王 威,張?zhí)锼?,汪佳豪,相里海鵬,楊成忠,黃大維
(1.華東交通大學(xué) 軌道交通基礎(chǔ)設(shè)施性能監(jiān)測(cè)與保障國(guó)家重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330013;2.華東交通大學(xué) 交通運(yùn)輸工程學(xué)院,江西 南昌 330013)
有砟軌道是鐵路的傳統(tǒng)結(jié)構(gòu)形式,主要由道床、軌枕、鋼軌及各種聯(lián)結(jié)件構(gòu)成。道床作為有砟軌道的重要組成部分,是由形狀各異、大小不一的碎石道砟通過(guò)顆粒之間的咬合作用而形成的散粒體結(jié)構(gòu),其力學(xué)性能不僅與碎石材料的強(qiáng)度有關(guān),且很大程度上受道砟顆粒形態(tài)特征的影響[1-3]。因此,在研究道床受力狀態(tài),尤其是在分析其細(xì)觀力學(xué)行為時(shí),構(gòu)建與真實(shí)道砟形態(tài)特征相符的模型成為必要的環(huán)節(jié)之一[4-5]。
目前,道砟模型構(gòu)建方法主要分為兩種,一種是基于圖形分析技術(shù)重構(gòu)道砟顆粒形狀的方法,另一種是基于幾何理論構(gòu)建道砟模型的方法?;趫D形分析技術(shù)重構(gòu)道砟形狀的方法是對(duì)拍攝或掃描得到的數(shù)字圖形進(jìn)行分析,直接獲取道砟顆粒模型,如Le等[6]、潘飛等[7]采用圖像分析系統(tǒng)獲取道砟顆粒的二維輪廓,井國(guó)慶等[8]、徐旸[9]通過(guò)激光掃描法重構(gòu)了道砟三維模型。這些方法可以較為準(zhǔn)確地獲取道砟模型,但實(shí)際運(yùn)用中需要逐個(gè)采集道砟顆粒的數(shù)字圖形,工作量較大,重構(gòu)效率較低。基于幾何理論構(gòu)建道砟模型的方法是通過(guò)計(jì)算軟件批量構(gòu)建道砟模型,如井國(guó)慶等[10]用圓形顆粒代替道砟顆粒對(duì)循環(huán)荷載作用下道砟破碎劣化進(jìn)行了仿真,Liu等[11]、Lu等[12]利用隨機(jī)生成的不規(guī)則多邊形建立數(shù)值道砟模型進(jìn)行仿真分析,Liu等[13]通過(guò)最優(yōu)橢圓建立了道砟模型庫(kù),張徐等[14]采用球形單元構(gòu)建道砟模型。雖然這類方法提升了模型構(gòu)建效率,但生成的道砟模型與真實(shí)道砟的形態(tài)特征存在一定的差距。近年來(lái),傅里葉分析法被廣泛應(yīng)用于顆粒材料表面細(xì)部特征的研究及其輪廓的重構(gòu),如Touiti等[15]利用傅里葉描述符分析了碳酸鹽砂、硅砂和鈣質(zhì)砂表面形態(tài)特征的差異,Mollon等[16]、方浩等[17]基于傅里葉變換隨機(jī)重構(gòu)了砂土顆粒模型,石崇等[18]、郜家奇等[19]通過(guò)傅里葉變換隨機(jī)重構(gòu)了碎石顆粒模型?;诟道锶~變換法重構(gòu)的顆粒模型在很大程度上還原了顆粒的細(xì)節(jié)形態(tài)特征。但現(xiàn)有的構(gòu)建方法必須通過(guò)控制傅里葉描述符實(shí)現(xiàn)輪廓重構(gòu),而實(shí)際運(yùn)用中傅里葉描述符的確定需要通過(guò)復(fù)雜的計(jì)算與處理流程才能獲得,不利于顆粒模型的快速準(zhǔn)確構(gòu)建。
