• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab initio potential energy surface and anharmonic vibration spectrum of NF+3

    2024-01-25 07:15:20YanNanChen陳艷南JianGangXu徐建剛JiangPengFan范江鵬ShuangXiongMa馬雙雄TianGuo郭甜andYunGuangZhang張?jiān)乒?/span>
    Chinese Physics B 2024年1期

    Yan-Nan Chen(陳艷南), Jian-Gang Xu(徐建剛), Jiang-Peng Fan(范江鵬),Shuang-Xiong Ma(馬雙雄), Tian Guo(郭甜), and Yun-Guang Zhang(張?jiān)乒?

    School of Science,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    Keywords: ab initio methods, potential energy surfaces, vibration frequencies, coupled resonance, infrared spectra

    1.Introduction

    NF3is used in the microelectronics industry as a fuel[1]and as an anthropogenic greenhouse gas.Its vibrational levels and molecular spectra have been widely studied.[2–4]However, the vibrational levels and spectra of NF+3received relatively little attention.Initially,the existence of NF+3was questioned, and its potential was studied in terms of the Franck–Condon principle for ionization and dissociation of nitrogen trifluoride by electron impact.[5]Later, it was found to be formed during the synthesis of NF+4salt intermediate by lowtemperature UV photolysis.The NF+3radical ion serves as an intermediate during the low-temperature UV photodegradation of the NF3–F2–AsF5and NF3–F2–BF3systems,a process that has been successfully observed through experimental electron spin resonance(ESR)spectroscopy.[6]The fragmentation of the valence electronic state of NF+3and its photoelectron spectra were studied using threshold photoelectronphoton coincidence spectroscopy.[7]In the 1980s, there was significant interest in the inversion barrier of NF+3.Berkowitz and Greene[8]performed a vibration analysis of the first band of the photoelectron spectrum,[9]revealing the vibrational structure of NF+3.Ab initiocalculations of the NF+3inversion barriers and the inversion vibration dynamics were performed separately.[10,11]The results show that electron correlation is extremely crucial for the inversion barrier.However,its vibration spectrum remains an area of limited research.Molecular vibrational spectroscopy plays an essential role in physicochemical analysis,especially since molecular spectroscopy is an important tool for studying the structure of molecules or ions.[12–14]

    In recent years, it is a common phenomenon concerning the use ofab initiocalculations to predict molecular spectra and vibration frequencies.Ab initiocalculations[15]have now achieved accurate prediction of a chemical structure and prediction of vibrational frequencies.The potential energy surface[16–19]is one of the most interesting areas in molecular spectroscopy today as it contains information about the dynamics of a molecular framework.Moreover, a number of methods, including vibrational selfconsistent fields (VSCF),[20–24]vibrational group state interactions(VCI),[25–28]vibrational M?ller–Plesset(VMP),[29,30]vibrational coupled-cluster theory (VCC),[25,31]and secondorder perturbation theory (VPT2),[32,33]have been developed in vibrational structure theory (VST).These methods have been applied to the prediction of molecular spectra and vibration frequencies, as the dynamic of the molecular framework directly affects the spectrum.The VSCF/VCI method is widely used inab initiocalculation procedures,and the vibration self-consistent field(VSCF)method can strike a balance between accuracy and computation time.The VSCF method was proposed in the late 1970s by many researchers.[34–37]The VCI method[26,38]can make a extremely accurate approach when it appears that a single Hartree product cannot be used to describe a situation, e.g., Ref.[39].The general VCI calculation procedure is based on the VSCF method.[40–42]Based on the study of VSCF/VCI vibrational wave functions,the spectral intensity can be obtained theoretically by the variational method.For example, the spectra of H2O,[43,44]CH4,[44]CH2O,[6]and C2H2[45]have been calculated using the VSCF/VCI method.(CH3OH)2H+[46]has been successfully investigated in theoretical calculations using VSCF/VCI.The main objective of this paper is to obtain spectral data for NF+3using more reliable and efficient theoretical algorithms.Therefore,the VSCF/VCI method is selected to study the potential energy surface and vibration spectrum of NF+3.

    In this paper,we presentab initiocalculations of the anharmonic frequencies of NF+3.Our analysis primarily relies on theoretical calculations, which aim to examine the potential energy surface,anharmonic frequencies,and IR spectrum of NF+3.In Section 3 we provide a thorough presentation and analysis of the results obtained from the NF+3calculations.Finally,we present our conclusions in Section 4.

    2.Theoretical and computational details

    In this paper,the NF+3is calculated from scratch using the Molpro2018 program package.[47]This work aims to construct theab initiopotential energy surface of NF+3as accurately as possible by using the latest electronic structure calculations.The generated potential energy surface is employed to perform calculations of the vibrational structure.Afterward,VSCF and VCI calculations are performed to obtain the wave functions corresponding to the vibration states.Finally, the vibrational Schr¨odinger equation is solved using the wave function to obtain information about the predicted mean vibration geometry and vibration frequency of the NF+3structure.

