• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron vortices generation of photoelectron of H+2 by counter-rotating circularly polarized attosecond pulses

    2024-01-25 07:12:40HaojingYang楊浩婧XiaoyuLiu劉曉煜FengzhengZhu朱風(fēng)箏LiguangJiao焦利光andAihuaLiu劉愛華
    Chinese Physics B 2024年1期
    關(guān)鍵詞:抗逆性硝基苯愛華

    Haojing Yang(楊浩婧), Xiaoyu Liu(劉曉煜), Fengzheng Zhu(朱風(fēng)箏),Liguang Jiao(焦利光), and Aihua Liu(劉愛華),5,?

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2School of Mathematics and Physics,Hubei Polytechnic University,Huangshi 435003,China

    3College of Physics,Jilin University,Changchun 130012,China

    4Helmholtz-Institut Jena,D-07743 Jena,Germany

    5State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences,Xi’an 710119,China

    Keywords: photoelectron momentum distribution,attosecond pulse,vortex

    1.Introduction

    The rapid development of ultrashort laser pulse technology[1–3]has provided essential tools for investigating electron dynamics in atoms,molecules,and solids,which bear the promise of electron control in matter.Many ultrafast measurement techniques, such as phasemeters,[4]streaking cameras,[5,6]and attoclocks,[7]are based upon photoionization and the subsequent induced processes.In recent years,elliptically or circularly polarized attosecond pulses and their combinations have been used to probe atomic and molecular structures using photoelectron momentum distributions(PMDs).[8–15]The PMD originating from the ionization of atoms and molecules by intense laser pulses convey valuable and fruitful information about the target electrons.Different parts of PMD not only reflect certain aspects of the target structure information but also encode different ionization dynamics in the laser-matter interaction.Both the atomic and molecular PMDs under extreme ultraviolet(XUV)laser have been investigated by many theoretical groups.For example,Murakami and Chu[16]exemplified the mechanism of symmetry breaking in the H atom PMD.Wu and He[11]showed that atomic PMD under two-color XUV lasers can be affected by both the relative phase and time delay between the two lasers.Yuanet al.[15,17]proved the dependence of molecular-frame photoelectron momentum distribution (MF-PMD) on molecular orbital symmetry.Furthermore,the interference between directly ionized electrons and rescattered electrons can also affect MF-PMD.The photoionization of H+2molecular ion by elliptically polarized UV laser pulses has been studied by Zhanget al.,[8]and it has been shown that the MF-PMD depends further on the laser ellipticity and internuclear distance.

    The experimental investigations on PMDs for understanding the structure information and ionization dynamics of atoms and molecules are also continuing.[18,19]Odenwelleret al.[19]studied the electron emission from the H+2molecule ion and found that the complex laser-driven electron dynamics can be encoded in the unexpected PMD.

    In recent years, creating and manipulating vortex states of light beams[20,21]and electron vortices[10,21–25]have attracted considerable attention, since vortices can be characterized by intrinsic orbital angular momentum in,e.g.,twisted light beams and electron beams.Taking the hydrogen atom as an example,the vortex quasiparticles in the atomic wavefunctions were studied under the short rectangular half-period electric field pulse.[26]When two circularly polarized laser pulses are used for ionization of atoms or molecules, the vortexshaped momentum distributions[24,27]has been discovered as a new feature of laser-induced electron wavepackets interference.The time-delayed counter-rotating circularly polarized attosecond pulses were proposed to generate vortex-shaped photoelectron wave packets in the photoionization of helium atom[22,28]and hydrogen molecular ion.[29]

    Electron vortex is generated in the counter-rotating circularly polarized laser field.The electron vortex structure[22]caused by the interference effect of two pulses has a time delay that changes within one cycle.[30]The vortices in molecular photoionization[26,28,31]was studied by applying either the photoionization of monochromatic field[24,25]or dichromatic field.[10,24,26,28]In addition to the time delay, the control of other laser parameters is also an interesting topic discussed by many researchers.It is shown that the photoelectron momentum, electron ejection angle, relative carrier envelope phase,and time delay between two circularly polarized pulses are related to spiral vortices.Furthermore, vortices are found not only in photoionization, but also photodetachment[31,32]and photodissociation.[29]

    The simplest molecule H+2has served as an ideal prototype to explore the ultrafast dynamics in diatomic molecules,such as high harmonic generation,[33–35]the double-slit interference effect,[36,37]the dissociation of molecule,[29,38,39]and so on.

    In the present work,we investigate the interaction of H+2molecule ion with a pair of counter-rotating circularly polarized laser pulses.The ultrafast attosecond timescale allows us to ignore the rotational and vibrational effects of atomic nuclei,[40–42]which are in picosecond and femtosecond timescales,respectively.

    This paper is structured as follows.In Section 2 we briefly introduce the numerical method and model system for solving the time-dependent Schr¨odinger equation(TDSE)and extracting physical observable.The simulation results and corresponding discussion are presented in Section 3.The summary and conclusion are made in Section 4.Unless specifically stated otherwise,atomic units(a.u.) ˉh=me=e=1 are used throughout this paper.

