• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrically controllable spin filtering in zigzag phosphorene nanoribbon based normal–antiferromagnet–normal junctions

    2024-01-25 07:14:36RuigangLi李銳崗JunFengLiu劉軍豐andJunWang汪軍
    Chinese Physics B 2024年1期

    Ruigang Li(李銳崗), Jun-Feng Liu(劉軍豐),?, and Jun Wang(汪軍)

    1Department of Physics,Guangzhou University,Guangzhou 510006,China

    2Department of Physics,Southeast University,Nanjing 210096,China

    Keywords: zigzag phosphorene,electrically controllable spin filter,quantum transport

    1.Introduction

    Over the last few decades, spintronics[1–6]has emerged as one of the most promising fields for the development of next-generation electronic devices.At the same time, twodimensional(2D)materials with long spin relaxation time,including graphene,[7,8]borophene[9,10]and phosphorene,[11–14]have been successfully isolated and now serve as reliable platforms upon which to devise spintronic devices.Nowadays,2D material-based spintronic devices, such as spin filters[15]and even magnetically enhanced optoelectronics devices,[16]have been achieved.

    In addition to a long spin relaxation time/length, high spin injection efficiency is also essential when devising spintronic devices.Both of these properties have been found in phosphorene.[17–24]According to Ref.[17], the spinrelaxation length of phosphorene exceeds 6 μm at room temperature.Farooqet al.[18]found that charge doping can induce edge magnetism in armchair phosphorene nanoribbons and an edge-to-edge antiferromagnetic ground state was found in oxygen-passivated tilted phosphorene nanoribbons.[19]Similar to zigzag graphene nanoribbons,[20]edge magnetism in zigzag phosphorene nanoribbons(ZPNRs)was also reported.[21]A study[22]pointed out that edge magnetism exists even though the lattice is not relaxed.Because the edge states determine the electronic properties of ZPNRs,edge ferromagnetism is helpful when devising ZPNR-based spintronic devices.[23]Even though the edge magnetism in ZPNRs vanishes when the dangling bonds at the zigzag edges are removed or the width of the ribbon is bigger than 3 nm(seven unit cells),[21]it can be re-induced by depositing two EuO stripes at the edges, with the large exchange energy 184 meV.[24]

    Spin-polarized current and its effective manipulation are essential for spintronic devices.[25,26]A study has reported that a vertical electric field can be used to manipulate the spinpolarized current in ZPNR-based normal–antiferromagnet–normal(N-AFM-N)junctions.[27]However,the spin-polarized current in anti-zigzag phosphorene antiferromagnet (AFM)junctions cannot be controlled by a vertical electric field, in contrast to the proposal in Ref.[27].Instead,an in-plane electric field can improve the junction from two aspects: first,the inplane field can effectively control the edge bands of all kinds of ZPNR;second,a strong in-plane electric field can be introduced to the junction more easily than a vertical electric field.

    In this study, a ZPNR-based N-AFM-N junction is proposed for generating an in-plane electric field controllable 100%spin-polarized current.In detail,the AFM is an edge-toedge AFM and it is achieved by depositing two EuO stripes,with antiparallel magnetic moments, at the edges, as shown in Fig.1(a).Both the band structure of the ZPNR and the spin-polarized current in the ZPNR-based junctions can be effectively modulated by the in-plane electric field.The 100%spin-polarized current can be generated at wide energy intervals when the in-plane electric field is applied and the spin direction of the current can be reversed by reversing the direction of the electric field.We also find that,by properly selecting the electric potential of the AFM region,the spin-polarized current can be generated and controlled spatially.The manipulation of the electric field in the nanoribbon’s two edges,which can function as separate channels for processing spindependent information,is helpful for improving spin-transfertorque magnetic random-access memories(STT-MRAMs)by influencing the edge current.Furthermore, spin polarization can also be controlled by changing the strength of the electric field and the exchange field, and it is stable when there are disorders and vacancies in the scattering region.Our study provides an easy, practical and promising way to devise spin filters and spin-based transistors.