    2.1.Potential energy surface

    The balance position, harmonic frequency, and normal mode are calculated before utilizing the VSCF calculation.The SURF program can be used to calculate the potential energy surface (PES) around a reference structure, which is required to determine anharmonic frequencies.Within the surfaces (SURF) program, the PES can be expanded in terms of normal coordinates, the linear combination of normal coordinates, or localized normal coordinates.As a result, it is necessary to perform a harmonic frequency calculation first.Carteret al.proposed then-mode representation(nMR) method.[48–50]Then, the potential can be expressed by a multi-mode expansion,[51]which follows a hierarchical scheme given by

    with

    whereqidenotes the coordinates and this expansion needs to be aborted after then-body contribution.Based on an iterative algorithm, the SURF procedure adds automatic points to the lattice point representation of the potential function,reaching a convergence threshold after iteration.The final calculation results in the PES in different dimensions, which paves the way for subsequent calculations of harmonic frequency.

    2.2.Calculation of energy levels

    To better understand the molecular vibrations, we used theab initiocalculation procedure UCCSD(T) energy gradient analysis to optimize the molecule’s equilibrium geometric configuration.Then,we conducted a simple normal mode analysis to determine the vibrational Schr¨odinger equation in mass-weighted normal mode coordinates:[52]

    whereVis the full potential function for the system,andnis the number of the vibrational normal modes.However, this method does not consider the effect of rotation-vibration coupling.Equation(6)is derived under the VSCF approximation,which is based on the ansatz

    which leads to the single-mode VSCF equations

    where the effective VSCF potential for modeQjis given by

    For the single-mode wave functions,energies and effective potentials must be solved self-consistently.The VSCF approximation for the total energy is then given by

    As the VSCF method applies a mean-field approach, correlation effects must be explicitly taken into account in the post-VSCF calculations.[41]Therefore,higher excitation levels are required in the post-VSCF calculations due to the appearance of high-order many-mode operators.As shown in Ref.[41],quadruple excitations cannot be neglected in most applications.The VCSF/VCI method can be used for calculating the non-harmonic frequencies in code multi-mode implementations.The VSCF calculation is first performed to obtain the optimal Hartree product in the vibration state, and here it is used as a reference for the VCI calculation.The excitation below four times the level is included in the VCI calculation(VCISDTQ).For all basis groups included in the VCI matrix,the sum of up to 10 quanta is used.This matrix is diagonalized to obtain the anharmonic frequencies.[46]

    3.Results and discussion

    3.1.Spectral data for F2, N2, NF and fundamental frequency data for NF3

    We employ the UCCSD(T)/cc-pVTZ method to calculate the spectral constants of F2, N2, NF, as well as the fundamental frequency of NF3.Table 1 presents the calculated values for F2, N2and NF,comparing them with the experimental values.For the fundamental frequency of NF3,the calculated values for theν1,ν2,ν3, andν4modes are 493.86 cm?1,648.24 cm?1,928.34 cm?1,and 1041.42 cm?1,respectively, while the corresponding experimental values[53]are 492 cm?1,647 cm?1,907 cm?1,and 1032 cm?1.We can see that the results show excellent agreement with the experiment.Therefore, we further utilized this method for subsequent calculations of NF+3.

    Table 1.The spectral constants of F2,N2,and NF at this benchmark,calculated and compared with the experimental results.

    3.2.Equilibrium geometry of NF+3

    NF+3is a flat, symmetrical top molecule with spatial geometry.In this work, we employ the spherical harmonic function to perform integration calculations.The spherical harmonic function serves as an eigenfunction of the angular momentum operator.This approach of utilizing spherical harmonic functions for integration lays the foundation for the study of vibrations.NF+3was optimally calculated using UCCSD(T)/cc-pVTZ and its equilibrium geometry parameters were obtained in the process of optimization.The optimized bond lengthsr(N1–F2),r(N1–F3),r(N1–F4)are all 1.2839 ?A.The key angles ∠(F2–N1–F3), ∠(F2–N1–F4), and ∠(F3–N1–F4) are 113.829°, 113.829°, and 113.83°, respectively.This result is in line with the calculated values in the Comprehensive Computational Chemistry Database (CCCBDB),[55]and so far there are no experimental values for comparison.CCCBDB is a database that provides comprehensive and reliable information on a wide range of molecular properties,energetics, and spectroscopic data.It contains calculated data based on quantum chemical calculations for a large number of molecules.

    3.3.Potential energy surfaces

    In this work, the one-dimensional (1D) and twodimensional(2D)PESs of NF+3are derived by using the SURF program in combination with the ploting(PLOT) command.Hereqirepresents the trend of the distance to the equilibrium position for each atom in different modes.The change in bond length stretching or compression for each atom in different modes is associated with energy.Since the final mode will remain in the new geometry when it is stationary,this energy is potential energy (position dependent).Figures 1 and S1 in the supporting information are both 1D PESs.The observed 1D PESs ofq2(A'') andq6(A'') there are symmetric.The symmetry is due to the integrable representation in these two modes that does not fully describe the geometry in the current vibrational state.However, for the four vibration modes ofq1scissoring,q3symmetric deformation,q4symmetric,andq5asymmetric,the integrability of the symmetry in normal coordinates is expressed as A',which generates asymmetric 1D PESs,as seen in Fig.S1.Asymmetrical PESs arise because of the tendency of their atoms to change (at a distance from the equilibrium position),with different magnitudes of stretching or compression causing them to generate different potential energies.In summary,1D PESs are symmetric when the integrable representation of the vibrational mode is A'',and otherwise, they are asymmetric when the integrable representation is A'.