    2.Theory and models

    For an aligned homonuclear diatomic molecule in the presence of an ultrashort laser pulse, we can ignore the vibrational and rotational degrees of molecules and only consider electronic movement under the combination of electric field from external laser field and the electrostatic field from molecular nuclei.[37,40]In the circularly polarized laser fields,a reduced two-dimensional (2D) model can be employed to capture the essential physical significance.In this work, we adopt the reduced 2D TDSE under the frozen-nuclei approximation as follow:

    where the system HamiltonianH=T+V0(x,y)+r·E(t)includes the kinetic energy term of electronT=(p2x+p2y)/2 and the field-free potentialV0(x,y),

    whereRc=2 is the internuclear distance of H+2molecular ion at equilibrium, anda=0.5 is the soft-core parameter.ForRc=4,we further employ the soft-core parametera=0.73 to correctly reproduce the ground state energy of H+2molecular ion.

    The interaction between external laser field and the electron is given byVI=r·E(t).The laser electric field is described by

    whereE1(t) andE2(t) are two circularly polarized laser pulses in sequence with a time delaytd

    whereφ1andφ2are the carrier envelope phases (CEPs) and the sign±denotes the helicity of(counter-clockwise or clockwise)circularly polarized laser pulses.A slowly varying temporal envelope function off(t)=sin2(πt/T) with durationT=nT0is employed here, whereT0=2π/ωis the optical cycle (o.c.).In this work, the pulse lasts for 10 optical cycles (n= 10).In our calculation, we focus on the singlephoton ionization process, which means that the electron can be ionized by absorbing only one photon.In the present work,we choose the two laser fields with the wavelength of 30 nm(ω= 1.52>Ip= 1.1, whereIpis ionization energy of the ground state of H+2molecular ion atRc=2)and the peak intensity ofI0=1014W/cm2.The molecular alignment is set along thexaxis.

    This study utilizes the split-operator fast-Fourier transform algorithm to solve the 2D TDSE.[43]The real time propagation of wave function fromttot+Δtcan be expressed as

    The initial state is set as the ground state of H+2molecular ion,which can be obtained by imaginary time propagation with an arbitrary non-trivial state.

    可溶性糖和可溶性蛋白是植物體內(nèi)重要的滲透調(diào)節(jié)物質(zhì),一定程度上反映了植物的抗逆性[22]。與對照組相比,70 ~ 280 μmol/L硝基苯酚處理5 d 后,水稻幼苗根系可溶性蛋白和可溶性糖含量顯著增加,且在280 μmol/L硝基苯酚處理后達(dá)到最大值,分別是對照的1.4倍和3.1倍。而560 μmol/L 硝基苯酚處理5 d后,可溶性蛋白含量顯著下降且低于對照,可溶性糖含量也下降至對照水平(表1)。

    In our simulation, the spatial dimension ranges from?150 to 150, which contains 1024 grid points in both thexandydimensions.A cos1/8boundary absorber placed atx,y=±130 is used to avoid the nonphysical reflection of wave functions.The step size of time propagation is set to be Δt=0.01.

    After the laser field is finished, wave functions are further propagated for an additional five optical cycles to ensure that all the ionized components of electron wave function are far away from the nuclei.Then we seperate the photoelectron wavepacket by applying the mask function.The ionized wave packet is obtained byψion(x,y)=[1?M(rb)]ψfinal(x,y).Here,ψfinal(x,y)is the wave packet at final time andM(rb)is a mask function

    withα=1,andrb=10 which corresponds to the boundary of the bound-electron wave function.Finally,wave functions in momentum space can be obtained by applying Fourier transform to the ionized wave function as

    The 2D MF-PMD is given by

    3.Results and discussion

    In this work, the initial state of the hydrogen molecular ion H+2is the ground state,which is denoted as 1sσg.As the internuclear distance varies,the initial electron density distribution of the H+2molecular ion also changes.This is illustrated in Figs.1(a)and 1(b)for internuclear distances ofRc=2 and 4,respectively.The wave function of the H+2molecular ion can be approximately described as the symmetric superposition of the wave functions of two hydrogen atoms positioned along the molecular axis at±Rc/2.In the case of equilibrium atRc=2,the electron densities of the two hydrogen atoms overlap significantly,resulting in an ionization potential energy ofIp=1.1.However,whenRc=4,the overlapping between the two hydrogen atoms is reduced, leading to a decrease in the ionization potential energy toIp=0.79.

    Fig.1.The initial electron density distributions of H+2 in the ground state(1sσg)at two different internuclear distances: (a)Rc=2,(b)Rc=4.

    We first investigate the MF-PMDs of H+2molecule ions under the influence of a pair of counter-rotating circularly polarized attosecond pulses at various time delaystd.In the left panels of Fig.2, we demonstrate the MF-PMDs of the H+2molecule ion by left and right circularly polarized laser pulses with time delays of 0, 1, and 1.5 o.c., respectively.The right panels depict the corresponding Lissajous figures of the electric fields.The comparison among these three situations indicates that different time delay results in very different distribution patterns in the MF-PMDs.In the top two panels,when there is no time delay between two counter-rotating pulses,the total electric field is reduced to a purely linearly polarized pulse along thexaxis, and parallel to the molecular alignment axis.In this case, the MF-PMD is a typical six-petal structure.[41,44]The two panels in the middle row display the MF-PMD (left) and corresponding Lissajous curve (right) in the case of 1 o.c.time delay between two counter-rotating pulses in sequence.From Fig.2(b), it can be seen that whentd=1 o.c.,the electric field mainly lies along thexaxis.The corresponding MF-PMD show a significant vortex structure.When the time delay is continuously increased totd=1.5 o.c.,the total field has bothxandycomponents,with peak intensity inyaxis stronger than that inxaxis.The MF-PMD demonstrates dominant distribution in thepydirection,which is similar to the MF-PMD of H+2in the perpendicular geometry, as discussed in Ref.[44].

