美| 午夜福利成人在线免费观看| 精品99又大又爽又粗少妇毛片| 久久精品国产亚洲av天美| 色尼玛亚洲综合影院| 老师上课跳d突然被开到最大视频| 久久人妻av系列| 最近最新中文字幕大全电影3| 观看免费一级毛片| av黄色大香蕉| 成人美女网站在线观看视频| 欧美潮喷喷水| 中国美白少妇内射xxxbb| 国产免费男女视频| 人妻制服诱惑在线中文字幕| 伦理电影大哥的女人| 亚洲专区国产一区二区| 亚洲成人av在线免费| 国产亚洲精品久久久久久毛片| 亚洲第一区二区三区不卡| 成人av一区二区三区在线看| 在线观看av片永久免费下载| 此物有八面人人有两片| 亚洲精品一区av在线观看| 精品人妻视频免费看| 日本 av在线| 在线免费观看的www视频| 亚洲18禁久久av| 国国产精品蜜臀av免费| 狂野欧美激情性xxxx在线观看| 在线观看美女被高潮喷水网站| av视频在线观看入口| 插阴视频在线观看视频| 亚洲成人久久爱视频| a级毛色黄片| 色av中文字幕| 精品人妻一区二区三区麻豆 | 日本熟妇午夜| 亚洲av二区三区四区| 精品一区二区三区视频在线| 免费观看的影片在线观看| 国产黄色视频一区二区在线观看 | 两个人的视频大全免费| 波多野结衣高清无吗| 搡老岳熟女国产| 久久久久久久久大av| 亚洲综合色惰| 一区二区三区免费毛片| 蜜桃亚洲精品一区二区三区| 亚洲久久久久久中文字幕| 级片在线观看| 波多野结衣巨乳人妻| 内射极品少妇av片p| 精品福利观看| 悠悠久久av| 亚洲国产精品sss在线观看| 亚洲美女视频黄频| 有码 亚洲区| 两个人视频免费观看高清| 亚洲va在线va天堂va国产| 国产人妻一区二区三区在| 免费看日本二区| 国产大屁股一区二区在线视频| 免费一级毛片在线播放高清视频| 久久鲁丝午夜福利片| 国产熟女欧美一区二区| 男女啪啪激烈高潮av片| 国产精品一区二区免费欧美| 真实男女啪啪啪动态图| 亚洲成av人片在线播放无| 国产黄片美女视频| 国产高潮美女av| avwww免费| 十八禁网站免费在线| 美女xxoo啪啪120秒动态图| videossex国产| 欧美xxxx性猛交bbbb| 欧美另类亚洲清纯唯美| 午夜视频国产福利| 夜夜看夜夜爽夜夜摸| 午夜影院日韩av| 18禁在线播放成人免费| 国产片特级美女逼逼视频| 女人被狂操c到高潮| 国产av麻豆久久久久久久| 成年版毛片免费区| 久久国产乱子免费精品| 欧美一区二区国产精品久久精品| 六月丁香七月| 一级av片app| 欧美日本视频| 国产男靠女视频免费网站| 亚洲无线在线观看| 1024手机看黄色片| 老师上课跳d突然被开到最大视频| 大香蕉久久网| 亚洲av中文av极速乱| 丰满人妻一区二区三区视频av| 一个人观看的视频www高清免费观看| 欧美色欧美亚洲另类二区| 国产成人a区在线观看| 伦理电影大哥的女人| 2021天堂中文幕一二区在线观| 精品午夜福利在线看| 色播亚洲综合网| 欧美色欧美亚洲另类二区| 精品久久久久久久人妻蜜臀av| 久久精品91蜜桃| 最新中文字幕久久久久| 俄罗斯特黄特色一大片| 精品人妻熟女av久视频| 又黄又爽又刺激的免费视频.| 尾随美女入室| 国产三级中文精品| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 少妇熟女欧美另类| 午夜精品一区二区三区免费看| 国语自产精品视频在线第100页| 亚洲精品在线观看二区| 在线免费观看的www视频| 欧美xxxx黑人xx丫x性爽| 欧美成人免费av一区二区三区| 欧美日本视频| 国产高清视频在线播放一区| 热99在线观看视频| 亚洲性夜色夜夜综合| 亚洲国产精品成人久久小说 | 麻豆av噜噜一区二区三区| 午夜日韩欧美国产| 久久热精品热| 国产黄a三级三级三级人| 春色校园在线视频观看| 国产又黄又爽又无遮挡在线| 三级经典国产精品| 一区福利在线观看| 69人妻影院| 久久草成人影院| 欧美日韩国产亚洲二区| 久久精品91蜜桃| 久久婷婷人人爽人人干人人爱| 日本爱情动作片www.