    As shown in Fig.2,the 2D complete PESs are generated by combining six modes pairwise with each other,two forms of PESs are produced, complete symmetric and axisymmetric.The multi-mode expansion of the PESs is truncated after the 3D contribution, which also contains a 3-mode coupling term.The lowest point in the PESs,when both the horizontal and vertical coordinates tend to zero,is the most stable state of the system, i.e., the equilibrium geometry.Figures 2(a)–2(c)are completely symmetrical due to the complementary orientation of the two modes vibrating against each other in the transverse coordinates of the two modes.Figures 2(d)–2(f)are axisymmetric and arise for reasons related to theq6mode.The coupling different vibrational modes has various effects on the variation of the ion potential energy.When the absolute values of the vertical coordinates corresponding toqiandqjreach their maximum values at the same time,their mutual coupling leads to the greatest change in potential energy.It is observed that modeq6and its different modes coupled to each other produce axisymmetric PESs and that all three sets of couplings have a relatively large effect on the energy of the system.This is due to the ion vibrations that tend to be larger in modeq6and therefore have a greater impact on the system when they are coupled to other modes.

    Fig.1.One-dimensional PESs of molecular vibrations unfolding along q2(A'')and q6(A'').

    Fig.2.Two-dimensional complete PESs with different symmetry forms.

    The coupling of different modes to each other also generates relative PESs,which are also plotted as shown in Fig.S2 in the supporting information.Looking at Fig.S2, the vertical coordinates of the potential energy appear to be positive and negative,the reason for this is that the zero PES has been chosen as a reference.By using the zero PES as a reference,it is possible to observe more clearly the variation of the potential energy under different modes of coupling.Observation of Figs.S2(a)and S2(b)reveals the same axisymmetric form of the PESs as the complete PESs.Figures S2(a) and S2(b)are reversed if Fig.S2(a) is assumed to be the front side and Fig.S2(b) is assumed to be the side after reversing it.This phenomenon is caused by the fact that modeq5vibrations are in a different direction from modeq1vibrations.As shown in Figs.S2(c)and S2(d),the PESs are completely asymmetric and their potential energy tends to change less after coupling in Fig.S2(c).As shown in Figs.S2(c)and S2(d),when the modes have the same integrable representation, e.g., A'or A'', their mutual coupling produces the completely asymmetric PESs.

    In summary, when the PES appears to be symmetrical it saves time and resources for the calculation.The modeq6symmetric stretching vibration has the greatest influence on the potential energy change of the whole system.The completely asymmetric PESs are generated when the integrable representations of the modes are identical.

    3.4.Vibration frequency

    Molecular vibration is a complex phenomenon,in which an actual molecule oscillates through various normal modal motions.Generally,this vibration is a combination of several simple modes.Figures 1 and S1 show that the NF+3molecule has six modes of vibration,includingν1in-plane shear vibration,ν2in-plane wobble,ν3symmetric deformation,ν4symmetric stretching,ν5antisymmetric stretching, andν6symmetric stretching.The length of the arrows in the diagrams represents the amplitude of the vibrational trend.

    Table 2 lists the harmonic vibration frequenciesωi, anharmonic vibration frequenciesνi, and anharmonicity correctionωi ?νiof NF+3.Tables 3 and S1 in the supporting information present overtones and combination frequencies, respectively.By observing the fundamental frequencies,we find that the two pairs of vibrational energy levelsν1(522.18 cm?1)andν2(522.17 cm?1),ν5(1249.97 cm?1),andν6(1250.04 cm?1) have a twofold degenerate phenomenon,because the mutual energy band gap between them is less than 1 cm?1.Two of the fundamental frequencies are twofold degenerate and may thus give rise to the Jahn–Teller (JT)effect.Furthermore, we can find a link among modeν1,modeν2, and modeν3ground states bound to overtones and their combinations, as Table 3 overtones and Table S1 combination bands.Mode 2ν1+ν2(1567.06 cm?1) is almost equivalent to the sum of the overtones of modeν1and the fundamental frequency of modeν2.The same is valid for modesν1+2ν2(1567.16 cm?1), 2ν1+ν3(1701.74 cm?1),2ν2+ν3(1701.70 cm?1),ν1+2ν3(1832.48 cm?1),ν2+2ν3(1832.45 cm?1),ν1+ν2(1044.55 cm?1),ν1+ν3(1179.98 cm?1), andν2+ν3(1179.94 cm?1).We also notice that the combination bands resonate with each other in the above-mentioned combinations,e.g.,2ν1+ν2(1567.06 cm?1)andν1+2ν2(1567.16 cm?1).Owing to the degenerate phenomenon, we find that modeν5and modeν6also have their combination bands interwound with each other,e.g.,ν2+2ν6(3004.51 cm?1) andν2+ν5+ν6(3005.44 cm?1).Therefore, the fundamental frequencies’ degenerate phenomenon also leads to this phenomenon between their combined bands.

