• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-order harmonic generation of ZnO crystals in chirped and static electric fields

    2024-01-25 07:27:46LingYuZhang張玲玉YongLinHe何永林ZhuoXuanXie謝卓璇FangYanGao高芳艷QingYunXu徐清蕓XinLeiGe葛鑫磊XiangYiLuo羅香怡andJingGuo郭靜
    Chinese Physics B 2024年1期
    關鍵詞:郭靜

    Ling-Yu Zhang(張玲玉), Yong-Lin He(何永林), Zhuo-Xuan Xie(謝卓璇), Fang-Yan Gao(高芳艷),Qing-Yun Xu(徐清蕓), Xin-Lei Ge(葛鑫磊), Xiang-Yi Luo(羅香怡), and Jing Guo(郭靜),?

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2School of Physics and Electromechanical Engineering,Hexi University,Zhangye 734000,China

    3Institute of Theoretical Physics,Hexi University,Zhangye 734000,China

    4College of Physical Science and Technology,Bohai University,Jinzhou 121013,China

    5College of Physics and Electronic Information,Baicheng Normal University,Baicheng 137000,China

    Keywords: high-order harmonic generation, the semiconductor Bloch equation, k-resolved inter-band harmonic spectrum,four-step semiclassical model

    1.Introduction

    High-order harmonics generation(HHG)driven by laser not only is a special nonlinear optical phenomenon, but also has become an important way to make extreme UV or soft xray band light source and desktop attosecond light source in the laboratory,[1,2]which provides a feasible scheme for synthesizing attosecond pulses to observe the internal electron dynamics of atoms and molecules,and also makes it possible to further explore and control microscopic particles.The physical mechanism of HHG is mainly given by the semi-classical three-step model proposed by Corkum in 1993.[3]In 2019,Luet al.[4]proposed a four-step model to study HHG in solids,which can be explained as follows: (i) Electrons in the valence band are accelerated by a laser field.(ii)Tunneling excitation occurs at the minimum band gap.(iii) Subsequently,electron and hole pairs accelerate within the band.(iv) Finally,electron and hole recombine and emit harmonic photons with band-gap energy.Compared with the three-step model,the four-step model mainly has a pre-acceleration process.In 2020,Songet al.[5]studied ZnO driven by multi-color pulses to enhance HHG,and proved the occurrence of intra-band preacceleration,which confirmed the proposed four-step model of HHG from semiconductor.

    Based on the research of high harmonics in gas, the description of the harmonic radiation process in solids is gradually perfected,and compared with the electron dynamics process in gas, there is a bit of differences for ultrafast electron dynamics in solids.In order to improve the harmonic efficiency and to extend the high-order harmonic spectrum, researchers have taken many methods in research of high-order harmonic generation from gas,such as using the chirp to control the laser waveform and controlling the dynamics of HHG.Spatially inhomogeneous fields,[6]two-color field,[7]and its combination with chirped pulse,[8,9]as well as the combination of static electric field and chirp[9,10]are used to extend the cutoff energy.For example, Mohebbi[11]used the combination of chirped laser pulse, non-chirped laser pulse and static electric field to drive helium atoms to enhance HHG,and then synthesized a clean 38 as isolated attosecond pulse.Liuet al.[12]introduced a two-color chirped pulse to extend the platform of HHG, and also added a controlled IR or UV pulse to improve the harmonic efficiency.Koushkiet al.[9]showed that adding a static electric field to a two-color chirped laser field can significantly increase the harmonic cutoff and obtain pulses with a minimum duration of 21 as.

    However,the emission of high harmonics driven by combined fields in solids needs to be further studied.Since the HHG process in solids is more complicated than that in atoms, which is due to the coincident movement of electrons and holes in the conduction band and valence band in solids,[13–17]the interference between high harmonics emitted by different channels,[18]or between inter-band and intra-band currents.[19]Based on this,we study the HHG of the combined field along theΓ–Mdirection of the ZnO crystal by solving the SBEs.The characteristics of harmonic spectra are analyzed based on the recollision model.Moreover,k-resolved inter-band harmonic spectra are also given.The incomplete X-structure of the inter-band harmonic spectrum can be analyzed by the four-step model.

    In the rest of this paper,we present the theoretical method used here in Section 2.The calculation results and discussion are given in Section 3.Finally, the conclusions are given in Section 4.Atomic units are used throughout the text unless stated otherwise.

    2.Theoretical method

    HHG in solids can be investigated by many theoretical methods, such as the time-dependent Schr¨odinger equation(TDSE),[20–25]the time-dependent density functional theory (TDDFT),[26–31]and the semiconductor Bloch equation(SBE).[32–38]In this paper, we use SBEs to simulate HHG in solids:[14,15,39,40]

    Our simulation is based on a two-band model, including a valence band and a conduction band.Therefore in Eq.(1)nm=v,crepresents band population, v and c refer to valence band and conduction band, respectively, andπmm'(K,t) represents the quantum coherence between valence band and conduction band.?mm'(K,t) =E(t)·dmm'[K+A(t)] is the Rabi frequency, whereE(t)is the electric field anddmm'[K+A(t)] is the momentumdependent transition dipole moment of the crystal between the two bands.Here, eiSmm'is the phase term, andSmm'(K,t)=t?∞{εm[K+A(t')]?εm'[K+A(t')]}dt'is the classical action,εmandεm'refer to band energy,andT2is the dephasing time.According to Bloch’s acceleration theorem,crystal momentumK(t)=k ?A(t) is in a moving coordinate system,K(t)is the time-dependent momentum under the laser field,kis the initial momentum,is the vector potential of the laser field.In the semiconductor Bloch equations,we are usingK+A(t)to denotek,andA(t)depends ont,so the variables are represented only byKandt.The polarization, which represents the polarizability between two energy bands,is defined as[14]