    2.Structure and model

    Figure 1(a) is the junction we studied, where the edgeto-edge antiferromagnetism is formed by depositing two EuO stripes at the edges of the scattering region.According to Ref.[24], the phosphorene can be adsorbed on top of the EuO(111)surface and form a stable configuration.Two EuO stripes,with antiparallel magnetic moments to each other,are separated and attached to the different edges of the phosphorene nanoribbon.Furthermore, the electric potentialVdand in-plane electric fields can be added to the scattering region.The primitive cell is shown in Fig.1(b),with the sizea1×a2,wherea1=3.27 ?A anda2=4.43 ?A,[12]respectively.The size of the scattering region isW×L=NWa1×NLa2, whereNWandNLare the number of unit cells in transverse(y)and longitudinal (x) directions, respectively.The AB sites (red atoms)belong to the bottom layer, while the CD sites (white atoms)to the upper layer,as illustrated in Fig.1(b).

    Without loss of generality,the magnetic moment at edge 1 is pointing along +z, while that at edge 2 is along?z, as shown in Figs.1(a)and 1(b), respectively.For spin-up(spindown) electrons, the extra on-site energy caused by the exchange field increased (decreased) along theydirection linearly.The Hamiltonian of the junction reads

    whereΘ(x)denotes the step function.Hbσis the tight-binding Hamiltonian of the bare phosphorene nanoribbon andis the creation operator of the siteiwith spinσ=↑/↓.ti jrepresents the hopping integrals and the five hopping integrals aret1=?1.220 eV,t2= 3.665 eV,t3=?0.205 eV,t4=?0.105 eV andt5=0.055 eV,[28]as shown in Fig.1(b).After checking the edge states and conductance of the junction consideringt3andt5,we did not find obvious differences from our presented results.t3andt5are neglected in this study because these two hopping integrals have a limited impact on the transport property of the ZPNR;Hyσdenotes the effect of the in-plane electric field applied to the phosphorene nanoribbon and|Ey/2|corresponds to the maximal on-site energy induced by the in-plane electric field.stands for the exchange energy,|M/2| is the maximal exchange energy; for spin-up(spin-down) electron,η=+1 (?1).Note that,yinHyσanddenotes the coordinates of sites in the transverse direction,which is shown in Fig.1(b).

    Fig.1.Schematics of(a)the ZPNR based N-AFM-N junction and(b)the zigzag phosphorene nanoribbon.The band structures of (c) bare ZPNR and(d)edge-to-edge antiferromagnetic ZPNR with M=0.4 eV.Under an in-plane electric field (Ey =0.5 eV), the band structure of the antiferromagnetic ZPNR consists of(e)spin-up bands and(f)spindown bands.The width of the ZPNR is W =40a2 ≈17 nm.All data are given by the Kwant package.[29]

    The calculation is done by Kwant,[29]a software for quantum transport calculations.After setting the parameters of the tight-binding model of the junction,the scattering matrixScan be easily obtained.The scattering matrix can be calculated by solving the Schr¨odinger equations, which makes the calculation speed faster than when using the lattice Green function approach.In this study,the bias drives electrons to flow from the left lead to the right one.The spin-dependent transmission between leads is given as.The element of scattering matrixSl,rdenotes the modelof the left lead transmitted to the moderof the right lead,and u(d)denotes the spin-up(spin-down)electron.According to the Landauer formula,the spin-dependent conductance is proportional to the transmission,given asGu(d)(EF)=e2Tu(d)(EF)/h.The spin polarization is defined asP=(Gu?Gd)/(Gu+Gd).

    3.Results and discussion

    Figures 1(c)–1(f) show the band structures of the ZPNR withNW=40.Four degenerate edge bands lie in the band gap of the bare ZPNR, as shown in Fig.1(c).When we change the bare ZPNR to an edge-to-edge AFM,the edge bands split into two double-degenerate bands.Each degenerate band consists of one spin-up band and one spin-down band, as shown in Fig.1(d).In detail, the lower (upper) edge band can be occupied by spin-up (spin-down) electrons localized at edge 1 and spin-down (spin-up) electrons at edge 2.When an inplane electric field is applied to the nanoribbon along the +ydirection, an extra potential difference between edges (Ey) is produced.In this case,the edge bands of spin-up(spin-down)electrons depart from (get close to) each other, which can be found in Figs.1(e)and 1(f).Based on these special properties,the spin-dependent transport properties of AFM-ZPNR junctions will be significantly different.