    Fig.2.The MF-PMDs(left panels)and corresponding Lissajous curves of electric field(right panels).The H+2 sits at its equilibrium internuclear distance Rc=2.From top to bottom panels,the time delay are 0,1,and 1.5 o.c.,respectively.The laser parameters are: central carrier frequency ω =1.52,peak intensity I0=1014 W/cm2,the carrier envelope phase φ1=φ2=0,and pulse duration τ =1.0 fs.

    Our numerical results can be understood by the attosecond perturbation ionization theory.[45,46]For H+2molecule ions with two identical centers, the corresponding MF-PMD can be approximated by the superposition of the ionization probabilities of two identical hydrogen atoms.For circularly polarized pulses,the photo-ionization in thexandydirections can be obtained by calculating the modular squares of the transition amplitude in thexandydirections,[15]

    whereσ(x)andσ(y)arex-andy-geometry transition cross sections, andθis the angle between the electron momentumpand molecular axis (that isxaxis).The total photoelectron momentum distributionPcan be decomposed into two components

    wherePxandPyare the ionization probabilities due to thexandycomponents of the electric field,respectively.The photoelectron momentum distribution is linearly related to the electric field amplitude and transition cross section.

    The cross sectionσ(x)related to the parallel geometry transition toσu(m=0), andσ(y)is connected to the vertical transitionπu(m=±1),therefore they can also be rewritten asσ‖andσ⊥, respectively.AtRc=2, the transition cross sections from the ground state toσuandπuareσ⊥=528.5 kb andσ‖=38.95 kb, respectively.[41]The contribution of theπu(vertical transition geometry) channel is more significant than that of theσu(parallel transition geometry)channel.The significant difference between parallel and perpendicular geometries are demonstrated obviously in Figs.2(a) and 2(c).In panel (a), theycomponent of the electric field is canceled due to the 0 time delay between two counter-rotating pulses,therefore the MF-PMD is characterized by the typical structure in the parallel geometry.[40]In Fig.2(c),although the electric field inxaxis does not vanish,its magnitude is much smaller than that inyaxis.Considering thatσ⊥?σ‖,the contribution of parallel geometry is negligible,and perpendicular geometry is dominant,no obvious vortex structure can be observed.

    However,we can adapt the relative ratio between the parallel and perpendicular geometries,which makes them comparable.In Fig.2(b),when the time delay is 1 o.c.,the total combined electric field has much smallerycomponent than thexcomponent.Considering the fact thatσ⊥?σ‖,the ionization yield in parallel and perpendicular geometries are expected to be comparable, strong interference effect and electron vortex structure can be observed.Although this is single photon single ionization,we should expect two spiral arms only,but there are“six spiral arms”.Such“six-spiral-arm”structure is due to the contribution of parallel geometry which has six-petal structure from the confinement effect.[41]The difference phase in parallel and perpendicular geometries produces strong interference between them, which gives birth to the vortex structure.

    In the scenario of atomic spirals,[22,24,30,47], the interference between±m(xù)(m/=0)partial waves plays a crucial role in the formation of vortex structures.To understand the vortex structure of H+2, it is essential to examine themvalue of the photoelectron in the final state.Clearly, in case of Figs.2(a)and 2(d), only them=0 partial wave contributes to the final state of the electron.On the other hand, for the other cases,bothm=0 andm=±1 partial waves can be present in the final state.The interference of all three partial waves will eventually results in more intricate vortex structures than the twospiral-arm vortex,assuming that the yield of each partial wave is comparable.

    From the above discussion,we know that the vortex structure appears if the yields of parallel and perpendicular geometries are comparable.To achieve such a condition, we can manipulate the relative phase and time delay simultaneously.If the time delay is small enough to ensure a large overlapping between two pulses,we can always adjust the laser parameters to keep

    Fig.3.The MF-PMDs (left panels) and corresponding Lissajous curves of electric field (right panels).From top to bottom panels: (a) and (d)td=0.5 o.c.,φ1=π,φ2=0;(b)and(e)td=0.75 o.c.,φ1=0.5π,φ2=0;(c)and(f)td=1 o.c.,φ1=φ2=0.The rest laser parameters are:central carrier frequency ω =1.52, peak intensity I0 =1014 W/cm2, and pulse duration τ =1.0 fs.The H+2 sits at its equilibrium internuclear distance Rc=2.