    Table 2.Computed fundamental frequency νi(in cm?1),harmonic vibrational wavenumbers ωi (in cm?1) and anharmonicity corrections ωi ?νi (in cm?1)of NF+3.Here ωi and νi are obtained using the UCCSD(T)/cc-pVTZ method.

    Table 3.Computed overtones νi (in cm?1), harmonic vibrational wavenumbers ωi (in cm?1) and anharmonicity corrections ωi ?νi (in cm?1) of NF+3.Here ωi and νi are obtained using the UCCSD(T)/cc-pVTZ method.

    3.5.Vibration spectrum

    Molecular spectroscopy is widely used as a “fingerprint of molecules” for the structure of molecules and the chemical composition of substances.The coupled clustering(UCCSD(T))method in this paper provides accurate predictions of molecular properties and fits the spectral data as shown in Figs.3 and 4.All the IR absorption peaks in the graph appear in the mid-IR region 400–4000 cm?1.In Fig.3,the front part of the plot represents the vibrational IR spectrum of NF+3and the back part of the plot represents the vibrational spectrum at 200–1400 cm?1with four distinct peaks, which are marked in the plot with lower case letters.The vibrational spectrum in 200–1400 cm?1represents the absorption peak generated by the fundamental frequency mode.For two different modes whose frequency values are almost close to each other (coupled resonance), intensity borrowing will occur in the vicinity of this frequency.Intensity borrowing is generated at letters a and d in the diagram.The letter d in Fig.3 indicates the strength borrowed from anti-symmetric stretchν5and symmetric stretchν6.It shows a large peak near 1250 cm?1with an intensity of 341.58 km/mol.Similarly, the letter a indicates the intensity borrowed between the in-plane shear vibrationν1and the in-plane wobbleν2,where the peak is located near 522 cm?1with an intensity of 13.54 km/mol.Symmetric deformation vibrationν3and symmetric stretching vibrationν4produce peaks of 23.74 km/mol and 15.62 km/mol around 974 cm?1and 658 cm?1, respectively, which are represented in the diagram by the letters b and c,respectively.To facilitate the observation of the remaining weaker overtones and combination bands, IR intensity is plotted in the ranges 1400–2000 cm?1and 2000–3500 cm?1,respectively, as shown in Fig.4.In combination with the predicted vibration frequencies, it is found that there are vibrationally coupled overtones and combinations of frequencies,which also have intensity borrowing phenomena between them.The peaks at the letters H,N,G,and K in the diagram are intensity borrowed and occur atν2+ν4andν1+ν4,ν2+ν6andν1+ν5,ν3+ν6andν3+ν5,ν4+ν6andν4+ν5, representing intensities of 2.41 km/mol,0.59 km/mol,0.34 km/mol,and 9.94 km/mol at 14993 cm?1,1768 cm?1,1904 cm?1and 2214 cm?1,respectively.The letters I,M,and L represent the intensities atν3+ν6,ν5+ν2, andν5+ν6, which represent intensities of 0.13 km/mol,0.56 km/mol,and 2.20 km/mol at 1622 cm?1,1763 cm?1,and 2493 cm?1,respectively.Fig.4.The infrared vibrational spectra ofin the ranges 1400–2000 cm?1and 2000–3500 cm?1.

    Fig.3.The infrared spectra produced by the NF+3 vibrations and the infrared vibrational spectrum in the range 200–1400 cm?1.

    4.Summary and conclusion

    This paper presents calculations of the PESs, vibrational frequencies,and spectra of NF+3using the UCCSD(T)method in conjunction with the cc-pVTZ basis set within the MOLPRO software package.Highly accurate PESs are fitted toab initiodata and constructed with spherical harmonic expansion.Symmetrical potential energy curves are generated in the process of generating 1D PESs when the integrability of the normal transverse coordinate is expressed as A''.Conversely,asymmetric potential curves arise when the integrability is expressed as A'.The coupling of different modes creates 2D relative and complete PESs.The modes coupled to each other have different effects on system potential energy, with modeν6symmetric stretching vibrations having the greatest effect.When irreducible representations of the normal transverse coordinate patterns are all identical, completely asymmetric PESs are created.

    In the calculation of the PESs,the Hessian is used to calculate the harmonic frequencies of NF+3.In the subsequent calculation of the anharmonic frequencies,the VCI is used to obtain anharmonic corrections for the harmonic frequencies.The fundamental vibrational frequencies of NF+3appear as two pairs of twofold degenerate phenomenon with mutual energy band gaps of less than 1 cm?1,which are out-of-plane shearν1and in-plane oscillationν2, respectively, and anti-symmetricν5and symmetric stretchingν6.Two of them are twofold degenerate and may thus give rise to the Jahn–Teller(JT)effect.This degeneracy is also reflected in the combined and overtone frequencies.Finally,the IR spectrum of the ion is plotted in the mid-infrared region 400–4000 cm?1.Intensity borrowing occurs around this frequency as coupled resonances occur at similar frequencies in different modes, resulting in a shift towards two different modes.Observing the entire spectrum,the greatest intensity in the infrared occurs near the symmetric stretching vibrationν6.The research in this paper provides data to guide experiments with NF+3.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.52002318 and 22103061).