    The intra-band current and the inter-band current are expressed as[14]

    whereυm(k)=?kεm(k)denotes the velocity of valence band(m=v) and conduction band (m=c).The intra-band and inter-band harmonic spectra are obtained by taking the Fourier transform of the intra-band current and inter-band current after derivation of time, respectively, and the total harmonic spectrum is obtained from the total currents:

    The one-dimensional SBE is adopted for simulation,and laser field can be expressed as

    wheref(t)is a Gaussian type envelope,τis the full width at half maximum (FWHM).E0,ω0, and?0are the peak value,frequency,and carrier envelope phase of electric field,respectively;αis the chirped parameter;βis the amplitude ratio between the static electric field and the fundamental frequency field(E0).The polarization direction of the laser pulse is along theΓ–Mdirection of ZnO crystal.

    In solid, electrons (holes) move according to Newtonian equations:, where ˉhkis the momentum.The details are as follows:

    The intraband current and interband current can be calculated by the solid strong field approximation formula[14]

    In the solid strong field approximation theory,the contribution of interband polarization near the saddle point dominates.The phase term in the interband current is

    At the saddle point,the first derivative of the phase term with respect to the three variablesk,t',tis equal to 0,and the three saddle point equations can be given as follows:

    Three saddle point equations are given,and three saddle point conditions can be obtained: (i)k(t) =k0+A(t)?A(t')denotes the electron tunneling from the minimum band gapk0at timet', which is called the tunneling condition.(ii)Δxe?Δxh=0 represents the recollision of electrons and holes in real space, and the harmonic photons are emitted when the collision occurs,which is called the recollision condition.(iii)ω=εc[k(t)]?εv[k(t)] indicates that the energy of the harmonic photon radiated upon recollision is equal to the instantaneous band gap when the electron–hole pair recombines,which is called the energy conservation condition.If only(i)and(ii)are considered, thek-space quasi-classical model can be obtained.If (i), (ii), and (iii) are considered at the same time, the real space recollision model can be obtained.The real space recollision model holds that electrons undergo three processes,namely tunneling ionization,electron acceleration,and electron hole pair recombination,and finally we can realize harmonic radiation.[41]

    3.Results and discussion

    In our calculations, we use fundamental pulse (α=0,β=0) withE0= 0.0037 a.u.(I= 0.48 TW/cm2),λ=3200 nm,ω0=0.0142 a.u.,?0=0, andτ=10.3 fs orτ=64 fs.The chirp parameterαis selected to be 3×10?6and 5×10?6.The amplitude ratio between the static electric field and the fundamental frequency field,β, is chosen as 0.2 and 0.4.Although the static field ofβ=0.4 is slightly higher, it may be difficult to realize experimentally, but low-frequency laser field(such as CO2laser)can be used instead.[10,42,43]The total duration is taken as 4 o.c.and 25 o.c.(o.c.:optical cycle)in the simulation.Firstly, the structure top view of ZnO and the valence band and conduction band are shown in Figs.1(a)and 1(b).Figure 1(a)shows the top view of ZnO in real space,which presents a hexagonal honeycomb structure.We focus on the band structure along theΓ–Mdirection of the crystal,as shown in Fig.1(b),including a valence band and a conduction band,marked by solid line and dashed line,respectively.In order to compare the influence of chirp parameters and amplitude ratios of static electric field to fundamental frequency pulse on HHG, the harmonics under different parameters or amplitude ratios of fields are shown in Fig.2.

    Fig.1.(a) Top view of wurtzite ZnO with the Zn (the blue balls) and O(the orange balls)atoms.(b)Energy band structure of ZnO along the Γ–M direction, considering the two-band model with a valence band and a conduction band.

    It can be seen from Figs.2(a1) and 2(b1) that the harmonics drop rapidly from 0 to the 7th order,and the intensity of the harmonics is almost constant from 9th to 29th order,about 10?7orders of magnitude,and the cutoff is of the 29th order.With the introduction of chirped pulse with 4 o.c.and 25 o.c.in Figs.2(a1) and 2(b1), we can see that harmonic modulation is obvious.Moreover,the existence of static electric field can improve the harmonic efficiency, as shown in Figs.2(a2) and 2(b2).When the combination of single-color chirp-free pulse and static electric field is considered(α=0,β/=0), the modulation in the harmonic platform is reduced,and the interference structure of harmonics below the 7th order is obvious.Driven by the combination of single-color chirped pulse and static electric field,we can obtain relatively continuous harmonic spectrum.Compared with the 4-period case,the harmonic spectrum presents similar characteristic with the 25-period case.Furthermore, we also consider the influence of the combined pulse of chirped pulse and static electric field on HHG, and find that the harmonic intensity in Figs.2(a3)and 2(b3) is roughly 1 or 2 orders of magnitude higher than that in Figs.2(a1) and 2(b1).However, compared to HHG driven by the combination of single-color chirp-free pulse and static electric field in Figs.2(a2)and 2(b2),the modulation of the harmonic driven by the combination of chirped pulse and static electric field is more obvious [as shown in Figs.2(a3)and 2(b3)].

    The harmonics are optimized.By changing the laser intensity of the single-color chirp-free field, the peak intensity of the electric field reaches the peak intensity of the combination of the single-color field and the static electric field(E0=0.0044 a.u.,E01=0.0051 a.u.),and calculating the harmonic spectrum in Figs.3(a) and 3(b), we find that the harmonic intensity is improved.When the static electric field is added, the harmonic efficiency is indeed improved and relatively continuous harmonic spectra are obtained with the 4-period and 25-period cases,and with the 4-period case the harmonics are smoother.Moreover, by changing the carrier envelope phase(CEP)of the single-color chirp-free laser pulse,harmonics are seldom changed,which is not shown.