在线观看 | 身体一侧抽搐| 精品乱码久久久久久99久播| 日韩欧美精品免费久久| 久久精品国产鲁丝片午夜精品| 欧美不卡视频在线免费观看| 亚洲精品日韩av片在线观看| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 午夜免费男女啪啪视频观看 | 综合色av麻豆| 三级毛片av免费| 中文字幕av在线有码专区| 亚洲成人久久性| 有码 亚洲区| 国产欧美日韩一区二区精品| 国内久久婷婷六月综合欲色啪| 国产精品国产高清国产av| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 欧美另类亚洲清纯唯美| 免费观看在线日韩| 少妇的逼好多水| 久久久色成人| av专区在线播放| av在线观看视频网站免费| 少妇裸体淫交视频免费看高清| 性欧美人与动物交配| 看十八女毛片水多多多| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区视频在线| 免费人成在线观看视频色| 免费观看在线日韩| 一进一出好大好爽视频| 亚洲高清免费不卡视频| 亚洲精品乱码久久久v下载方式| 亚洲性久久影院| 色在线成人网| 免费看美女性在线毛片视频| 99热6这里只有精品| 99精品在免费线老司机午夜| 欧美日韩一区二区视频在线观看视频在线 | 亚洲久久久久久中文字幕| 大香蕉久久网| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 99久久九九国产精品国产免费| 少妇被粗大猛烈的视频| 观看美女的网站| 又爽又黄无遮挡网站| 国产亚洲精品综合一区在线观看| 老熟妇仑乱视频hdxx| 哪里可以看免费的av片| 1024手机看黄色片| 精品国内亚洲2022精品成人| 国产乱人视频| 国产精品久久久久久久电影| 九九久久精品国产亚洲av麻豆| 免费人成视频x8x8入口观看| 亚洲av电影不卡..在线观看| 人妻制服诱惑在线中文字幕| www日本黄色视频网| 免费人成视频x8x8入口观看| 亚洲精品乱码久久久v下载方式| 免费无遮挡裸体视频| 国产精品av视频在线免费观看| 欧美成人a在线观看| 久久久久精品国产欧美久久久| 国产高清不卡午夜福利| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 91精品国产九色| 亚洲最大成人中文| 国产真实伦视频高清在线观看| 欧美日韩乱码在线| 极品教师在线视频| 看免费成人av毛片| 久久这里只有精品中国| av卡一久久| 99久久成人亚洲精品观看| 九九在线视频观看精品| 在线免费观看的www视频| 亚洲av免费高清在线观看| 亚洲精华国产精华液的使用体验 | 不卡一级毛片| 97在线视频观看| 女人被狂操c到高潮| 国产黄片美女视频| 深夜精品福利| 美女高潮的动态| 老熟妇乱子伦视频在线观看| 久久中文看片网| 国产精品嫩草影院av在线观看| 免费一级毛片在线播放高清视频| 亚洲成人精品中文字幕电影| 日韩av在线大香蕉| 大又大粗又爽又黄少妇毛片口| 午夜福利在线在线| 春色校园在线视频观看| 日韩成人伦理影院| 草草在线视频免费看| 简卡轻食公司| 久久久久国产网址| 亚洲自偷自拍三级| 日本撒尿小便嘘嘘汇集6| av天堂中文字幕网| 天堂动漫精品| 亚洲一区高清亚洲精品| 插逼视频在线观看| 噜噜噜噜噜久久久久久91| 日本在线视频免费播放| 中文字幕av成人在线电影| 两个人视频免费观看高清| 乱码一卡2卡4卡精品| 嫩草影视91久久| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 嫩草影院精品99| 欧美国产日韩亚洲一区| 老熟妇仑乱视频hdxx| 搡老妇女老女人老熟妇| av黄色大香蕉| 亚洲真实伦在线观看| 天天躁日日操中文字幕| 亚洲丝袜综合中文字幕| 亚洲欧美成人综合另类久久久 | 精品不卡国产一区二区三区| 国产一区二区亚洲精品在线观看| 欧美高清性xxxxhd video| ponron亚洲| 天天躁日日操中文字幕| 午夜视频国产福利| 亚洲欧美成人综合另类久久久 | 欧美+亚洲+日韩+国产| 少妇裸体淫交视频免费看高清| 日本一本二区三区精品| 午夜福利在线在线| 久久婷婷人人爽人人干人人爱| 春色校园在线视频观看| 日韩三级伦理在线观看| 18禁在线无遮挡免费观看视频 | 国产真实伦视频高清在线观看| 久久午夜福利片| 国产精品电影一区二区三区| 神马国产精品三级电影在线观看| 91在线精品国自产拍蜜月| 中文在线观看免费www的网站| 久久精品人妻少妇| 免费搜索国产男女视频| 免费人成在线观看视频色| 97人妻精品一区二区三区麻豆| 亚洲精品久久国产高清桃花| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久 | 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区国产精品久久精品| 精品日产1卡2卡| 两个人的视频大全免费| 亚洲精品影视一区二区三区av| 看片在线看免费视频| 久久精品国产自在天天线| 亚洲国产色片| 国内精品一区二区在线观看| 国产av不卡久久| 国产精品一二三区在线看| 亚洲成人av在线免费| 日韩强制内射视频| 尤物成人国产欧美一区二区三区| 国产精品综合久久久久久久免费| 偷拍熟女少妇极品色| 十八禁国产超污无遮挡网站| 色在线成人网| 国产亚洲精品久久久com| 一个人看视频在线观看www免费| 久久中文看片网| 老司机午夜福利在线观看视频| 亚洲激情五月婷婷啪啪| 美女内射精品一级片tv| 午夜视频国产福利| 亚洲av.av天堂| 久久久国产成人精品二区| 麻豆久久精品国产亚洲av| 69人妻影院| 欧美日本视频| 国产精品三级大全| 尤物成人国产欧美一区二区三区| 婷婷精品国产亚洲av在线| 中国美女看黄片| 欧美日本视频| 十八禁网站免费在线| 国产精品久久久久久久久免| 国产女主播在线喷水免费视频网站 | 又黄又爽又免费观看的视频| 国产精品三级大全| 亚洲国产精品国产精品| 国产真实伦视频高清在线观看| 最近在线观看免费完整版| 成人高潮视频无遮挡免费网站| 十八禁网站免费在线| 久久精品国产亚洲av天美| 国产av在哪里看| 欧美色视频一区免费| 婷婷亚洲欧美| 国产精品爽爽va在线观看网站| 老师上课跳d突然被开到最大视频| 午夜影院日韩av| 麻豆成人午夜福利视频| 精品不卡国产一区二区三区| 免费观看人在逋| 中文字幕av在线有码专区| 亚洲熟妇熟女久久| 亚洲天堂国产精品一区在线| 少妇人妻一区二区三区视频| 能在线免费观看的黄片| 九九在线视频观看精品| av视频在线观看入口| 日韩成人伦理影院| 亚洲熟妇熟女久久| 国产又黄又爽又无遮挡在线| 91av网一区二区| 99热全是精品| 两个人的视频大全免费| 97热精品久久久久久| 人妻制服诱惑在线中文字幕| 激情 狠狠 欧美| 成人欧美大片| 深夜精品福利| 级片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 美女被艹到高潮喷水动态| 美女黄网站色视频| 精品久久久久久久久久久久久| 亚洲成人中文字幕在线播放| 97超级碰碰碰精品色视频在线观看| ponron亚洲| 亚洲国产色片| 亚洲中文字幕一区二区三区有码在线看| 男女视频在线观看网站免费| 中文资源天堂在线| 激情 狠狠 欧美| 麻豆一二三区av精品| 国产一区二区亚洲精品在线观看| 国内精品久久久久精免费| 丰满人妻一区二区三区视频av| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 在线看三级毛片| 97碰自拍视频| 最近的中文字幕免费完整| 日韩欧美 国产精品| 在线免费十八禁| 老熟妇仑乱视频hdxx| 欧美色视频一区免费| 精品一区二区三区人妻视频| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 午夜老司机福利剧场| 一级黄色大片毛片| 97热精品久久久久久| 成人亚洲欧美一区二区av| 久久午夜福利片| 欧美最新免费一区二区三区| av卡一久久| 亚洲av二区三区四区| 精品欧美国产一区二区三| 欧美+亚洲+日韩+国产| 久久精品国产亚洲网站| 国产一区二区三区av在线 | 欧美另类亚洲清纯唯美| 男人舔女人下体高潮全视频| 日本在线视频免费播放| 日本成人三级电影网站| 99久久精品国产国产毛片| 久久热精品热| 欧美色欧美亚洲另类二区| 日韩欧美精品v在线| 美女 人体艺术 gogo| 此物有八面人人有两片| 欧美中文日本在线观看视频| 久久亚洲精品不卡| 日本一本二区三区精品| 97在线视频观看| 欧美绝顶高潮抽搐喷水| 亚洲精品影视一区二区三区av| 亚洲人成网站在线播放欧美日韩| 日韩亚洲欧美综合| 久久欧美精品欧美久久欧美| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 十八禁国产超污无遮挡网站| 亚洲内射少妇av| 中文资源天堂在线| 男女之事视频高清在线观看| 色综合色国产| 午夜免费激情av| 久久热精品热| 夜夜夜夜夜久久久久| 国内揄拍国产精品人妻在线| 久久久久久久亚洲中文字幕|