    In Fig.3, we demonstrate several examples that produce visible“six-spiral-arm”vortex structure.In the top panels,td= 0.5 o.c.,φ1=π,φ2= 0; in the middle panels,td=0.75 o.c.,φ1=0.5π,φ2=0;and the bottom panels havetd=1 o.c.,φ1=φ2=0.In top panels, when the time delay is 0.5 o.c., the relative phase isφ2?φ1=?π.When the time delay is increased to 0.75 o.c., the relative phase should be adjusted asφ2?φ1=?π/2.Then in the bottom panels,if the time delay is 1 o.c., the relative phase difference need to be set asφ2?φ1=0.All graphs in left panels give very similar“six-spiral-arm”vortex structure.To maintain the similar MF-PMDs,2πrelative phase compensation is required for per optical cycle time delay increasing.As the time delay expands, the spiral arms in MF-PMDs become more elongated and slender.[48]In addition, as the time delay increases, the yield of they-component laser field will continue to grow,and the yield of perpendicular geometry will become more pronounced.

    Fig.4.The MF-PMDs(left panels)and corresponding Lissajous curves of electric field(right panels).The H+2 sits at its equilibrium internuclear distance Rc =2.From top to bottom panels, the time delay are 0.5, 1.5, 2.5,3.5,and 4.5 o.c.,respectively.The rest laser parameters are: central carrier frequency ω =1.52, peak intensity I0 =1014 W/cm2, the carrier envelope phase φ1=π,φ2=0,and pulse duration τ = 1.0 fs.

    Figure 4 demonstrates MF-PMDs for fixed phase difference atφ2?φ1=π, but vary the time delay from 0.5 o.c.to 4.5 o.c.by 1-o.c.increment.On the top two rows, where the time delaytd<2 o.c., the “six-spiral-arm” vortex structure are clearly visible.In the middle panels, whentd=2.5 o.c.,the vortex structure still exists, but the two arms on thexaxis diminish, and connect to the other arms.Since now, it does not guarantee the comparable yields in both parallel and perpendicular geometries.If we further enlarge the time delay, as displayed in bottom two rows,,the yield in parallel geometry is smeared out,and the MF-PMD reduces to “two-spiral-arm” vortex, which is typical vortex of single photon single ionization by a pair of counter-rotating circularly polarized attosecond pulses.[24]

    Other than the equilibrium internuclear distance, the hydrogen molecular ion H+2can vary its internuclear distance.As mentioned above,e.g., H+2withRc= 4 has a different ground state energies.Actually, it also has different transition cross sections.Some early studies[41]showed that whenRc= 4,σ‖=413.9 kb,σ⊥=284.8 kb, the transition cross section in thexdirection is slightly larger than that in theydirection.Therefore, we can expect different behavior when H+2is radiated by the same counter-rotating circularly polarized pulses.In Fig.5,we display the MF-PMDs(left panels)and the Lissajous curves of electric field(right panels)for H+2withRc=4.All the laser parameters are the same as Fig.2.In the top two rows, whereandσ‖ >σ⊥, the yield from parallel geometry dominates the MF-PMDs in both cases, because the yield of perpendicular geometry transition vanishes.Only in the case of bottom panels,when time delaytd=1.5 o.c.,,the yield from perpendicular geometry can be compared to that from parallel geometry transition,a clear“six-spiral-arm”vortex structure occurs.If we ignore the nodes that caused by the confinement effect,[41,49]this vortex shows typical“two-spiral-arm”vortex in MF-PMD.

    Fig.5.The same as Fig.2 but with different internuclear distance Rc=4.

    4.Summary and conclusions

    In summary,by numerically solving the two-dimensional TDSE in the frozen-nuclei approximation, we have investigated the MF-PMDs of H+2molecule ion by a pair of counterrotating circularly polarized laser pulses with time delay.When the time delay is small enough that one component of the electric laser field is partially canceled, the regular “twospiral-arm” vortex in single photon single ionization turns into“six-spiral-arm”vortex or smear out the vortex structure.These effects are due to the combination effect of different transition cross sections in parallel and perpendicular geometries,and the confinement effect of diatomic molecules.By simultaneously varying the phase and time delay of laser pulses,we can control the appearance and disappearance of such“sixspiral-arm”.

    For H+2at non-equilibrium internuclear distance, the same behavior can be observed.However, due to the variation in transition cross sections and their relative ratio overRc,the vortex generation parameters are different.For instance,the cases ofRc=2 and 4 have opposite MF-PMDs when they have the same 0 relative phase and sametd=1 o.c.or 1.5 o.c.time delay.It implies the possibility of using molecular electron vortex as strong spectroscopic instruments to investigate molecular structure and dynamics.The clear distinction in MF-PMDs provides us a novel tool to identify the molecular structure information,e.g., the chemical bond length.Additionally, the molecular vortex structure produced by counterrotating circularly polarized pulses may be used to probe the electron dynamics in chiral molecules by photoelectron circular dichroism.[50]

    In this work, we have only investigated the simplest molecular prototype system.Future research may be extended to more complex molecule, such as carbon dioxide, carbonyl sulfide or benzene which have many electrons.

    Acknowledgements

    Project supported by the Natural Science Foundation of Jilin Province, China (Grant No.20220101016JC), the National Key Research and Development Program of China(Grant No.2022YFE0134200), the National Natural Science Foundation of China (Grant Nos.12174147, 91850114, and 11774131),the Open Research Fund of State Key Laboratory of Transient Optics and Photonics.Part of the numerical simulation was done on the high-performance computing cluster Tiger@IAMP in Jilin University.