    The harmonic spectrum is calculated when the amplitude ratio of the static electric field to the fundamental laser field is negative (β=?0.2,β=?0.4), as shown in Fig.4.We can find that the harmonic efficiency is improved no matter whetherβis positive or negative.However, when positive values are taken, relatively continuous harmonics can be obtained.

    Fig.2.HHG from ZnO driven by different fields in 4-period and 25-period cases.(a1)–(a3)HHG in the single-color chirped pulse(α =3×10?6,5×10?6),the combination of single-color chirp-free pulse and static electric field(β =0,0.2,0.4),and the combination of single-color chirped pulse and static electric field with duration of 4 optical cycles.(b1)–(b3)Results with pulse duration of 25 optical cycles.Other laser parameters are the same as those in(a1)–(a3).

    Fig.3.The total harmonic spectrum under the laser field with(a)4 o.c.and(b)25 o.c.at different laser intensities.

    In the case of HHG in gas, the introduction of chirp pulse and static electric field can greatly improve the cutoff frequency,[11,44,45]and enhance the harmonic efficiency.[46,47]However, in our work, the intensity of the harmonic plateau is improved, but the cutoff cannot be extended.This phenomenon is quite different from the results of HHG in gas.In order to analyze the internal reasons for these differences,we first give the profile and vector potential of each field,and the time-dependent electron population in the conduction band.For the convenience of the analysis, we only consider the 4-period case.

    Figure 5 shows the electric field profiles of different laser fields,the vector potential,and the electron population of conduction band.We can see that with static electric field, the ionization probability of electron is greater than that of singlecolor chirp free pulse and chirped pulse.The fast excitation of electrons is still related to the peak value of electric field and corresponding vector potential.When the electric field reaches its peak value and the value of the corresponding vector potential is not 0, the electron is rapidly excited to the conduction band [see Fig.5(b)].Because the addition of the static electric field breaks the symmetry of the field in the adjacent half period, the maximum peak value of the laser field increases,so that the probability of electron ionization increases [see Figs.5(a)and 5(c)].

    In order to clearly understand the physical mechanism of the large difference between the harmonic spectra in ZnO and the gas, we present the time-frequency of the harmonics in ZnO.Based on the change of the field waveform and the rapid excitation rate of electrons at the peak value of the electric field, the harmonic spectrum in Fig.2 is further analyzed in combination with the time frequency, as shown in Fig.6.The harmonics mainly contribute from short trajectories by a single-color chirp free pulse in Fig.6(a).By introducing the chirped pulse,the contribution of long quantum trajectories is enhanced,leading to the appearance of modulation in the harmonics, and the interference structure is evident in Fig.6(b),which is consistent with the harmonic spectrum in Fig.2(a1).Similar results can be obtained in the case of 25 o.c.

    Fig.5.(a)Electric field profiles of single-color chirp free pulse,singlecolor chirped pulse, combination of single-color chirp free pulse and static electric field, and combination of single-color chirped pulse and static electric field.(b) The vector potential corresponding to (a).(c) Evolution of electron population in conduction band as a function of time in each field.

    In the case of 4 o.c., the main contribution of harmonics is from short trajectories when ZnO is driven by single-color chirp-free pulse and there are mainly two peaks in the timefrequency distribution of harmonics.Some electrons are excited to the conduction band att=?0.5 o.c.and return to the valence band aroundt=0 o.c., radiating harmonics, corresponding to harmonic peaks of the time-frequency distribution aroundt=0 o.c.The harmonic peak aroundt=0.5 o.c.mainly stems from the fast excitation of electrons att=0 o.c.when the pulse reaches its peak.The time frequency agrees well with the classical recollision trajectory in Fig.6.In Fig.6(b), compared with the chirp free pulse, the amplitude and frequency of the chirp pulse are smaller, and the probability of electron ionization is lower att <0 o.c.As a result,the probability of electron returning to valence band and recombination with hole aftert=0 o.c.is reduced, and the harmonic signal of radiation is weakened.Corresponding to Figs.2(a1) and 2(b1), the intensity of the high-energy region of harmonics decreases slightly.However,the strong signal of harmonic peak aroundt=0.5 o.c.is mainly due to tunneling excitation of electrons att=0 o.c.,when the laser field reaches its peak, and the probability of electron ionization reaches its maximum.Att=0.5 o.c., the amplitude and instantaneous frequency of the chirp field increase, then the possibility of recollision of electron–hole pairs increases, and the emitted harmonic signal is enhanced,which leads to a slightly increase in the intensity of the harmonic plateau as shown in Figs.2(a1)and 2(b1).

    In Figs.6(c) and 6(d), in the presence of static electric field, for low order harmonics, both long and short quantum trajectories have important contribution,corresponding to strong harmonic spectrum modulation.[40]For the part larger than 17th order, the short trajectory makes the great contribution to HHG,and the long trajectory is largely suppressed,corresponding to relatively continuous harmonic spectrum in Figs.2(a2)and 2(a3)and Figs.2(b2)and 2(b3).

    The total harmonic spectrum is mainly contributed by the inter-band harmonic spectrum,so we also givek-resolved profile of the inter-band harmonic spectra analyzed by a four-step model.

    Fig.7.The k-resolved profile of inter-band harmonic spectra generation by different fields.(a1)–(d1)The k-resolved profile of interband harmonic spectra by single-color chirp-free pulse (α =0, β =0), single-color chirped pulse (α =5×10?6), the combination of single-color chirp-free pulse and static electric field (β =0.2), and the combination field of single-color chirped pulse and static electric field(α =5×10?6,β =0.2)with the duration of 4 o.c.(a2)–(d2)Results with a pulse duration of 25 o.c.Other parameters are the same as those in(a1)–(d1).