    内射极品少妇av片p| 亚洲色图综合在线观看| 丰满饥渴人妻一区二区三| 丝袜喷水一区| 日本黄色日本黄色录像| 91aial.com中文字幕在线观看| 97在线视频观看| 亚洲成人手机| 晚上一个人看的免费电影| 国产精品不卡视频一区二区| 日韩av不卡免费在线播放| 成人国产麻豆网| 久久影院123| 女性被躁到高潮视频| 中文在线观看免费www的网站| 五月开心婷婷网| 深夜a级毛片| 噜噜噜噜噜久久久久久91| 久久久久网色| 国产伦精品一区二区三区四那| 日本-黄色视频高清免费观看| 精品国产乱码久久久久久小说| 在线观看国产h片| 免费黄色在线免费观看| 色5月婷婷丁香| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 国产精品99久久99久久久不卡 | 精品国产一区二区三区久久久樱花| 少妇被粗大猛烈的视频| 热re99久久国产66热| 亚洲精品456在线播放app| 久久久欧美国产精品| 久久热精品热| 亚洲精品国产色婷婷电影| 亚洲国产精品成人久久小说| 少妇的逼水好多| 国产成人精品无人区| 18禁裸乳无遮挡动漫免费视频| 18禁在线无遮挡免费观看视频| 国产91av在线免费观看| 欧美最新免费一区二区三区| 亚洲精品乱久久久久久| 夜夜骑夜夜射夜夜干| 新久久久久国产一级毛片| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 啦啦啦视频在线资源免费观看| 美女视频免费永久观看网站| 少妇高潮的动态图| 亚洲av成人精品一二三区| 一级毛片久久久久久久久女| 18禁动态无遮挡网站| 国产一区二区三区综合在线观看 | 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 大香蕉97超碰在线| 成人午夜精彩视频在线观看| 深夜a级毛片| 亚洲精品久久午夜乱码| 亚洲av在线观看美女高潮| 岛国毛片在线播放| 国产成人免费观看mmmm| 麻豆成人午夜福利视频| 亚洲精华国产精华液的使用体验| 深夜a级毛片| 日本爱情动作片www.在线观看| 日本黄色片子视频| 五月开心婷婷网| 草草在线视频免费看| 18禁在线无遮挡免费观看视频| 国产乱人偷精品视频| 国产高清不卡午夜福利| 日韩三级伦理在线观看| 在现免费观看毛片| 色5月婷婷丁香| 亚洲熟女精品中文字幕| 能在线免费看毛片的网站| 亚洲精品一区蜜桃| 三级国产精品欧美在线观看| a级毛片免费高清观看在线播放| 在线免费观看不下载黄p国产| 午夜免费男女啪啪视频观看| 深夜a级毛片| 高清不卡的av网站| 免费黄频网站在线观看国产| 亚洲av欧美aⅴ国产| av一本久久久久| 久久精品国产亚洲网站| 国产精品一区二区三区四区免费观看| 免费播放大片免费观看视频在线观看| 99久久精品国产国产毛片| 日韩视频在线欧美| 久久99精品国语久久久| 少妇裸体淫交视频免费看高清| 香蕉精品网在线| 黄色一级大片看看| 国产一区亚洲一区在线观看| 少妇熟女欧美另类| 少妇高潮的动态图| 自拍欧美九色日韩亚洲蝌蚪91 | av免费观看日本| 高清不卡的av网站| 大又大粗又爽又黄少妇毛片口| 成人毛片a级毛片在线播放| 夫妻午夜视频| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 亚洲国产成人一精品久久久| 寂寞人妻少妇视频99o| 国产国拍精品亚洲av在线观看| 欧美日韩av久久| 午夜免费男女啪啪视频观看| 最新中文字幕久久久久| 一级毛片我不卡| 成人美女网站在线观看视频| 午夜av观看不卡| 国产精品久久久久久av不卡| 青春草视频在线免费观看| 国产成人精品久久久久久| 日韩制服骚丝袜av| 欧美日韩av久久| 亚洲无线观看免费| av福利片在线| 女性被躁到高潮视频| 亚洲人成网站在线观看播放| 免费高清在线观看视频在线观看| 免费观看性生交大片5| 国内精品宾馆在线| 男人添女人高潮全过程视频| 两个人的视频大全免费| 五月玫瑰六月丁香| 国产黄色视频一区二区在线观看| 国产伦理片在线播放av一区| 丰满人妻一区二区三区视频av| 欧美 亚洲 国产 日韩一| 大又大粗又爽又黄少妇毛片口| 国产极品天堂在线| 国产免费一区二区三区四区乱码| 日韩视频在线欧美| 亚洲欧美精品专区久久| 高清欧美精品videossex| av专区在线播放| 91aial.com中文字幕在线观看| 毛片一级片免费看久久久久| 精品亚洲成a人片在线观看| 国产免费一级a男人的天堂| 日韩强制内射视频| 高清在线视频一区二区三区| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 久久毛片免费看一区二区三区| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频 | 久久久a久久爽久久v久久| 精品人妻偷拍中文字幕| 精品少妇内射三级| 国产在线男女| 亚洲伊人久久精品综合| 最近的中文字幕免费完整| 十八禁网站网址无遮挡 | 国产伦精品一区二区三区四那| 如日韩欧美国产精品一区二区三区 | 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 成年人免费黄色播放视频 | 特大巨黑吊av在线直播| 日本-黄色视频高清免费观看| 成人影院久久| 亚洲不卡免费看| 边亲边吃奶的免费视频| 久久 成人 亚洲| 国产精品麻豆人妻色哟哟久久| 2022亚洲国产成人精品| 最后的刺客免费高清国语| 亚洲丝袜综合中文字幕| 日韩不卡一区二区三区视频在线| 国产精品久久久久久精品电影小说| 国产伦在线观看视频一区| 日韩制服骚丝袜av| 超碰97精品在线观看| 夫妻性生交免费视频一级片| 国产日韩一区二区三区精品不卡 | 欧美变态另类bdsm刘玥| 亚洲怡红院男人天堂| 日韩亚洲欧美综合| 中文资源天堂在线| 一级片'在线观看视频| 国产亚洲一区二区精品| 人妻夜夜爽99麻豆av| 欧美日韩视频高清一区二区三区二| 久久久久久久国产电影| 高清黄色对白视频在线免费看 | 高清午夜精品一区二区三区| 久久99热这里只频精品6学生| 国产精品麻豆人妻色哟哟久久| 国产亚洲5aaaaa淫片| 大片免费播放器 马上看| h视频一区二区三区| 少妇丰满av| 在线 av 中文字幕| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 精品人妻一区二区三区麻豆| 国产精品成人在线| 婷婷色综合www| 在线播放无遮挡| 国产成人91sexporn| 午夜激情福利司机影院| 国产熟女欧美一区二区| 黄色毛片三级朝国网站 | 亚洲av电影在线观看一区二区三区| av线在线观看网站| 国产午夜精品久久久久久一区二区三区| 亚洲国产最新在线播放| 伊人久久精品亚洲午夜| 久久ye,这里只有精品| 极品少妇高潮喷水抽搐| 午夜日本视频在线| 一区二区三区免费毛片| 国产精品99久久久久久久久| 一级a做视频免费观看| 亚洲精品国产av蜜桃| 午夜福利网站1000一区二区三区| 日日爽夜夜爽网站| 免费看不卡的av| 久久久久久伊人网av| 久久精品久久久久久久性| av.在线天堂| 天美传媒精品一区二区| 亚洲人成网站在线观看播放| xxx大片免费视频| 亚洲国产欧美日韩在线播放 | 国产精品久久久久久久久免| 亚洲精品自拍成人| 亚洲av免费高清在线观看| 内射极品少妇av片p| 2018国产大陆天天弄谢| 丝瓜视频免费看黄片| 亚洲精品日韩在线中文字幕| 午夜91福利影院| 中国美白少妇内射xxxbb| 亚洲怡红院男人天堂| 建设人人有责人人尽责人人享有的| 高清午夜精品一区二区三区| 99久久综合免费| 日韩在线高清观看一区二区三区| 精品久久国产蜜桃| 高清在线视频一区二区三区| 国产极品粉嫩免费观看在线 | 久久久久久久大尺度免费视频| 成人毛片a级毛片在线播放| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 久久久久人妻精品一区果冻| 日韩精品免费视频一区二区三区 | 免费观看av网站的网址| 一二三四中文在线观看免费高清| 亚洲无线观看免费| 男女边吃奶边做爰视频| 黄色欧美视频在线观看| 日韩大片免费观看网站| 亚洲国产欧美日韩在线播放 | 亚洲精品国产av蜜桃| 亚洲精品亚洲一区二区| 亚洲国产精品成人久久小说| 欧美区成人在线视频| 人人澡人人妻人| h视频一区二区三区| 日本vs欧美在线观看视频 | 亚洲一级一片aⅴ在线观看| 国产精品蜜桃在线观看| 最新的欧美精品一区二区| 美女cb高潮喷水在线观看| 国产探花极品一区二区| 综合色丁香网| 中文资源天堂在线| 伦理电影免费视频| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲网站| 亚洲av欧美aⅴ国产| 一本久久精品| 夫妻性生交免费视频一级片| av卡一久久| 在线精品无人区一区二区三| 久久影院123| 精品一品国产午夜福利视频| 国产一区亚洲一区在线观看| av在线老鸭窝| 97超视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 22中文网久久字幕| 日韩亚洲欧美综合| 三级国产精品欧美在线观看| 男人和女人高潮做爰伦理| 伦理电影大哥的女人| 国产综合精华液| 国产av一区二区精品久久| 一本—道久久a久久精品蜜桃钙片| 18禁动态无遮挡网站| 一区二区三区精品91| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线| 性色avwww在线观看| 少妇高潮的动态图| 