為解決上述顆粒模型構(gòu)建方法的不足,本文選取高速鐵路特級(jí)道砟,提取顆粒的平面幾何特征,采用傅里葉分析法,量化分析道砟顆粒形態(tài)特征,在此基礎(chǔ)上利用響應(yīng)面法建立道砟幾何特征與傅里葉描述符之間的映射關(guān)系,進(jìn)而提出使用道砟幾何特征代替傅里葉描述符的道砟顆粒模型快速重構(gòu)方法,并通過(guò)比較道砟重構(gòu)輪廓與實(shí)際道砟輪廓的相似程度,評(píng)估所提方法的可行性。
顆粒的形態(tài)特征是構(gòu)建顆粒模型的關(guān)鍵,其中最常用的是平面圖形的輪廓特征。近年來(lái),圖形(像)分析方法被廣泛地應(yīng)用于評(píng)估顆粒狀材料的大小、形狀、棱角性以及表面質(zhì)地系數(shù)等屬性。這些方法主要從兩個(gè)角度對(duì)顆粒形態(tài)進(jìn)行評(píng)估:一是采用測(cè)量得到的幾何參數(shù)及通過(guò)這些參數(shù)構(gòu)造的指標(biāo)分析顆粒的幾何形態(tài);二是采用數(shù)字圖像處理技術(shù)將圖形轉(zhuǎn)換為可以進(jìn)行數(shù)值運(yùn)算的指標(biāo)再進(jìn)行分析,如傅里葉變換法、Hough變換法、灰度計(jì)算法和小波變換法等,其中傅里葉變換法可以較好地反映顆粒的細(xì)節(jié)特征,本文將應(yīng)用傅里葉分析法來(lái)表征道砟顆粒的形態(tài)特征。
得益于圖形和圖像分析方法的發(fā)展,道砟顆粒的幾何尺寸可以通過(guò)計(jì)算機(jī)準(zhǔn)確獲取,避免了手工測(cè)量帶來(lái)的誤差。表1列出了顆粒材料常見(jiàn)的基本幾何尺寸及其含義,利用這些幾何尺寸可以進(jìn)一步構(gòu)造并量化道砟顆粒形態(tài)的指標(biāo),如長(zhǎng)寬比、圓形度、球形度、棱角度、規(guī)則度以及粗糙度等[20-22]。
表1 顆?;編缀纬叽?/p>
在平面xOy坐標(biāo)系下,道砟顆粒輪廓可以看作是一系列散點(diǎn)的集合,見(jiàn)圖1。假設(shè)任意一點(diǎn)Pi在道砟顆粒邊界上沿逆時(shí)針?lè)较蜻\(yùn)動(dòng),則道砟顆粒的輪廓可以由一組坐標(biāo)序列{(xn,yn|n= 0,1, 2, …,N-1}表示,其中,N為坐標(biāo)序列的長(zhǎng)度。
定義中心距離函數(shù)r(n)為道砟顆粒輪廓上的點(diǎn)到其幾何中心點(diǎn)的距離,即
(1)
式中:xc、yc為道砟顆粒幾何中心點(diǎn)的坐標(biāo),計(jì)算式為
(2)
(3)
根據(jù)離散傅里葉變換(DFT),中心距離函數(shù)可以表示為[23]
(4)
其逆變換表達(dá)式為
(5)
式中:k為數(shù)字化頻率,k= 0, 1, … ,N-1;F(k)為中心距離函數(shù)r(n)的傅里葉系數(shù),這些系數(shù)在頻率上表達(dá)了輪廓的形狀特征,其中低頻系數(shù)表達(dá)了輪廓的宏觀特征,高頻系數(shù)表達(dá)了輪廓的細(xì)節(jié)信息;j為虛數(shù)單位。
由于中心距離函數(shù)只有實(shí)數(shù)序列,其傅里葉變換是對(duì)稱的,因此只有N/2個(gè)傅里葉系數(shù)表達(dá)了道砟輪廓的形狀特征。