    In Fig.2, the variations in spin-dependent conductance and spin-polarization are depicted as a function of the Fermi energy (EF).Without loss of generality, the number of unit cells in the longitudinal(NL)and transverse(NW)directions of the scattering region is set to be 50 and 40,respectively,in this study.The in-plane electric field produces an additional onsite potentialEy/2=0.25 (?0.25) eV on edge 2 (edge 1) of the scattering region.In Fig.2(a),the spin-dependent conductances are oscillating over a wide energy interval;the oscillation is caused by the quantum interference.Gdexists in the energy interval[?0.3,0.2]eV,with the maximal conductance 2e2/h;whileGuexists in the energy interval[?0.5,?0.1]eV,with the maximal conductancee2/h.In Fig.2(b),the spin polarization shows two obvious platforms in the energy intervals[?0.5,?0.3] eV and[?0.1, 0.15]eV,and the corresponding spin polarizations are 1 and?1, respectively.The oscillation of the polarization in the interval[?0.3,0.15]eV comes from the mixture ofGuandGd.Such phenomena can be understood by the band structures shown in Fig.1.Note that, compared with Fig.2(b),the spin polarization in Fig.2(d)changes sign when the direction of the in-plane field is reversed.The two platforms are separated,which means that such a junction can generate 100%spin-polarized current easily.

    Fig.2.The spin-dependent conductance and spin polarization of the junction.The parameters are set to be NW =40, NL =50, M=0.4 eV and Vd=0.2 eV.(a)(b)Ey=0.5 eV and(c)(d)Ey=?0.5 eV.(e)The spin polarization changes with the in-plane electric field Ey,while other parameters are fixed as NW =40,NL=50,M=0.4 eV,Vd=0.2 eV.(f)The spin polarization changes with the exchange field M,while other parameters are fixed as NW =40,NL=50,Ey=0.5 eV,Vd=0.2 eV.

    Besides changing the direction of the electric field, spin polarization can also be effectively tuned by changing the strength of the electric field and the exchange field.In Fig.2(e), the polarization curve is shifted to lower energy whenEychanges from 0.4 eV to 0.6 eV.The polarization vibration in Fig.2(e) is evident across a broad energy range whenEy=0.4/0.5/0.6 eV.This phenomenon is attributed to the channels of both spins being built simultaneously in those energy intervals.In Fig.2(f),whenMis increased,platforms 1 and 2 are enlarged and the polarization vibration interval is narrowed.The above properties can be understood by the band structure of the ZPNR.

    The spatial distribution of the spin-dependent current is then examined, as shown in Fig.3(b).The Fermi energy of the junction is set to beEF=0 eV.From Fig.3(b), we find that the spin-up electrons are transmitted from the left lead to the right one from edge 1, as the Fermi energyEF=EF1lies in the bottom spin-up band,as shown in Fig.3(a).When the electric potentialVdis decreased,the position of the Fermi energy of the scattering region changes fromEF1toEF2and electrons will transmit from both edges.In detail, spin-up electrons flow from edge 1 and spin-down electrons from edge 2, with the maximal conductanceGu=e2/handGd=e2/h,respectively.As we further decreaseVd, the position of the Fermi energy of the scattering region goes toEF3.The electrons conduct from both edges,with the maximal conductanceGd=2e2/h.The spin-dependent conductance and spin polarization changes withVdcan be found in Fig.3(c).In brief,this property enables us to control the spin-polarized current spatially by changing the electric potentialVdof the scattering region.

    The stability of the spin polarization against the disorders and vacancies is also examined.When the disorders are present, an extra potentialis added to siteiof the scattering region, withirunning over the scattering region.is uniformly distributed in the interval [?δ/2,δ/2],whereδis the strength of the disorder.The vacancies in the scattering region can be achieved by randomly removingNvatoms from it.The vacancy concentration is defined asC=Nv/(4NWNL).The results are shown in Fig.4.In both cases, the spin-dependent conductance is suppressed whenδorCis increased.The maximalGuandGdcan reach 0.9e2/hand 1.5e2/h,respectively,whenδ=0.2|t1|orC=2%.As we see, the two platforms in the spin-polarization curves remain unchanged when the disorders or vacancies are present.

    Fig.3.(a)The band structure of the edge-to-edge AFM ZPNR,with Ey =0.5 eV and M=0.4 eV.(b)The local density of state of electrons when E=EF1/F2/F3.(c)The spin-dependent conductance and spin polarization change with the electric potential Vd of the scattering region.