    Figures 7(a1)–7(d1)and 7(a2)–7(d2)show thek-resolved inter-band harmonic spectra for a single-color chirp free pulse,a single-color chirped pulse, a combined field of single-color chirp free pulse and static electric field,and a combined field of single-color chirped pulse and static electric field with 4 o.c.and 25 o.c., respectively.In the case of 4 o.c., some electrons whose initial momentum is not 0 move to the top of the valence band driven by the laser field, and this is called the pre-acceleration process.The electrons that reach the top of the valence band will be excited to the bottom of the conduction band more easily, and the electrons excited to the conduction band and the holes in the valence band will undergo Bloch oscillation together in the laser field.Since the peak values of laser pulses in the adjacent half periods are different, the electrons moving on the conduction band will move at different distances on both sides of theΓpoint.In adjacent half-cycle, when the peak value of pulse is small, electron–hole pairs are driven to move neark= 0, while the peak value of pulse is large,electron–hole pairs are driven to move far away fromk= 0, resulting in incomplete X-type structures ofk-resolved inter-band harmonic spectra in Figs.7(a1)–7(d1).In the case of 25-period single-color chirp free pulse as shown in Fig.7(a2) and single-color chirped pulse as shown in Fig.7(b2),thek-resolved inter-band harmonics presents the X-type structure.Under the chirped pulse,the inter-band harmonic spectrum ink-space is asymmetric with respect tok=0.After the static electric field is added,k-resolved inter-band harmonic spectrum has a periodic incomplete X-type intensity distribution structure along thekdirection[see Figs.7(c2)and 7(d2)].Due to the introduction of 25-period pulses,k-resolved inter-band harmonic spectrum shows a periodic sloping structure as shown in Figs.7(c1) and 7(c2) and Figs.7(d1) and 7(d2).

    Incomplete X-typek-resolved profile of interband harmonic spectrum can be explained by the four-step model.In Figs.8(a1)–8(a3),we can see that the electron tunnels from the top of the valence band att=0 o.c.,and then presents Bloch oscillation in the conduction band.Att=0.25 o.c., vector potential reaches its peaks at?0.2573 a.u., and the electron moves tok(t) =?0.2573 a.u.Att= 0.55 o.c., the vector potential is approximately 0 and the electron returns to the bottom of the conduction band.Att=0.75 o.c., the vector potential reaches peak of 0.0988 a.u., and the electron also moves to thek(t)=0.0988 a.u.In addition,the electrons have a pre-acceleration process in the valence band before tunneling.Therefore,in the case of 4 o.c.,thek-resolved inter-band harmonics finally present an incomplete X-shaped structure as shown in Fig.7(a1).In the 4-period single-color chirped field(see Figs.8(b1)–8(b3)), the asymmetric X-type structure can also be analyzed by the motion of electrons ink-space.Beforet=0.026 o.c., the electron near the top of the valence band goes through a pre-acceleration process tok=0 a.u.and then the electrons are excited att=0.026 o.c.Att=0.24 o.c.,the vector potential reaches a peak of?0.2088 a.u.and the electron moves tok(t)=?0.2088 a.u.The electron then accelerates.The vector potential is 0 and the electron returns to the bottom of the conduction band att=0.48 o.c.Att=0.68 o.c.,the vector potential reaches another peak of 0.1197 a.u., and the electron also moves to thek(t)=0.1197 a.u.The velocity of the electron decreases to 0 and returns to the lowest point of the conduction band, and then reaches the bottom of the conduction band att=1 o.c.

    In the presence of static electric field,the asymmetric motion of electrons with the change of laser field and vector potential can also be analyzed.Because the static electric field greatly breaks the symmetry of the laser field,k-resolved interband harmonic spectrum only reflects a part of the X-type structure.

    In order to visualize how the laser field affects the electron trajectory, we present the population of transient conduction band.In the 4-period case [see Figs.9(a1)–9(d1)], the electron Bloch oscillation is small, while in the 25-period case,the oscillation is significant [see Figs.9(a2)–9(d2)], and the electron Bloch oscillation is much stronger when the chirped pulse is introduced in Figs.9(b1) and 9(b2) and Figs.9(d1)and 9(d2).Introducing the static electric field, the region reflecting the electrons oscillating is wider, and electrons cross the edge of the first Brillouin zone and experience a Bragg reflection, superimposing the Bloch oscillations[15,24,35,48,49]in the band[see Figs.9(c1)and 9(c2)and Figs.9(d1)and 9(d2)],so that the radiation of multi-channel harmonics occurs,which plays an important role in promoting the harmonic efficiency.Thek-resolved inter-band harmonics in Figs.7(c1)and 7(c2)and Figs.7(d1)and 7(d2)show a periodic slope structure.

    Fig.8.The electric field and vector potential of [(a1), (a2)] single-color chirp-free pulse and[(b1), (b2)] single-color chirped pulse in single cycle.Schematic diagram of the motion of the electron driven by(a3)a single-color chirp-free pulse and(b3)a single-color chirped pulse in k-space.

    Fig.9.The time-dependent population of conduction band by laser pulse with(a1)–(d1)4 o.c.and(a2)–(d2)25 o.c.

    In Figs.9(a1)–9(d1), in the 4-period case, it can be seen that the asymmetry of the electron oscillation ink-space is consistent with the asymmetry of the electron motion analyzed in Fig.8.Electrons travel longer distances along the negative half axis and shorter distances along the positive half axis of the crystal momentum ink-space.This also corresponds to the X-type structure with asymmetrick-resolved inter-band harmonic spectra in Figs.7(a1)–7(d1).However, in the case of 25-period [see Figs.9(a2) and 9(b2)], due to the presence of the pre-acceleration process and the conservation of energy,the correspondingk-resolved inter-band harmonic spectrum shows a relatively symmetric X-type structure[see Figs.7(a2)and 7(b2)].