在實(shí)際計(jì)算過(guò)程中,道砟的位置、縮放和旋轉(zhuǎn)信息對(duì)道砟形態(tài)的分析影響不大,為保證描述符具有平移、旋轉(zhuǎn)、尺度和起始點(diǎn)不變性,要對(duì)提取的描述符進(jìn)行歸一化處理。已有研究表明[24-25],中心距離函數(shù)的傅里葉系數(shù)已具有平移不變性,其幅值|F(k)|具有平移、選擇和起始點(diǎn)不變性。由傅里葉變換公式(4)可知,F(0)代表的是中心距離的均值,因此,只需將原始得到的傅里葉系數(shù)幅值|F(k)|同除以|F(0)|便可實(shí)現(xiàn)尺度歸一化。經(jīng)過(guò)上述處理,得到的具有平移、旋轉(zhuǎn)、尺度和起始點(diǎn)不變性的傅里葉描述符為
(6)
式中:|F(k)|為傅里葉系數(shù)幅值;Dn為傅里葉描述符,其典型頻譜圖見(jiàn)圖2。
圖2 傅里葉描述符頻譜
Mollon等[16]研究表明,D0反映顆粒的平均粒徑;D1反映中心函數(shù)中選擇的中心點(diǎn)與顆粒形心的偏移程度,當(dāng)中心選擇在顆粒的形心時(shí),D1為0;D2反映顆粒的伸長(zhǎng)程度;D3~D7表征顆粒的宏觀特征,如三角形性、四邊形性等;D8~D64表征顆粒的微觀特征,如表面紋理、粗糙性等。此外,Mollon等[16]指出傅里葉描述符D2~D64呈對(duì)數(shù)線性遞減趨勢(shì),并提出D3、D8線性組合方程近似表示3 Dn=2α·log2(n/3)+log2(D3)3 (7) Dn=2β·log2(n/8)+log2(D8)8 (8) 式中:α、β均為線性系數(shù)。 對(duì)道砟顆粒輪廓的構(gòu)建是從細(xì)觀層面分析道床力學(xué)性能,揭示道床劣化機(jī)理的基礎(chǔ)工作之一。本節(jié)將通過(guò)傅里葉分析與響應(yīng)面法建立道砟幾何尺寸與傅里葉描述符之間的映射關(guān)系,提出基于幾何形態(tài)特征快速重構(gòu)道砟顆粒形態(tài)的方法。 本文選取原礦為花崗巖的特級(jí)道砟作為試驗(yàn)對(duì)象,其材質(zhì)性能指標(biāo)均符合相關(guān)規(guī)范。根據(jù)TB/T 2140—2008《鐵路碎石道砟》[26]對(duì)高速鐵路特級(jí)道砟粒徑的規(guī)定,本文選取粒徑范圍為22.4~31.5、31.5~40.0、40.0~50.0、50.0~63.0 mm四個(gè)粒徑組的道砟進(jìn)行研究。為建立道砟幾何特征與傅里葉描述符之間的關(guān)系,試驗(yàn)在每個(gè)粒徑組分別選取100個(gè)顆粒,共400個(gè)顆粒進(jìn)行數(shù)字圖像采集與分析。為避免道砟上附著的細(xì)小顆粒對(duì)圖像采集產(chǎn)生不利影響,試驗(yàn)前對(duì)選取的道砟進(jìn)行了清洗。采用最大分辨率為1 920×1 080、有效像素為200萬(wàn)的USB高清工業(yè)相機(jī)采集每個(gè)道砟顆粒圖像,進(jìn)而運(yùn)用數(shù)字圖形處理技術(shù)提取道砟輪廓信息。道砟輪廓信息獲取方法如圖3所示。首先對(duì)采集到的圖像進(jìn)行直方圖均衡化處理,改善圖像灰度信息;其次采用雙邊濾波和形態(tài)學(xué)處理銳化道砟邊緣,提高分割的準(zhǔn)確性;然后選取合適的閾值將道砟與背景分割開(kāi)來(lái);最后使用邊緣檢測(cè)函數(shù)尋找道砟輪廓,提取輪廓坐標(biāo)序列。 