    Fig.4.The spin-dependent conductance and spin polarization of the junction with the presence of (a) disorders with strength δ =0.0|t1|,0.1|t1|and 0.2|t1|,or(b)vacancies with concentration C=0,1%and 2%.The other parameters are set to be NW =40,NL=50,M=0.4 eV,Ey=0.5 eV and Vd=0.2 eV.

    4.Conclusion

    In this study, we investigate the spin-filtering effect in a ZPNR-based N-AFM-N junction.The edge-to-edge antiferromagnetism can be achieved by two ferromagnets placed on the edges of the nanoribbon.The two spin-degenerated edge bands of edge-to-edge antiferromagnetic ZPNR separate into four spin-polarized bands when an in-plane electric field is applied to the nanoribbon.A 100% spin-polarized current can be generated at various wide energy intervals in the junction when the in-plane electric field is applied.The spin polarization can be tuned by changing the direction and the strength of the electric field.By changing the electric potential of the scattering region,the edge spin-polarized current can be controlled spatially.In addition to the in-plane electric field, the spin polarization can also be tuned by changing the strength of the exchange field.We also found that the spin polarization is stable when disorders and vacancies are present.Our findings provide a practical way to devise controllable spintronic devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12174077 and 12174051),the Science Foundation of GuangDong Province (Grant No.2021A1515012363), and GuangDong Basic and Applied Basic Research Foundation(Grant No.2022A1515110011).