    猜你喜歡
    抗逆性硝基苯愛華
    TB-COP 對I2和硝基苯酚的吸附性能及機(jī)理研究
    鈣調(diào)控馬鈴薯產(chǎn)量、品質(zhì)和抗逆性的關(guān)鍵作用研究進(jìn)展
    2018年貴州省玉米區(qū)域試驗(yàn)L組六枝點(diǎn)總結(jié)
    第一次拔牙
    神奇的光
    在廈金胞張愛華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    桂花新品種抗逆性試驗(yàn)研究
    甲殼素對蔬菜抗逆性的影響
    中國果菜(2015年2期)2015-03-11 20:01:05
    李愛華:我希望過上這樣的生活
    硝基苯催化加氫Pt-MoS2/C催化劑的制備及使用壽命的研究
    成人午夜精彩视频在线观看| 国产精品99久久久久久久久| 丰满人妻一区二区三区视频av| 国产高清不卡午夜福利| 在线观看人妻少妇| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品 | av播播在线观看一区| 国产老妇女一区| 欧美 日韩 精品 国产| 久久人人爽人人爽人人片va| 2021天堂中文幕一二区在线观| 亚洲电影在线观看av| 国产高清国产精品国产三级 | 久久久久网色| av在线播放精品| 丰满乱子伦码专区| 99久久九九国产精品国产免费| 非洲黑人性xxxx精品又粗又长| 亚洲aⅴ乱码一区二区在线播放| 日韩强制内射视频| 伊人久久精品亚洲午夜| 99久久人妻综合| 日韩 亚洲 欧美在线| 天天躁日日操中文字幕| 蜜臀久久99精品久久宅男| 女人久久www免费人成看片| 亚洲精华国产精华液的使用体验| 亚洲四区av| 国产高清有码在线观看视频| 亚洲欧美精品专区久久| 亚洲欧美日韩东京热| 丝袜喷水一区| 国产乱来视频区| 能在线免费看毛片的网站| 亚洲最大成人av| 亚洲欧美成人综合另类久久久| 三级国产精品欧美在线观看| 一个人看视频在线观看www免费| 国产亚洲av片在线观看秒播厂 | 18禁动态无遮挡网站| 日本欧美国产在线视频| 一级二级三级毛片免费看| 久久久成人免费电影| 午夜日本视频在线| 夫妻性生交免费视频一级片| 精品久久久噜噜| 大香蕉97超碰在线| 久久精品久久精品一区二区三区| 国产成人freesex在线| 精品久久久久久成人av| 国产在线一区二区三区精| 久久人人爽人人片av| 青春草亚洲视频在线观看| 久久精品久久久久久噜噜老黄| 日本色播在线视频| 少妇被粗大猛烈的视频| 男女边摸边吃奶| 岛国毛片在线播放| 日本熟妇午夜| 免费大片黄手机在线观看| 日韩视频在线欧美| 亚洲成人一二三区av| 六月丁香七月| 在线免费观看的www视频| 免费av毛片视频| 高清日韩中文字幕在线| 自拍偷自拍亚洲精品老妇| 国产成人精品福利久久| 日本熟妇午夜| 一级爰片在线观看| 国产精品伦人一区二区| 亚洲国产色片| 亚洲精品影视一区二区三区av| 国产黄片视频在线免费观看| av在线天堂中文字幕| 男女边吃奶边做爰视频| 91av网一区二区| 两个人的视频大全免费| 欧美日韩综合久久久久久| 在线a可以看的网站| 成人一区二区视频在线观看| 亚洲av不卡在线观看| 麻豆精品久久久久久蜜桃| 成人性生交大片免费视频hd| 国内精品宾馆在线| 最后的刺客免费高清国语| 久久99热这里只频精品6学生| 丰满乱子伦码专区| 国产真实伦视频高清在线观看| 男女边摸边吃奶| 亚洲成色77777| 亚洲av中文字字幕乱码综合| 色尼玛亚洲综合影院| 女人被狂操c到高潮| 在线免费十八禁| 精品久久久精品久久久| 亚洲aⅴ乱码一区二区在线播放| 嫩草影院精品99| 午夜激情久久久久久久| 国产精品一及| 久久久久精品久久久久真实原创| 久久99蜜桃精品久久| 日韩欧美 国产精品| 国产老妇女一区| 国产毛片a区久久久久| 中文在线观看免费www的网站| 蜜桃亚洲精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 禁无遮挡网站| 成人午夜高清在线视频| 久久久久久国产a免费观看| 久久精品综合一区二区三区| 青青草视频在线视频观看| 卡戴珊不雅视频在线播放| av在线天堂中文字幕| 搡老妇女老女人老熟妇| 91久久精品国产一区二区成人| 婷婷色综合www| 91久久精品国产一区二区成人| 91久久精品国产一区二区三区| 亚洲综合色惰| 亚洲av成人精品一二三区| 中文精品一卡2卡3卡4更新| 国产视频首页在线观看| 国国产精品蜜臀av免费| 三级男女做爰猛烈吃奶摸视频| 久久鲁丝午夜福利片| 少妇熟女aⅴ在线视频| a级一级毛片免费在线观看| 日韩一区二区视频免费看| 久久这里有精品视频免费| 