一二三四中文在线观看免费高清| 看免费成人av毛片| 一级二级三级毛片免费看| 久久精品熟女亚洲av麻豆精品| 久久久久久伊人网av| 熟妇人妻不卡中文字幕| 国产极品粉嫩免费观看在线 | tube8黄色片| 九九久久精品国产亚洲av麻豆| 特大巨黑吊av在线直播| av福利片在线| 午夜精品国产一区二区电影| 久久精品国产自在天天线| 99热这里只有是精品在线观看| 两个人的视频大全免费| 丝袜脚勾引网站| 久久人妻熟女aⅴ| 午夜91福利影院| h日本视频在线播放| 校园人妻丝袜中文字幕| 十八禁网站网址无遮挡 | 国产高清不卡午夜福利| av国产久精品久网站免费入址| 大香蕉久久网| 午夜福利视频精品| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 国产高清不卡午夜福利| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 中文字幕av电影在线播放| 99国产精品免费福利视频| 成人影院久久| 国产伦在线观看视频一区| 亚洲av电影在线观看一区二区三区| 欧美变态另类bdsm刘玥| 国产视频首页在线观看| 亚洲精华国产精华液的使用体验| 偷拍熟女少妇极品色| 久久精品熟女亚洲av麻豆精品| 亚洲av福利一区| 国产成人精品一,二区| 一级毛片 在线播放| 老熟女久久久| 中国三级夫妇交换| 少妇精品久久久久久久| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品国产精品| 美女国产视频在线观看| 观看免费一级毛片| 中文精品一卡2卡3卡4更新| 免费少妇av软件| 国产一区亚洲一区在线观看| 精品视频人人做人人爽| 有码 亚洲区| 男女无遮挡免费网站观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲第一av免费看| 少妇的逼好多水| 日韩精品免费视频一区二区三区 | 日韩一本色道免费dvd| 亚洲欧美一区二区三区国产| 天天躁夜夜躁狠狠久久av| 精品人妻熟女av久视频| 午夜日本视频在线| 久久精品久久久久久久性| 欧美精品一区二区免费开放| 亚洲av综合色区一区| 亚洲天堂av无毛| 特大巨黑吊av在线直播| 精品久久久久久电影网| 精品亚洲成国产av| 国产成人精品婷婷| 久久毛片免费看一区二区三区| 亚洲精品国产色婷婷电影| 亚洲精华国产精华液的使用体验| 视频中文字幕在线观看| 国产精品.久久久| 91久久精品国产一区二区成人| 精品酒店卫生间| 热re99久久国产66热| 夫妻性生交免费视频一级片| 2021少妇久久久久久久久久久| 亚洲av日韩在线播放| 五月天丁香电影| 成人毛片a级毛片在线播放| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕| 国产精品伦人一区二区| 少妇丰满av| 亚洲精品乱码久久久v下载方式| 国产精品秋霞免费鲁丝片| 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| 成年女人在线观看亚洲视频| 国产亚洲最大av| 亚洲精华国产精华液的使用体验| 嫩草影院新地址| 国产精品.久久久| 99九九在线精品视频 | 久久精品国产亚洲网站| 如日韩欧美国产精品一区二区三区 | 成年人午夜在线观看视频| 成人毛片a级毛片在线播放| 少妇 在线观看| 国产亚洲5aaaaa淫片| 一级av片app| 婷婷色综合大香蕉| 亚洲图色成人| 欧美精品国产亚洲| 国产又色又爽无遮挡免| 亚洲色图综合在线观看| 插逼视频在线观看| 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 99热这里只有是精品在线观看| 国产熟女午夜一区二区三区 | av天堂中文字幕网| 亚洲精品日本国产第一区| 91午夜精品亚洲一区二区三区| 日韩一区二区三区影片| 国产真实伦视频高清在线观看| 亚洲人成网站在线播| 日本vs欧美在线观看视频 | 久久人人爽av亚洲精品天堂| 欧美日本中文国产一区发布| 性色avwww在线观看| 我的老师免费观看完整版| 精品人妻熟女av久视频| 午夜av观看不卡| 亚洲精品乱码久久久v下载方式| 日韩大片免费观看网站| 少妇的逼水好多| 人人妻人人添人人爽欧美一区卜| 国产精品一区二区在线观看99| 国产亚洲精品久久久com| 在线观看av片永久免费下载| 国产一级毛片在线| 蜜臀久久99精品久久宅男| 亚洲欧美中文字幕日韩二区| 国产午夜精品久久久久久一区二区三区| 久久精品久久精品一区二区三区| 最近中文字幕2019免费版| 中文乱码字字幕精品一区二区三区| 成人亚洲欧美一区二区av| 一本一本综合久久| 只有这里有精品99| 黑人巨大精品欧美一区二区蜜桃 | 免费播放大片免费观看视频在线观看| 久久久久久久亚洲中文字幕| 久久影院123| 五月开心婷婷网| 中文字幕精品免费在线观看视频 | 国产高清三级在线| 日韩强制内射视频| 亚洲欧美日韩东京热| 国产精品女同一区二区软件| 色5月婷婷丁香| 国产免费视频播放在线视频| 男女免费视频国产| 国产精品国产三级国产专区5o| 99热国产这里只有精品6| 国产日韩欧美亚洲二区| 精品午夜福利在线看| 97超碰精品成人国产| 国产av国产精品国产| 最近中文字幕2019免费版| 丝袜脚勾引网站| 欧美日韩在线观看h| 黑人巨大精品欧美一区二区蜜桃 | 看非洲黑人一级黄片| 又黄又爽又刺激的免费视频.