圖3 道砟輪廓獲取方法 本研究中,單個(gè)道砟輪廓由長(zhǎng)度超過(guò)3 000的坐標(biāo)序列構(gòu)成,直接采用離散傅里葉變換(DFT)會(huì)導(dǎo)致計(jì)算效率低下,因此本文采用快速傅里葉變換FFT代替DFT以提高計(jì)算效率。在使用FFT時(shí),要求序列的長(zhǎng)度N為2的指數(shù)倍數(shù)。為滿足該要求,利用邢小軍等[27]提出的重采樣方法,依次設(shè)置23、24、…、210、211個(gè)重采樣點(diǎn),分別計(jì)算各重采樣圖形與原圖形面積的相對(duì)誤差,結(jié)果見(jiàn)圖4。由圖4可知,隨著采樣點(diǎn)數(shù)的增加,重采樣圖形的面積逐漸接近于原圖形的面積,當(dāng)采樣點(diǎn)M的個(gè)數(shù)為26即64時(shí),相對(duì)誤差為0.22%,當(dāng)采樣點(diǎn)的個(gè)數(shù)增大到27即128時(shí),相對(duì)誤差降低為0.000 11%,而當(dāng)采樣點(diǎn)個(gè)數(shù)增大到28即256時(shí),相對(duì)誤差為0.000 075 %。由此可見(jiàn),當(dāng)采樣點(diǎn)個(gè)數(shù)為128時(shí),重采樣圖形便可較為準(zhǔn)確地表示原圖形,與Das[28]研究結(jié)果一致。 圖4 采樣點(diǎn)個(gè)數(shù)對(duì)道砟形狀的影響 對(duì)道砟輪廓重采樣后,根據(jù)定義計(jì)算表1中道砟的幾何尺寸,同時(shí)采用FFT計(jì)算道砟輪廓形狀的傅里葉描述符,最終獲得400組道砟幾何尺寸和400組傅里葉描述符。方浩等[17]研究指出傅里葉描述符D2、D3、D8可以較全面地反映顆粒的形態(tài)特征,且其余描述符均可由這三個(gè)描述符通過(guò)線性組合方程近似表示[16]。因此,本文選取D2、D3、D8這三個(gè)傅里葉描述符作為表征道砟顆粒形狀的關(guān)鍵參數(shù)。圖5為本文道砟樣本的傅里葉描述符D2、D3、D8分布曲線。由圖5可知,不同粒徑下道砟顆粒的傅里葉描述符D2、D3、D8的分布曲線有著相似的變化規(guī)律,因此,可以推測(cè)道砟顆粒的幾何尺寸與其傅里葉描述符之間存在一定的聯(lián)系。 圖5 傅里葉描述符D2、D3、D8分布曲線 為建立道砟幾何尺寸與傅里葉描述符D2、D3、D8之間的映射關(guān)系,采用方差分析研究各幾何尺寸對(duì)傅里葉描述符的影響程度,并選取影響程度較顯著的因素建立響應(yīng)面模型。在統(tǒng)計(jì)學(xué)中,自變量對(duì)因變量的影響程度可以通過(guò)顯著性水平p的大小反映,p越小,自變量對(duì)因變量的影響程度越大,當(dāng)p<0.05時(shí),表明自變量對(duì)因變量有顯著影響;當(dāng)p<0.01時(shí),表明自變量對(duì)因變量有極顯著影響。利用方差分析統(tǒng)計(jì)各幾何尺寸對(duì)傅里葉描述符D2、D3、D8的影響顯著性,結(jié)果見(jiàn)表2。 表2 幾何尺寸與D2、D3、D8的顯著性水平p 由表2可知,各幾何尺寸對(duì)D2均有顯著影響;除周長(zhǎng)G和最小弗雷特直徑Fmin外,其他幾何尺寸對(duì)D3有顯著影響;僅長(zhǎng)度L,最小外接圓半徑Rc,最大內(nèi)切圓半徑Ri對(duì)D8有顯著影響。