    一二三四在线观看免费中文在| 亚洲精品美女久久久久99蜜臀| 国产精品日韩av在线免费观看 | 国产欧美日韩一区二区精品| 中文字幕最新亚洲高清| 岛国在线观看网站| 在线观看一区二区三区| 亚洲欧美一区二区三区黑人| 老司机午夜十八禁免费视频| 国产精品野战在线观看| 大型黄色视频在线免费观看| 国产成人精品在线电影| 禁无遮挡网站| 精品一区二区三区av网在线观看| 国产亚洲精品久久久久久毛片| 亚洲国产看品久久| 亚洲黑人精品在线| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 久久婷婷人人爽人人干人人爱 | 久久久久国产精品人妻aⅴ院| 国产av在哪里看| 国产精品九九99| 国产精华一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看影片大全网站| 美女高潮到喷水免费观看| 午夜福利视频1000在线观看 | 99在线人妻在线中文字幕| 嫁个100分男人电影在线观看| 色综合欧美亚洲国产小说| 国产亚洲精品一区二区www| 亚洲专区中文字幕在线| 亚洲av电影在线进入| 亚洲人成电影免费在线| 日日摸夜夜添夜夜添小说| 999久久久精品免费观看国产| 国产av一区二区精品久久| 亚洲一码二码三码区别大吗| 欧美另类亚洲清纯唯美| 一级黄色大片毛片| 亚洲av美国av| 中文字幕人妻熟女乱码| 中文字幕高清在线视频| 国产野战对白在线观看| 欧美日韩乱码在线| 亚洲avbb在线观看| 麻豆成人av在线观看| 午夜a级毛片| 久久精品国产亚洲av高清一级| 久久久久久亚洲精品国产蜜桃av| 99国产精品一区二区三区| 国产三级在线视频| 男女下面插进去视频免费观看| 性欧美人与动物交配| 国产熟女xx| 国产精品久久久久久亚洲av鲁大| 国产av精品麻豆| 99久久国产精品久久久| 高潮久久久久久久久久久不卡| 久久精品91蜜桃| 国产91精品成人一区二区三区| 一个人观看的视频www高清免费观看 | 熟女少妇亚洲综合色aaa.| 超碰成人久久| 色在线成人网| 老鸭窝网址在线观看| 性欧美人与动物交配| 熟妇人妻久久中文字幕3abv| 亚洲精品久久成人aⅴ小说| 久久亚洲真实| 国产日韩一区二区三区精品不卡| 亚洲成人久久性| 一二三四社区在线视频社区8| 成人手机av| 精品第一国产精品| 91字幕亚洲| 视频区欧美日本亚洲| 一进一出抽搐动态| 欧美日韩瑟瑟在线播放| 99re在线观看精品视频| 丝袜人妻中文字幕| 日日夜夜操网爽| 好男人电影高清在线观看| av有码第一页| 久久久国产成人精品二区| 成人永久免费在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久久5区| 成人国语在线视频| 亚洲欧美精品综合一区二区三区| 亚洲成人国产一区在线观看| 久久午夜亚洲精品久久| 黑人操中国人逼视频| 国产av在哪里看| 性色av乱码一区二区三区2| 成人国语在线视频| 亚洲欧美日韩另类电影网站| 19禁男女啪啪无遮挡网站| 美女 人体艺术 gogo| 9191精品国产免费久久| 国产在线观看jvid| 日韩高清综合在线| 一级毛片精品| 日本五十路高清| 丝袜美腿诱惑在线| 国产精品 欧美亚洲| 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 国产成人av教育| 99久久99久久久精品蜜桃| 国产av在哪里看| 亚洲精品中文字幕一二三四区| 午夜福利成人在线免费观看| 黄网站色视频无遮挡免费观看| 国产成年人精品一区二区| 在线观看日韩欧美| 在线观看舔阴道视频| 精品久久久久久,| 亚洲黑人精品在线| 精品国产乱子伦一区二区三区| 少妇粗大呻吟视频| 国产成人精品在线电影| 高清在线国产一区| 18禁观看日本| 69av精品久久久久久| 色尼玛亚洲综合影院| 亚洲成人免费电影在线观看| 免费高清在线观看日韩| 欧洲精品卡2卡3卡4卡5卡区| 丝袜在线中文字幕| 欧美成人性av电影在线观看| xxx96com| 午夜福利18| а√天堂www在线а√下载| 国产激情久久老熟女| 一区二区三区激情视频| 国产精品自产拍在线观看55亚洲| 国产1区2区3区精品| 99国产极品粉嫩在线观看| 制服丝袜大香蕉在线| 亚洲avbb在线观看| 在线观看免费视频日本深夜| 欧美黑人欧美精品刺激| 女人精品久久久久毛片| 在线观看免费视频日本深夜| 黄色视频,在线免费观看| 久久久久国产一级毛片高清牌| 女性被躁到高潮视频| 国产蜜桃级精品一区二区三区| 国产亚洲av嫩草精品影院| 一级毛片精品| 久久亚洲精品不卡| 精品国产一区二区久久| 