| 91久久精品国产一区二区三区| 欧美日本中文国产一区发布| 久久国内精品自在自线图片| 亚洲av国产av综合av卡| 亚洲精品乱码久久久v下载方式| 国产亚洲91精品色在线| 在线精品无人区一区二区三| 午夜福利影视在线免费观看| 汤姆久久久久久久影院中文字幕| 99久久人妻综合| 国产亚洲91精品色在线| 精品少妇黑人巨大在线播放| 99久久精品国产国产毛片| 亚洲精品久久久久久婷婷小说| 纯流量卡能插随身wifi吗| 最近最新中文字幕免费大全7| 国产伦精品一区二区三区四那| 久久精品久久精品一区二区三区| 亚洲欧美精品自产自拍| 国产无遮挡羞羞视频在线观看| 亚洲国产av新网站| 国产淫语在线视频| 在线观看美女被高潮喷水网站| 99精国产麻豆久久婷婷| 久久人人爽人人片av| 搡女人真爽免费视频火全软件| 精品视频人人做人人爽| 一区二区三区四区激情视频| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品古装| 色婷婷av一区二区三区视频| 亚洲人成网站在线观看播放| 大片免费播放器 马上看| 国内少妇人妻偷人精品xxx网站| 特大巨黑吊av在线直播| 2018国产大陆天天弄谢| 黄色一级大片看看| 丝袜脚勾引网站| 婷婷色综合大香蕉| 男女无遮挡免费网站观看| 日本爱情动作片www.在线观看| 午夜福利在线观看免费完整高清在| 丰满饥渴人妻一区二区三| 亚洲伊人久久精品综合| 亚洲人成网站在线观看播放| 精品卡一卡二卡四卡免费| 久久热精品热| 黑人巨大精品欧美一区二区蜜桃 | 国产欧美另类精品又又久久亚洲欧美| 伦精品一区二区三区| 一本大道久久a久久精品| 国产精品偷伦视频观看了| 精品亚洲成a人片在线观看| 我要看日韩黄色一级片| 熟女电影av网| 亚洲成人一二三区av| 国产欧美另类精品又又久久亚洲欧美| 内射极品少妇av片p| 国产精品熟女久久久久浪| 一区在线观看完整版| 日韩视频在线欧美| 啦啦啦视频在线资源免费观看| 中文天堂在线官网| 自线自在国产av| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 国产精品久久久久久精品电影小说| 久久精品国产自在天天线| 国产欧美日韩精品一区二区| 国精品久久久久久国模美| 男的添女的下面高潮视频| 妹子高潮喷水视频| 国产男人的电影天堂91| 岛国毛片在线播放| 亚洲人与动物交配视频| 亚洲国产av新网站| 中国美白少妇内射xxxbb| 我要看黄色一级片免费的| 国产精品成人在线| 夜夜爽夜夜爽视频| 亚洲欧美日韩卡通动漫| 91午夜精品亚洲一区二区三区| 日日啪夜夜爽| 成人漫画全彩无遮挡| 日本-黄色视频高清免费观看| 亚洲国产欧美日韩在线播放 | 国产一区二区三区综合在线观看 | 美女cb高潮喷水在线观看| 深夜a级毛片| 精品视频人人做人人爽| 大片免费播放器 马上看| 免费高清在线观看视频在线观看| 国产一区有黄有色的免费视频| 久久精品久久精品一区二区三区| 欧美精品人与动牲交sv欧美| 自线自在国产av| av天堂久久9| 国产av码专区亚洲av| 99热这里只有是精品在线观看| 国产一区亚洲一区在线观看| 国产精品一区二区三区四区免费观看| 51国产日韩欧美| 99热网站在线观看| 国产成人一区二区在线| 亚洲av免费高清在线观看| 99热国产这里只有精品6| 久久久欧美国产精品| 中文字幕精品免费在线观看视频 | 亚洲精品,欧美精品| 精品久久久噜噜| 国产精品久久久久久av不卡| 只有这里有精品99| 精品一区二区三卡| 18禁在线无遮挡免费观看视频| 国产精品福利在线免费观看| 日本欧美视频一区| 在线观看免费高清a一片| 这个男人来自地球电影免费观看 | 男女免费视频国产| 欧美成人午夜免费资源| 9色porny在线观看| 日本黄大片高清| 熟妇人妻不卡中文字幕| 亚洲av电影在线观看一区二区三区| 三级国产精品欧美在线观看| 久久精品国产亚洲av天美| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美日韩东京热| 最近的中文字幕免费完整| 久久久久视频综合| 日韩熟女老妇一区二区性免费视频| 秋霞在线观看毛片|