    4.Conclusions

    We have studied HHG in ZnO crystals under chirped field and static electric field with 4 o.c.and 25 o.c.In the singlecolor chirped laser field,the harmonic cutoff does not extend,but the interference structure is enhanced.In the presence of the static electric field, the harmonic cutoff also remains unchanged, but the harmonic efficiency is improved.The obvious interference structure of harmonics originates from the interference between short and long trajectories,while the continuous harmonics larger than the 17th order in the static electric field are mainly contributed by the short trajectories.By analyzing the motion of electrons inkspace, we explain the incomplete X-type structure of the harmonic spectrum in the asymmetric chirped pulse and static electric field.By singlecolor chirp-free pulses with 25 cycles,k-resolved inter-band harmonic spectrum exhibits a complete X-shaped structure,which reflects the energy conservation and pre-acceleration process.Because the two peak values of the laser field in adjacent half periods have different sizes, resulting in different movement distances of electrons on both sides of theΓpoint,thek-resolved inter-band harmonic spectrum presents an incomplete X-type intensity distribution structure.At the same time,we also explain the existence of the pre-acceleration process.In the presence of the static electric field,electrons cross the first BZ and experience a Bragg reflection,as well as a superposition of oscillation in the conduction band, thus resulting in the radiation of multi-channel harmonics.In addition,time-dependent conduction band population is given,which is consistent with the electron motion in the conduction band.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC) and the National Natural Science Foundation of China (Grant No.12074146).