亚洲av成人一区二区三| 久久婷婷人人爽人人干人人爱 | 国产野战对白在线观看| 国产亚洲av嫩草精品影院| 看黄色毛片网站| 欧美av亚洲av综合av国产av| 亚洲成av人片免费观看| 少妇熟女aⅴ在线视频| 宅男免费午夜| 亚洲一区高清亚洲精品| 九色亚洲精品在线播放| videosex国产| 国产精品 欧美亚洲| 欧美亚洲日本最大视频资源| 亚洲七黄色美女视频| 亚洲精品国产色婷婷电影| 免费在线观看影片大全网站| 色播亚洲综合网| 亚洲情色 制服丝袜| 精品电影一区二区在线| 黄频高清免费视频| 可以在线观看毛片的网站| 亚洲少妇的诱惑av| 黄片大片在线免费观看| 搡老熟女国产l中国老女人| 国产又色又爽无遮挡免费看| 免费在线观看黄色视频的| 久久精品国产综合久久久| 亚洲国产看品久久| tocl精华| 老司机在亚洲福利影院| 成在线人永久免费视频| 久久国产精品人妻蜜桃| 欧美av亚洲av综合av国产av| 欧美日韩一级在线毛片| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| 亚洲avbb在线观看| 亚洲伊人色综图| 久久天躁狠狠躁夜夜2o2o| 国产99久久九九免费精品| 久久人人精品亚洲av| 1024视频免费在线观看| 亚洲国产欧美网| 男女下面进入的视频免费午夜 | 成人国语在线视频| 国产高清视频在线播放一区| 在线观看午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 国产91精品成人一区二区三区| 精品一区二区三区四区五区乱码| 亚洲精品在线美女| 99国产精品一区二区蜜桃av| 精品高清国产在线一区| 亚洲成人国产一区在线观看| 色av中文字幕| 日韩免费av在线播放| 久久精品国产亚洲av高清一级| 久久国产精品人妻蜜桃| 色在线成人网| 三级毛片av免费| 亚洲色图av天堂| 国产黄a三级三级三级人| 99久久综合精品五月天人人| 天天躁夜夜躁狠狠躁躁| 国产成人影院久久av| 看黄色毛片网站| 精品国产美女av久久久久小说| 国产国语露脸激情在线看| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 久久草成人影院| 妹子高潮喷水视频| 久久亚洲真实| 超碰成人久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产熟女xx| 免费在线观看完整版高清| 性欧美人与动物交配| 麻豆久久精品国产亚洲av| 男女之事视频高清在线观看| 亚洲av片天天在线观看| 亚洲成av片中文字幕在线观看| 欧美中文日本在线观看视频| ponron亚洲| 一级,二级,三级黄色视频| 中文字幕高清在线视频| АⅤ资源中文在线天堂| 天堂影院成人在线观看| 午夜影院日韩av| 国产精华一区二区三区| 亚洲色图av天堂| 亚洲狠狠婷婷综合久久图片| 亚洲精品av麻豆狂野| 一a级毛片在线观看| 久99久视频精品免费| 成年版毛片免费区| 大陆偷拍与自拍| 国产日韩一区二区三区精品不卡| 精品人妻在线不人妻| 久久这里只有精品19| 激情视频va一区二区三区| 俄罗斯特黄特色一大片| 国产精品野战在线观看| 91精品三级在线观看| 色综合欧美亚洲国产小说| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看 | 一个人观看的视频www高清免费观看 | 无遮挡黄片免费观看| 国产熟女午夜一区二区三区| 亚洲专区国产一区二区| 亚洲av熟女| 免费一级毛片在线播放高清视频 | 成人精品一区二区免费| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 大型黄色视频在线免费观看| 99香蕉大伊视频| 97人妻天天添夜夜摸| 香蕉丝袜av| 久久青草综合色| 日本 av在线| 国产亚洲欧美98| 久久久久久免费高清国产稀缺| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 欧美激情极品国产一区二区三区| 精品第一国产精品| 国产私拍福利视频在线观看| 免费久久久久久久精品成人欧美视频| 日本欧美视频一区| 成年女人毛片免费观看观看9| 999精品在线视频| 色播亚洲综合网| 一本综合久久免费| 亚洲人成77777在线视频| 两个人看的免费小视频| av视频免费观看在线观看| 中文字幕色久视频| 欧美中文日本在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 一级作爱视频免费观看| 午夜两性在线视频| 久久天躁狠狠躁夜夜2o2o| 