中文字幕av在线有码专区| 国产伦在线观看视频一区| 波野结衣二区三区在线| 欧美激情久久久久久爽电影| 国产成人a区在线观看| 亚洲久久久久久中文字幕| 欧美成人午夜免费资源| 日本一本二区三区精品| 极品少妇高潮喷水抽搐| 成年免费大片在线观看| 亚洲精品成人av观看孕妇| 亚洲自拍偷在线| h日本视频在线播放| 天天躁夜夜躁狠狠久久av| 国产高潮美女av| 久久热精品热| 免费高清在线观看视频在线观看| 久久久午夜欧美精品| 亚洲欧美日韩无卡精品| 日韩精品有码人妻一区| 亚洲av成人精品一二三区| 国产成人91sexporn| 国产真实伦视频高清在线观看| 国产三级在线视频| 国产亚洲5aaaaa淫片| 国产黄色免费在线视频| 国产精品国产三级专区第一集| 日韩一本色道免费dvd| 男女边摸边吃奶| 2022亚洲国产成人精品| 2022亚洲国产成人精品| 国产亚洲5aaaaa淫片| 亚洲成人精品中文字幕电影| 91av网一区二区| 男女下面进入的视频免费午夜| 婷婷色综合大香蕉| 日本色播在线视频| 国产不卡一卡二| 亚洲精品日韩在线中文字幕| 久久国产乱子免费精品| 日本wwww免费看| 日韩伦理黄色片| 免费看a级黄色片| 日韩av不卡免费在线播放| 91午夜精品亚洲一区二区三区| 热99在线观看视频| 久久久久久国产a免费观看| 国产精品久久视频播放| 精品一区二区三区视频在线| 精品一区二区三区视频在线| 男人狂女人下面高潮的视频| 中文字幕久久专区| 国产精品.久久久| 在线a可以看的网站| 97超碰精品成人国产| 久久精品熟女亚洲av麻豆精品 | 国产伦精品一区二区三区四那| 国产一区二区三区综合在线观看 | 波野结衣二区三区在线| 插逼视频在线观看| 人妻制服诱惑在线中文字幕| 国产高清不卡午夜福利| 少妇熟女aⅴ在线视频| 夫妻性生交免费视频一级片| 成人毛片60女人毛片免费| 婷婷色综合大香蕉| 国产一区二区在线观看日韩| 国产一区二区在线观看日韩| 欧美bdsm另类| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 蜜桃亚洲精品一区二区三区| 成年av动漫网址| 欧美一级a爱片免费观看看| 91精品一卡2卡3卡4卡| 少妇熟女aⅴ在线视频| 在线a可以看的网站| 日韩av不卡免费在线播放| av国产免费在线观看| 免费大片黄手机在线观看| 波野结衣二区三区在线| 黄色一级大片看看| 看免费成人av毛片| 欧美激情久久久久久爽电影| 一级毛片黄色毛片免费观看视频| 纵有疾风起免费观看全集完整版 | 免费av毛片视频| 精品久久久久久久久av| 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频 | 欧美成人a在线观看| 国内精品宾馆在线| 麻豆乱淫一区二区| 中文字幕制服av| 丝袜喷水一区| 欧美高清成人免费视频www| 久久亚洲国产成人精品v| 久久久精品免费免费高清| 成人高潮视频无遮挡免费网站| 两个人的视频大全免费| 97人妻精品一区二区三区麻豆| 精华霜和精华液先用哪个| 少妇被粗大猛烈的视频| av在线观看视频网站免费| 99久久中文字幕三级久久日本| 国精品久久久久久国模美| 亚洲四区av| 少妇熟女欧美另类| 日本三级黄在线观看| 欧美zozozo另类| 亚洲精品成人av观看孕妇| 天堂网av新在线| 日韩国内少妇激情av| 纵有疾风起免费观看全集完整版 | 蜜臀久久99精品久久宅男| 免费高清在线观看视频在线观看| 又大又黄又爽视频免费| 欧美精品国产亚洲| 国产精品久久视频播放| 亚洲久久久久久中文字幕| 观看免费一级毛片| 亚洲人成网站高清观看| 日韩国内少妇激情av| 夜夜看夜夜爽夜夜摸| 亚洲精品视频女| 免费电影在线观看免费观看| 视频中文字幕在线观看| 91久久精品国产一区二区成人| 久久精品国产亚洲网站| 亚洲av中文字字幕乱码综合| 亚洲av日韩在线播放| 久久久久久久久大av| 一边亲一边摸免费视频| 床上黄色一级片| 久久精品久久精品一区二区三区| 在现免费观看毛片| 乱码一卡2卡4卡精品| 高清视频免费观看一区二区 | 国产精品人妻久久久影院| 欧美性猛交╳xxx乱大交人| 国语对白做爰xxxⅹ性视频网站| 午夜激情福利司机影院| 最近最新中文字幕大全电影3| 日韩国内少妇激情av| 午夜福利高清视频| 我的女老师完整版在线观看| 国产亚洲午夜精品一区二区久久 | av国产免费在线观看| 99热网站在线观看| 日韩强制内射视频| 禁无遮挡网站| 婷婷色av中文字幕| 国产免费又黄又爽又色| 黄色配什么色好看| 久久精品人妻少妇| 亚洲伊人久久精品综合| 一级毛片久久久久久久久女| 99久国产av精品国产电影| 女的被弄到高潮叫床怎么办| 日韩一区二区视频免费看| 国产男女超爽视频在线观看| 