    猜你喜歡
    郭靜
    Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
    Exploration of magnetic field generation of by direct ionization and coherent resonant excitation?
    Molecular photoelectron momentum and angular distributions of N2 molecules by ultrashort attosecond laser pulses*
    Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay*
    Helicity of harmonic generation and attosecond polarization with bichromatic circularly polarized laser fields?
    Dependence of photoelectron-momentum distribution of H+2 moleculeon orientation angleand laser ellipticity*
    The Strategy on Starbucks’Brand Building
    智富時代(2018年5期)2018-07-18 17:52:04
    “溫柔的綁架”,北漂女追巨款淪為冷酷兇手
    女士(2016年1期)2016-07-05 07:41:45
    国产精品久久久久久亚洲av鲁大| 亚洲av成人不卡在线观看播放网| 亚洲欧美精品综合久久99| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 男人舔奶头视频| 女人爽到高潮嗷嗷叫在线视频| 国产精华一区二区三区| 88av欧美| 久久久国产欧美日韩av| 久久久久国产精品人妻aⅴ院| 在线观看免费午夜福利视频| 国产精品香港三级国产av潘金莲| 国产精品免费视频内射| 欧美最黄视频在线播放免费| 国产v大片淫在线免费观看| 99热只有精品国产| 少妇 在线观看| 午夜福利成人在线免费观看| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩无卡精品| 熟妇人妻久久中文字幕3abv| 国产高清videossex| а√天堂www在线а√下载| 精品国产亚洲在线| 亚洲精品国产一区二区精华液| 欧美乱妇无乱码| 久久精品影院6| 欧美+亚洲+日韩+国产| 午夜福利成人在线免费观看| 精品久久久久久久毛片微露脸| 白带黄色成豆腐渣| 久久性视频一级片| 97碰自拍视频| 成人国语在线视频| 亚洲国产看品久久| 不卡一级毛片| 在线观看www视频免费| 亚洲精品一卡2卡三卡4卡5卡| 无人区码免费观看不卡| 制服人妻中文乱码| 香蕉久久夜色| 色精品久久人妻99蜜桃| 亚洲中文字幕一区二区三区有码在线看 | av天堂在线播放| 国产亚洲欧美精品永久| 波多野结衣高清作品| 亚洲va日本ⅴa欧美va伊人久久| 最新在线观看一区二区三区| 欧美激情 高清一区二区三区| 中文亚洲av片在线观看爽| 观看免费一级毛片| 最近最新免费中文字幕在线| 中文字幕人成人乱码亚洲影| 国产亚洲精品久久久久久毛片| 国产精品电影一区二区三区| 2021天堂中文幕一二区在线观 | avwww免费| 99国产精品一区二区三区| 亚洲在线自拍视频| 一夜夜www| 成人av一区二区三区在线看| 怎么达到女性高潮| 黄频高清免费视频| 亚洲国产毛片av蜜桃av| 久久香蕉精品热| 亚洲五月天丁香| 90打野战视频偷拍视频| 国产高清激情床上av| 一进一出抽搐gif免费好疼| 脱女人内裤的视频| 首页视频小说图片口味搜索| 嫁个100分男人电影在线观看| 18禁裸乳无遮挡免费网站照片 | 亚洲精品在线观看二区| 国产亚洲精品第一综合不卡| 在线视频色国产色| 中文亚洲av片在线观看爽| 亚洲 欧美一区二区三区| 日韩欧美国产在线观看| 老司机午夜福利在线观看视频| 国产精品美女特级片免费视频播放器 | 久久久水蜜桃国产精品网| 国产真人三级小视频在线观看| 丝袜在线中文字幕| 精品国内亚洲2022精品成人| 久久久久国产一级毛片高清牌| 中文字幕人妻熟女乱码| 18美女黄网站色大片免费观看| 波多野结衣高清作品| 国产一区在线观看成人免费| 亚洲专区中文字幕在线| 欧美成人午夜精品| 日日爽夜夜爽网站| 日本在线视频免费播放| 在线看三级毛片| 最近在线观看免费完整版| 欧美zozozo另类| 丝袜美腿诱惑在线| 国产精品久久久久久精品电影 | 嫩草影院精品99| 宅男免费午夜| 国产在线观看jvid| 日韩欧美国产一区二区入口| 动漫黄色视频在线观看| 精品福利观看| 在线十欧美十亚洲十日本专区| 人人妻人人看人人澡| 久久久久精品国产欧美久久久| 高清在线国产一区| 国产成人av教育| 一区二区三区精品91| 亚洲aⅴ乱码一区二区在线播放 | 精品免费久久久久久久清纯| 黄色视频,在线免费观看| 亚洲无线在线观看| 国产人伦9x9x在线观看| 别揉我奶头~嗯~啊~动态视频| e午夜精品久久久久久久| 国产亚洲av嫩草精品影院| 日本免费a在线| 女生性感内裤真人,穿戴方法视频| 亚洲成人精品中文字幕电影| 嫩草影视91久久| 免费在线观看影片大全网站| 国产亚洲精品久久久久久毛片| 国产精品一区二区精品视频观看| 亚洲午夜理论影院| 看片在线看免费视频| 日本三级黄在线观看| 国产视频内射| 99热6这里只有精品| 亚洲人成电影免费在线| 国产欧美日韩一区二区精品| 久久香蕉激情| 99久久精品国产亚洲精品| 欧美色欧美亚洲另类二区| 最新在线观看一区二区三区| 伦理电影免费视频| 亚洲va日本ⅴa欧美va伊人久久| 日本成人三级电影网站| 国产亚洲av高清不卡| 在线观看66精品国产| 久久精品91蜜桃| 91字幕亚洲| 亚洲第一av免费看| 久久精品夜夜夜夜夜久久蜜豆 | 丁香六月欧美| 精品国产国语对白av| 国产免费男女视频| 久久精品91蜜桃| 久久久久亚洲av毛片大全| 国产又爽黄色视频| 男女做爰动态图高潮gif福利片| 一区福利在线观看| 日韩精品免费视频一区二区三区| 日韩欧美一区视频在线观看| 在线免费观看的www视频| 国产精品日韩av在线免费观看| 亚洲精品美女久久av网站| 国产三级黄色录像| 久热这里只有精品99| 精品国产一区二区三区四区第35| 亚洲一区二区三区色噜噜| 男人舔女人的私密视频| 12—13女人毛片做爰片一| 久久久久久九九精品二区国产 | 