超碰成人久久| 男女之事视频高清在线观看| 欧美日本视频| 91成年电影在线观看| 免费观看精品视频网站| 91麻豆精品激情在线观看国产| 少妇的丰满在线观看| 午夜福利高清视频| 麻豆国产av国片精品| 亚洲成人免费电影在线观看| 久久久久九九精品影院| 侵犯人妻中文字幕一二三四区| 制服丝袜大香蕉在线| 午夜日韩欧美国产| 日韩视频一区二区在线观看| 男男h啪啪无遮挡| 欧美日本中文国产一区发布| 人人澡人人妻人| 日韩欧美一区视频在线观看| 色尼玛亚洲综合影院| av在线播放免费不卡| 国产97色在线日韩免费| 亚洲少妇的诱惑av| 国产亚洲欧美98| 97碰自拍视频| 一区二区三区精品91| 亚洲欧美精品综合一区二区三区| 一级,二级,三级黄色视频| 亚洲最大成人中文| 大型av网站在线播放| 亚洲专区字幕在线| 免费看美女性在线毛片视频| 好看av亚洲va欧美ⅴa在| av有码第一页| 午夜日韩欧美国产| 黑丝袜美女国产一区| 国产1区2区3区精品| 亚洲精品美女久久av网站| 黄片播放在线免费| 十八禁网站免费在线| 久久人人爽av亚洲精品天堂| 在线免费观看的www视频| 国产av一区在线观看免费| 中文字幕人成人乱码亚洲影| 免费久久久久久久精品成人欧美视频| 国产高清激情床上av| 成人三级做爰电影| 99re在线观看精品视频| 欧美成人免费av一区二区三区| 波多野结衣av一区二区av| 美女 人体艺术 gogo| 999久久久国产精品视频| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 国产精华一区二区三区| 国产成人欧美| 一进一出抽搐动态| 人人妻,人人澡人人爽秒播| 欧美日韩福利视频一区二区| 999久久久国产精品视频| av福利片在线| 波多野结衣高清无吗| 午夜精品久久久久久毛片777| 亚洲 欧美 日韩 在线 免费| 99在线视频只有这里精品首页| 久久精品91蜜桃| 国产精华一区二区三区| 亚洲成人久久性| 99在线视频只有这里精品首页| 老汉色∧v一级毛片| 成人手机av| 久久久久久免费高清国产稀缺| 青草久久国产| 欧美一区二区精品小视频在线| 久久久国产成人免费| 国产一级毛片七仙女欲春2 | 中文字幕高清在线视频| 亚洲九九香蕉| 岛国在线观看网站| 久久精品成人免费网站| 午夜两性在线视频| 国产欧美日韩一区二区精品| 嫩草影视91久久| 亚洲人成伊人成综合网2020| 国产亚洲精品第一综合不卡| 首页视频小说图片口味搜索| 美女大奶头视频| 欧美一级毛片孕妇| 午夜福利一区二区在线看| 亚洲国产中文字幕在线视频| 日韩欧美一区二区三区在线观看| 91老司机精品| 黄色视频不卡| 国产成人精品久久二区二区免费| 国产av精品麻豆| 熟妇人妻久久中文字幕3abv| av网站免费在线观看视频| 少妇 在线观看| a在线观看视频网站| 欧美成人午夜精品| 香蕉国产在线看| 女人被躁到高潮嗷嗷叫费观| aaaaa片日本免费| 国产av在哪里看| 国产成人欧美在线观看| 久久精品aⅴ一区二区三区四区| www.精华液| 婷婷六月久久综合丁香| 黄片播放在线免费| 女性生殖器流出的白浆| 国产成+人综合+亚洲专区| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩瑟瑟在线播放| 亚洲精品久久国产高清桃花| 999久久久精品免费观看国产| 亚洲一卡2卡3卡4卡5卡精品中文| 嫩草影视91久久| 夜夜夜夜夜久久久久| 国产在线观看jvid| 久久久久精品国产欧美久久久| 国产91精品成人一区二区三区| 欧美一级a爱片免费观看看 | 日韩欧美三级三区| 91精品国产国语对白视频| 黑丝袜美女国产一区| 超碰成人久久| 一边摸一边抽搐一进一小说| 亚洲一区二区三区色噜噜| 欧美人与性动交α欧美精品济南到| 亚洲 国产 在线| 性少妇av在线| 午夜a级毛片| 制服人妻中文乱码| 国产亚洲欧美在线一区二区| 欧美绝顶高潮抽搐喷水| 亚洲国产精品成人综合色| 一二三四在线观看免费中文在| 成人手机av| 亚洲全国av大片| 日本vs欧美在线观看视频| 搡老岳熟女国产| 在线观看免费视频网站a站| 国产单亲对白刺激| 免费av毛片视频| 9色porny在线观看| 美女高潮到喷水免费观看| 欧美乱码精品一区二区三区| 国产成人精品无人区| 国产亚洲av高清不卡| 欧美人与性动交α欧美精品济南到| 亚洲av成人不卡在线观看播放网| 成人三级做爰电影| 欧美激情 高清一区二区三区| 夜夜躁狠狠躁天天躁| 国产精品九九99| 国产伦一二天堂av在线观看| av网站免费在线观看视频| 亚洲电影在线观看av| 国产精品美女特级片免费视频播放器 | a在线观看视频网站| 一区二区三区高清视频在线| 久久久国产成人精品二区| 久久精品国产亚洲av香蕉五月| 久久午夜综合久久蜜桃| 久久精品人人爽人人爽视色| 欧美激情久久久久久爽电影 | 国产精品影院久久| 国产激情久久老熟女| 岛国视频午夜一区免费看| 波多野结衣巨乳人妻| 亚洲欧美一区二区三区黑人| 成人特级黄色片久久久久久久| 99香蕉大伊视频| 色在线成人网| 制服人妻中文乱码| 露出奶头的视频| 美女国产高潮福利片在线看| 黄片大片在线免费观看| 亚洲精品在线观看二区| 熟女少妇亚洲综合色aaa.