亚洲自拍偷在线| 国产黄a三级三级三级人| 一个人观看的视频www高清免费观看| 久99久视频精品免费| 久久精品国产鲁丝片午夜精品| 久久久久久久久久成人| 国产毛片a区久久久久| 日韩av在线免费看完整版不卡| 免费不卡的大黄色大毛片视频在线观看 | 91午夜精品亚洲一区二区三区| eeuss影院久久| 亚洲美女视频黄频| 免费观看性生交大片5| 国产单亲对白刺激| 久久久久久久久久成人| 亚洲自拍偷在线| 亚洲熟妇中文字幕五十中出| 国产免费视频播放在线视频 | 国产精品综合久久久久久久免费| 一边亲一边摸免费视频| 国产亚洲av嫩草精品影院| 青春草国产在线视频| 欧美潮喷喷水| 精品国产一区二区三区久久久樱花 | 你懂的网址亚洲精品在线观看| 精华霜和精华液先用哪个| 激情五月婷婷亚洲| 国模一区二区三区四区视频| 如何舔出高潮| 免费观看精品视频网站| 黄色配什么色好看| 五月伊人婷婷丁香| 一个人免费在线观看电影| 国产乱来视频区| 日韩成人伦理影院| 国产精品国产三级专区第一集| 免费看美女性在线毛片视频| 久久草成人影院| 免费av观看视频| 大话2 男鬼变身卡| 精品国产三级普通话版| 97热精品久久久久久| 天堂影院成人在线观看| 三级经典国产精品| 一级毛片 在线播放| 久久综合国产亚洲精品| 久久久久性生活片| 看黄色毛片网站| ponron亚洲| 夫妻午夜视频| 国产精品一区www在线观看| 黄色欧美视频在线观看| 日本黄大片高清| 爱豆传媒免费全集在线观看| 久久6这里有精品| 国产单亲对白刺激| 午夜免费男女啪啪视频观看| 久久99精品国语久久久| 国产黄片视频在线免费观看| 午夜爱爱视频在线播放| 一个人免费在线观看电影| 水蜜桃什么品种好| 国产伦理片在线播放av一区| 国产一区二区三区av在线| 18禁裸乳无遮挡免费网站照片| 九九爱精品视频在线观看| 免费大片黄手机在线观看| 美女大奶头视频| 少妇裸体淫交视频免费看高清| 青春草国产在线视频| 日韩在线高清观看一区二区三区| 亚洲av中文av极速乱| 97在线视频观看| 午夜激情福利司机影院| 赤兔流量卡办理| 婷婷色麻豆天堂久久| 中国国产av一级| 欧美丝袜亚洲另类| 十八禁网站网址无遮挡 | av国产免费在线观看| 噜噜噜噜噜久久久久久91| 国产人妻一区二区三区在| 免费看不卡的av| 久久久午夜欧美精品| 欧美激情在线99| 男女那种视频在线观看| 亚洲激情五月婷婷啪啪| 一级二级三级毛片免费看| 国产视频内射| 午夜视频国产福利| 久久99精品国语久久久| 69av精品久久久久久| 久久久久久久亚洲中文字幕| 亚洲精品自拍成人| 激情 狠狠 欧美| 久99久视频精品免费| 啦啦啦韩国在线观看视频| 22中文网久久字幕| 国产亚洲最大av| 少妇熟女欧美另类| 网址你懂的国产日韩在线| 国产 亚洲一区二区三区 | 久久韩国三级中文字幕| 国产一区有黄有色的免费视频 | 亚洲精品成人久久久久久| 18禁裸乳无遮挡免费网站照片| 国产成人精品一,二区| 亚洲欧美精品自产自拍| 欧美另类一区| 欧美成人精品欧美一级黄| 在线a可以看的网站| 2018国产大陆天天弄谢| 99热6这里只有精品| 秋霞伦理黄片| 国产精品一区二区性色av| 99九九线精品视频在线观看视频| 春色校园在线视频观看| 夜夜爽夜夜爽视频| 国内少妇人妻偷人精品xxx网站| 男女国产视频网站| 蜜桃久久精品国产亚洲av| 永久免费av网站大全| 视频中文字幕在线观看| 真实男女啪啪啪动态图| 男的添女的下面高潮视频| 激情 狠狠 欧美| 蜜桃久久精品国产亚洲av| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 女的被弄到高潮叫床怎么办| 国产熟女欧美一区二区| 国产一区二区亚洲精品在线观看| 啦啦啦啦在线视频资源| 一个人看的www免费观看视频| 日韩欧美三级三区| 国产精品一区www在线观看| 不卡视频在线观看欧美| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 岛国毛片在线播放| 日韩av免费高清视频| 超碰97精品在线观看| 亚洲色图av天堂| 亚洲av福利一区| 亚洲精品成人av观看孕妇| 少妇熟女aⅴ在线视频| 七月丁香在线播放| 国产麻豆成人av免费视频| 99re6热这里在线精品视频| www.色视频.com| 乱系列少妇在线播放| 精品少妇黑人巨大在线播放| 久久久成人免费电影| 久久久久精品性色| 国产精品99久久久久久久久| 免费av毛片视频| 日韩 亚洲 欧美在线| 久久鲁丝午夜福利片| 97超视频在线观看视频| 麻豆乱淫一区二区| 亚洲成色77777| 麻豆国产97在线/欧美| 亚洲av成人av| 淫秽高清视频在线观看| 午夜精品国产一区二区电影 | 又黄又爽又刺激的免费视频.