免费在线观看视频国产中文字幕亚洲| 欧美精品啪啪一区二区三区| 欧美激情久久久久久爽电影| 看片在线看免费视频| 国产aⅴ精品一区二区三区波| 免费在线观看日本一区| 国产aⅴ精品一区二区三区波| 欧美最黄视频在线播放免费| 午夜日韩欧美国产| 国产亚洲精品一区二区www| 欧美性长视频在线观看| 欧美日韩精品网址| 精品久久久久久,| 他把我摸到了高潮在线观看| 99在线人妻在线中文字幕| 免费观看人在逋| 亚洲国产精品成人综合色| 亚洲五月婷婷丁香| 亚洲国产中文字幕在线视频| 日日摸夜夜添夜夜添小说| 国产精品野战在线观看| 又紧又爽又黄一区二区| 日韩欧美一区二区三区在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情高清一区二区三区| av福利片在线| 日韩有码中文字幕| 中文字幕精品亚洲无线码一区 | x7x7x7水蜜桃| 亚洲成国产人片在线观看| 日本在线视频免费播放| 看免费av毛片| 日韩国内少妇激情av| 老司机在亚洲福利影院| 在线观看免费视频日本深夜| 精品国产亚洲在线| 成人国产一区最新在线观看| 国产亚洲精品第一综合不卡| 国产主播在线观看一区二区| 国产精品一区二区三区四区久久 | 国产精品久久视频播放| 视频在线观看一区二区三区| 18美女黄网站色大片免费观看| 1024手机看黄色片| 女警被强在线播放| 亚洲免费av在线视频| 美女扒开内裤让男人捅视频| 亚洲国产日韩欧美精品在线观看 | 亚洲,欧美精品.| 久久久久久国产a免费观看| 日韩高清综合在线| 久久久久久亚洲精品国产蜜桃av| 午夜福利成人在线免费观看| 黄片播放在线免费| 中文字幕高清在线视频| 日韩精品中文字幕看吧| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线观看免费| 97碰自拍视频| 国产蜜桃级精品一区二区三区| 一个人免费在线观看的高清视频| 好男人在线观看高清免费视频 | 熟妇人妻久久中文字幕3abv| 一本大道久久a久久精品| 曰老女人黄片| 在线观看66精品国产| 国产av在哪里看| 亚洲国产欧洲综合997久久, | 正在播放国产对白刺激| 不卡av一区二区三区| 国产精品久久久久久亚洲av鲁大| 中文字幕人成人乱码亚洲影| 国产私拍福利视频在线观看| 久久中文字幕人妻熟女| a在线观看视频网站| 老司机午夜十八禁免费视频| 精品久久久久久成人av| 窝窝影院91人妻| 成年版毛片免费区| 天天躁夜夜躁狠狠躁躁| 国产av一区二区精品久久| 啦啦啦 在线观看视频| 一夜夜www| 欧美色视频一区免费| 99久久综合精品五月天人人| 啦啦啦观看免费观看视频高清| 在线十欧美十亚洲十日本专区| 亚洲一区二区三区色噜噜| 亚洲国产精品999在线| 岛国视频午夜一区免费看| 日本免费a在线| 在线观看免费日韩欧美大片| 九色国产91popny在线| 成人国产一区最新在线观看| 国产蜜桃级精品一区二区三区| 国产精品爽爽va在线观看网站 | 欧美日韩福利视频一区二区| 美女扒开内裤让男人捅视频| 色综合婷婷激情| av免费在线观看网站| 亚洲国产精品999在线| 午夜福利免费观看在线| 久久性视频一级片| www.熟女人妻精品国产| 色播在线永久视频| 日韩欧美 国产精品| av欧美777| 黄频高清免费视频| 欧美色欧美亚洲另类二区| 国产1区2区3区精品| 亚洲中文字幕一区二区三区有码在线看 | 在线观看一区二区三区| 亚洲中文av在线| 给我免费播放毛片高清在线观看| 亚洲av电影不卡..在线观看| 波多野结衣巨乳人妻| 亚洲中文字幕日韩| 啦啦啦免费观看视频1| 久久久久久久午夜电影| a级毛片在线看网站| 18禁黄网站禁片午夜丰满| 亚洲av中文字字幕乱码综合 | 欧美日韩中文字幕国产精品一区二区三区| 午夜精品在线福利| 久久久久久久久免费视频了| 变态另类成人亚洲欧美熟女| 国产一区在线观看成人免费| 午夜福利免费观看在线| 午夜精品在线福利| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 欧美日本亚洲视频在线播放| 国产精品免费一区二区三区在线| 99久久无色码亚洲精品果冻| 欧美黄色淫秽网站| 成年免费大片在线观看| 精品久久久久久久久久久久久 | 亚洲中文字幕日韩| www日本黄色视频网| 久久久久久国产a免费观看| 国产亚洲av嫩草精品影院| 国产成人啪精品午夜网站| 亚洲一区中文字幕在线| 无遮挡黄片免费观看| 国产精品爽爽va在线观看网站 | 国产精品永久免费网站| 久久久久免费精品人妻一区二区 | 亚洲成人精品中文字幕电影| 欧美激情极品国产一区二区三区| 夜夜爽天天搞| svipshipincom国产片| 老司机靠b影院| 欧美三级亚洲精品| 日本免费一区二区三区高清不卡| 男女床上黄色一级片免费看| 欧美日韩一级在线毛片| 久久精品亚洲精品国产色婷小说| 91麻豆精品激情在线观看国产| 无人区码免费观看不卡| 国产乱人伦免费视频| 啦啦啦 在线观看视频| 欧美成人免费av一区二区三区| 亚洲熟女毛片儿| 久久久久久大精品| 免费看日本二区| 亚洲电影在线观看av| 亚洲精品美女久久av网站| 中文字幕人妻熟女乱码| 高潮久久久久久久久久久不卡| 精品一区二区三区视频在线观看免费| 婷婷六月久久综合丁香| 男女视频在线观看网站免费 | 在线观看免费日韩欧美大片| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 亚洲自拍偷在线| 极品教师在线免费播放| 久久久精品国产亚洲av高清涩受| 丁香六月欧美| 国产高清视频在线播放一区| 亚洲av美国av| 久久性视频一级片| 制服人妻中文乱码| 少妇 在线观看| 欧美黑人精品巨大| 欧美在线一区亚洲| 人妻久久中文字幕网| 欧美 亚洲 国产 日韩一| 色在线成人网| 一夜夜www| 欧美日韩亚洲国产一区二区在线观看| 日韩精品中文字幕看吧| 亚洲国产看品久久| 亚洲aⅴ乱码一区二区在线播放 | 欧美丝袜亚洲另类 | 国产精品99久久99久久久不卡| 宅男免费午夜| 好男人在线观看高清免费视频 | 大型黄色视频在线免费观看| 久久久久久久久久黄片| 最近在线观看免费完整版| 色播在线永久视频| 国产不卡一卡二| 禁无遮挡网站| 男女那种视频在线观看| 亚洲三区欧美一区| 亚洲精品色激情综合| 后天国语完整版免费观看| 久久青草综合色| av中文乱码字幕在线| 俺也久久电影网| xxx96com| 99久久久亚洲精品蜜臀av| 成人免费观看视频高清| 亚洲人成伊人成综合网2020| 岛国在线观看网站| 在线免费观看的www视频| av超薄肉色丝袜交足视频| 精品午夜福利视频在线观看一区| 一本大道久久a久久精品| 村上凉子中文字幕在线| 欧美性猛交╳xxx乱大交人| aaaaa片日本免费| 天天一区二区日本电影三级| 亚洲国产看品久久| 免费看美女性在线毛片视频| 午夜老司机福利片| 中文字幕高清在线视频| 人人妻人人澡欧美一区二区| 好男人在线观看高清免费视频 | 亚洲精品色激情综合| 高清毛片免费观看视频网站| 最近最新中文字幕大全电影3 | 色综合亚洲欧美另类图片| 国产亚洲av嫩草精品影院| 99精品在免费线老司机午夜| 婷婷精品国产亚洲av在线| 免费看美女性在线毛片视频| 久久久国产成人精品二区| 曰老女人黄片| 国产亚洲精品第一综合不卡| 日日干狠狠操夜夜爽| 高清在线国产一区| 亚洲熟女毛片儿| 欧美激情极品国产一区二区三区| 99热6这里只有精品| 免费在线观看视频国产中文字幕亚洲| 国产又色又爽无遮挡免费看| 男人的好看免费观看在线视频 | www.