| 美女高潮喷水抽搐中文字幕| 久久精品国产综合久久久| 免费搜索国产男女视频| 国产99白浆流出| 亚洲欧美激情综合另类| 黄色女人牲交| 纯流量卡能插随身wifi吗| 亚洲免费av在线视频| 国产av一区二区精品久久| 精品国内亚洲2022精品成人| 久久人妻熟女aⅴ| 亚洲精品一卡2卡三卡4卡5卡| 欧美人与性动交α欧美精品济南到| 国产亚洲精品第一综合不卡| 天堂影院成人在线观看| 国产精品爽爽va在线观看网站 | 亚洲精品在线美女| 国产麻豆成人av免费视频| 巨乳人妻的诱惑在线观看| 中文字幕最新亚洲高清| 欧美日韩中文字幕国产精品一区二区三区 | 欧美av亚洲av综合av国产av| 久久影院123| 成人免费观看视频高清| 成年版毛片免费区| 可以在线观看的亚洲视频| 亚洲国产毛片av蜜桃av| 久久久久久久久免费视频了| 日韩欧美免费精品| 亚洲人成网站在线播放欧美日韩| aaaaa片日本免费| 黄色女人牲交| 久久久久久久久中文| 久久亚洲真实| 好男人电影高清在线观看| 美女扒开内裤让男人捅视频| 久久精品影院6| 久久精品亚洲熟妇少妇任你| 桃红色精品国产亚洲av| 国产亚洲精品第一综合不卡| 国产日韩一区二区三区精品不卡| 俄罗斯特黄特色一大片| 中文亚洲av片在线观看爽| 性少妇av在线| 宅男免费午夜| 一本综合久久免费| 久久性视频一级片| 亚洲国产精品999在线| 日韩欧美国产在线观看| 90打野战视频偷拍视频| 又紧又爽又黄一区二区| 日本撒尿小便嘘嘘汇集6| 亚洲激情在线av| 国产亚洲精品av在线| av超薄肉色丝袜交足视频| 91字幕亚洲| 亚洲国产精品久久男人天堂| 90打野战视频偷拍视频| 精品不卡国产一区二区三区| 两人在一起打扑克的视频| 国产精品免费一区二区三区在线| av电影中文网址| 午夜福利视频1000在线观看 | 国产aⅴ精品一区二区三区波| 国产精品自产拍在线观看55亚洲| 亚洲成人免费电影在线观看| 久久久国产成人精品二区| 男女床上黄色一级片免费看| 欧美性长视频在线观看| 99精品久久久久人妻精品| 在线观看一区二区三区| 成人精品一区二区免费| 免费看十八禁软件| 91成人精品电影| 淫妇啪啪啪对白视频| 欧美日韩乱码在线| 悠悠久久av| 国产精品久久电影中文字幕| 午夜福利免费观看在线| 在线观看66精品国产| 久久久精品国产亚洲av高清涩受| 久久精品国产清高在天天线| 国产伦一二天堂av在线观看| 精品欧美国产一区二区三| 美女大奶头视频| 99精品在免费线老司机午夜| 国产精品 国内视频| 日韩欧美国产一区二区入口| 久久国产精品人妻蜜桃| 日本a在线网址| ponron亚洲| 国内久久婷婷六月综合欲色啪| 久久久久久大精品| 亚洲熟女毛片儿| 欧美黄色淫秽网站| 日本精品一区二区三区蜜桃| 日韩精品中文字幕看吧| 欧美日韩福利视频一区二区| 国产免费av片在线观看野外av| 精品久久久精品久久久| 真人一进一出gif抽搐免费| 巨乳人妻的诱惑在线观看| 免费一级毛片在线播放高清视频 | 好男人电影高清在线观看| 正在播放国产对白刺激| 日本免费a在线| 欧美一区二区精品小视频在线| 亚洲第一电影网av| 中文字幕另类日韩欧美亚洲嫩草| 12—13女人毛片做爰片一| 美女扒开内裤让男人捅视频| 久久久精品欧美日韩精品| 精品一区二区三区视频在线观看免费| 狂野欧美激情性xxxx| 国产精品九九99| 一边摸一边做爽爽视频免费| 欧美丝袜亚洲另类 | 黑人操中国人逼视频| 两性夫妻黄色片| 美女免费视频网站| 精品国内亚洲2022精品成人| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久,| 中文字幕av电影在线播放| 这个男人来自地球电影免费观看| 亚洲国产精品sss在线观看| 国产成人免费无遮挡视频| 18美女黄网站色大片免费观看| 精品久久久久久,| 国产成人免费无遮挡视频| 嫁个100分男人电影在线观看| 中文字幕人成人乱码亚洲影| 精品卡一卡二卡四卡免费| 如日韩欧美国产精品一区二区三区| 亚洲精品久久成人aⅴ小说| 好看av亚洲va欧美ⅴa在|