| 日日啪夜夜撸| 97热精品久久久久久| 91精品一卡2卡3卡4卡| 亚洲伊人久久精品综合| 麻豆精品久久久久久蜜桃| 亚洲电影在线观看av| 两个人视频免费观看高清| 日韩欧美一区视频在线观看 | 国产黄色免费在线视频| 女人十人毛片免费观看3o分钟| 国产日韩欧美在线精品| 3wmmmm亚洲av在线观看| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 国产黄片视频在线免费观看| 亚洲精品456在线播放app| 国产老妇女一区| 在线观看美女被高潮喷水网站| 久久久久久久亚洲中文字幕| 精品久久久久久久久亚洲| 欧美丝袜亚洲另类| 免费观看在线日韩| 少妇猛男粗大的猛烈进出视频 | 日本三级黄在线观看| 日日啪夜夜撸| 2021少妇久久久久久久久久久| 人妻制服诱惑在线中文字幕| 麻豆国产97在线/欧美| 久久久久久久大尺度免费视频| 两个人的视频大全免费| 18禁在线无遮挡免费观看视频| 国产伦一二天堂av在线观看| 精品久久久久久久久av| 日日啪夜夜爽| 国产一区二区在线观看日韩| 三级毛片av免费| 免费观看av网站的网址| 国产免费视频播放在线视频 | 午夜激情久久久久久久| 亚洲人成网站在线播| 2021天堂中文幕一二区在线观| 一本一本综合久久| 国产老妇女一区| 美女内射精品一级片tv| 看黄色毛片网站| 国产精品国产三级国产av玫瑰| 国产单亲对白刺激| 日韩一本色道免费dvd| 一本久久精品| 免费大片黄手机在线观看| 噜噜噜噜噜久久久久久91| 精品久久久噜噜| 亚洲伊人久久精品综合| 99久国产av精品| 亚洲精品亚洲一区二区| 久久国内精品自在自线图片| 99久久九九国产精品国产免费| 日韩强制内射视频| 国产色婷婷99| 免费av毛片视频| 内地一区二区视频在线| 日本午夜av视频| 国产乱来视频区| ponron亚洲| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| a级毛片免费高清观看在线播放| videos熟女内射| 国产不卡一卡二| 麻豆精品久久久久久蜜桃| 亚洲av日韩在线播放| 国产精品久久视频播放| 久久精品国产亚洲av涩爱| 久久久久久久午夜电影| 真实男女啪啪啪动态图| 日韩伦理黄色片| 成人鲁丝片一二三区免费| 日韩一本色道免费dvd| 99久国产av精品国产电影| 亚洲成色77777| 国产黄片视频在线免费观看| 亚洲人成网站在线观看播放| 亚州av有码| 直男gayav资源| 国产一区二区在线观看日韩| 成年免费大片在线观看| 日韩av不卡免费在线播放| 五月天丁香电影| 全区人妻精品视频| 六月丁香七月| 伦理电影大哥的女人| 免费观看性生交大片5| 尾随美女入室| 听说在线观看完整版免费高清| 欧美高清成人免费视频www| 床上黄色一级片| 日本一本二区三区精品| 国产精品久久久久久精品电影| 久久久久久久国产电影| 免费观看a级毛片全部| 久久精品久久久久久久性| 亚洲激情五月婷婷啪啪| 亚洲成人久久爱视频| 国内少妇人妻偷人精品xxx网站| 中文乱码字字幕精品一区二区三区 | 国产精品综合久久久久久久免费| 久久久久网色| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 精品熟女少妇av免费看| 午夜免费激情av| 国产午夜福利久久久久久| 最近手机中文字幕大全| 最近中文字幕2019免费版| 六月丁香七月| 欧美最新免费一区二区三区| 欧美zozozo另类| 黄色配什么色好看| 日本免费a在线| 天天一区二区日本电影三级| 观看美女的网站| 亚洲在久久综合| 两个人视频免费观看高清| 国产成人精品福利久久| 男女视频在线观看网站免费| 三级经典国产精品| 美女内射精品一级片tv| 欧美日韩综合久久久久久| 精品久久久久久久末码| 在线a可以看的网站| 春色校园在线视频观看| 欧美xxⅹ黑人| 在线 av 中文字幕| 成人毛片a级毛片在线播放| 男人爽女人下面视频在线观看| 欧美精品一区二区大全| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 麻豆乱淫一区二区| 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 国产三级在线视频| 99久国产av精品| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 九色成人免费人妻av| 联通29元200g的流量卡| 亚洲欧洲日产国产| 亚洲欧美成人精品一区二区| 综合色丁香网| 亚洲色图av天堂| 一本久久精品| 成人毛片60女人毛片免费| 免费黄色在线免费观看| 国产三级在线视频| 亚洲成人一二三区av|