精华液| 一级黄色大片毛片| 国产精品二区激情视频| 午夜久久久在线观看| 欧美亚洲日本最大视频资源| 成人亚洲精品一区在线观看| 91麻豆av在线| 婷婷精品国产亚洲av| 男女床上黄色一级片免费看| 操出白浆在线播放| 午夜成年电影在线免费观看| 熟女电影av网| 在线观看www视频免费| 老汉色av国产亚洲站长工具| 99久久国产精品久久久| 色婷婷久久久亚洲欧美| 亚洲第一青青草原| 国产国语露脸激情在线看| 国产伦在线观看视频一区| 午夜a级毛片| 麻豆成人午夜福利视频| 韩国av一区二区三区四区| 婷婷六月久久综合丁香| 国产真实乱freesex| 一区二区三区国产精品乱码| 好男人电影高清在线观看| 香蕉丝袜av| 最新美女视频免费是黄的| 午夜福利在线在线| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 好男人电影高清在线观看| 大型av网站在线播放| 我的亚洲天堂| 欧美av亚洲av综合av国产av| 国产精品久久视频播放| 成人欧美大片| 国产真人三级小视频在线观看| www.www免费av| 国产1区2区3区精品| 精华霜和精华液先用哪个| 久久精品成人免费网站| 国产激情欧美一区二区| 丁香欧美五月| 欧美成狂野欧美在线观看| 欧美绝顶高潮抽搐喷水| 一进一出好大好爽视频| 国产成人av教育| 欧美日韩精品网址| 亚洲av美国av| 十分钟在线观看高清视频www| 女人爽到高潮嗷嗷叫在线视频| 少妇被粗大的猛进出69影院| 好男人在线观看高清免费视频 | 色综合亚洲欧美另类图片| 精品熟女少妇八av免费久了| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| 国产精品精品国产色婷婷| 国内久久婷婷六月综合欲色啪| 欧美一区二区精品小视频在线| 日本a在线网址| 一级毛片女人18水好多| 国产真人三级小视频在线观看| 欧美乱妇无乱码| 欧美日韩瑟瑟在线播放| 变态另类丝袜制服| 成人三级做爰电影| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 看片在线看免费视频| 亚洲片人在线观看| 久久性视频一级片| 欧美国产精品va在线观看不卡| 国产精品日韩av在线免费观看| 日日爽夜夜爽网站| 国产精品二区激情视频| 欧美一级毛片孕妇| 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 亚洲天堂国产精品一区在线| 国产男靠女视频免费网站| 中国美女看黄片| 人人妻人人看人人澡| 99热只有精品国产| www国产在线视频色| 99久久久亚洲精品蜜臀av| 亚洲精华国产精华精| 欧美绝顶高潮抽搐喷水| 欧美激情极品国产一区二区三区| 久久伊人香网站| 男人舔女人下体高潮全视频| 成人国语在线视频| 亚洲av成人不卡在线观看播放网| 国产色视频综合| 在线观看66精品国产| 日本a在线网址| 久久久久国产精品人妻aⅴ院| 色播亚洲综合网| 又黄又爽又免费观看的视频| 欧美激情极品国产一区二区三区| 一本精品99久久精品77| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看日韩欧美| 一边摸一边做爽爽视频免费| 18禁美女被吸乳视频| 成人一区二区视频在线观看| 18禁国产床啪视频网站| 中出人妻视频一区二区| 国产爱豆传媒在线观看 | 日本a在线网址| 91在线观看av| 女生性感内裤真人,穿戴方法视频| 91大片在线观看| 亚洲片人在线观看| 精品久久蜜臀av无| 97碰自拍视频| 午夜精品久久久久久毛片777| 亚洲中文字幕日韩| 久久亚洲真实| 757午夜福利合集在线观看| 国产精品精品国产色婷婷| 一级毛片精品| 天堂√8在线中文| 观看免费一级毛片| 色综合亚洲欧美另类图片| 精品日产1卡2卡| 亚洲精品一区av在线观看| 国产熟女午夜一区二区三区| 国产精品亚洲一级av第二区| 国产精品 国内视频| 亚洲国产精品合色在线| 日韩欧美免费精品| 国产亚洲精品综合一区在线观看 | 99热只有精品国产| 级片在线观看| 18禁国产床啪视频网站| svipshipincom国产片| 在线视频色国产色| 国产单亲对白刺激| 亚洲第一av免费看| 国产激情久久老熟女| 亚洲成人精品中文字幕电影| 女警被强在线播放| 日本黄色视频三级网站网址| 色播亚洲综合网| 美女国产高潮福利片在线看| av有码第一页| 日日夜夜操网爽| 黄色视频不卡| 国产激情欧美一区二区| 国产成年人精品一区二区| 91大片在线观看| 免费电影在线观看免费观看| 国产精品永久免费网站| 香蕉av资源在线| 日本在线视频免费播放| 国产精品久久久av美女十八| 99在线视频只有这里精品首页| 妹子高潮喷水视频| 久久亚洲真实| 又紧又爽又黄一区二区| 满18在线观看网站| 国产亚洲精品综合一区在线观看 | 深夜精品福利| 淫妇啪啪啪对白视频| www.999成人在线观看| 国产精品电影一区二区三区| 久久天堂一区二区三区四区| 看免费av毛片| 亚洲精品国产精品久久久不卡| 成人欧美大片| 久久久久久大精品| 热99re8久久精品国产| www.自偷自拍.com| 中文字幕精品亚洲无线码一区 | 久久精品影院6| 人妻丰满熟妇av一区二区三区| www.999成人在线观看| 成人欧美大片| 国产亚洲欧美在线一区二区| 精品高清国产在线一区| 亚洲精品美女久久av网站| 国产精品一区二区免费欧美| 88av欧美| 黄片播放在线免费| 天堂√8在线中文| 久久 成人 亚洲| 久久久精品欧美日韩精品| 欧美乱码精品一区二区三区| 色播亚洲综合网| 国产午夜福利久久久久久| 男人操女人黄网站| 大型黄色视频在线免费观看| aaaaa片日本免费| 国产野战对白在线观看| 久久久久国产一级毛片高清牌|