因此,為了在簡(jiǎn)化模型的同時(shí)提高回歸模型的準(zhǔn)確度,將幾何尺寸長(zhǎng)度L,最小外接圓半徑Rc,最大內(nèi)切圓半徑Ri作為自變量,D2、D3、D8分別作為因變量,采用響應(yīng)面法建立幾何尺寸與傅里葉描述符之間的回歸模型,計(jì)算得D2、D3、D8的擬合回歸方程為 D2=0.111 835+0.010 545×L-0.008 854×Rc- 0.022 189×Ri+0.000 185×L×Rc-0.000 061× L×Ri+0.000 109×Rc×Ri-0.000 080×L2- (9) D3=0.065 779-0.012 043×L+0.023 921×Rc- 0.004 476×Ri-0.000 130×L×Rc+0.000 098× L×Ri-0.000 136×Rc×Ri+0.000 070×L2- (10) D8=0.006 736-0.000 482×L+0.001 748×Rc- 0.001 296×Ri-0.000 050×L×Rc-8.692 96× 10-8×L×Ri-8.524 71×10-8×Rc×Ri+ (11) 等高線圖可以直觀反映單一自變量對(duì)因變量的影響規(guī)律及兩個(gè)自變量之間的交互作用,當(dāng)?shù)雀呔€呈橢圓形表明自變量交互作用顯著,當(dāng)?shù)雀呔€呈圓形表明自變量交互作用不顯著。限于篇幅,本文僅說(shuō)明長(zhǎng)度L、最小外接圓半徑Rc及最大內(nèi)切圓半徑Ri對(duì)D2的影響以及這三個(gè)幾何尺寸之間交互效應(yīng)的強(qiáng)弱,結(jié)果見(jiàn)圖6,其中固定變量均取其變化范圍的中值。圖6(a)為長(zhǎng)度L和最小外接圓半徑Rc對(duì)傅里葉描述符D2影響的等高線,其中最大內(nèi)切圓半徑Ri為定值(Ri=20 mm)。由圖6(a)可知,在指定區(qū)間內(nèi),當(dāng)Rc一定時(shí),隨著L的增大,D2值呈先增大后減小的趨勢(shì);當(dāng)L較小時(shí),隨著Rc的增大,D2逐漸減小,當(dāng)L較大時(shí),隨著Rc的增大,D2逐漸增大;圖中等高線呈橢圓形,表明在Ri不變的情況下,L和Rc的交互效應(yīng)較強(qiáng)。圖6(b)為長(zhǎng)度L和最大內(nèi)切圓半徑Ri對(duì)D2影響的等高線,其中最小外接圓半徑Rc為定值(Rc=35 mm),由圖6(b)可知,當(dāng)Ri一定時(shí),隨著L的增大,D2呈先增大后減小的趨勢(shì);當(dāng)L一定時(shí),隨著Ri的增大,D2逐漸減小;等高線呈橢圓形,表明在Rc不變的情況下,L和Ri交互效應(yīng)較強(qiáng)。圖6(c)為最小外接圓半徑Rc和最大內(nèi)切圓半徑Ri對(duì)D2影響的等高線,其中L為定值(L=90 mm)。由圖6(c)可知,當(dāng)Ri一定時(shí),隨著Rc的增大,D2呈先增大后減小的趨勢(shì);當(dāng)Rc一定時(shí),隨著Ri的增大,D2逐漸減小;等高線近似圓形,表明在L不變的情況下,Rc和Ri交互效應(yīng)較弱。 圖6 長(zhǎng)度、最小外接圓半徑及最大內(nèi)切圓半徑對(duì)D2的影響 道砟顆粒輪廓形狀復(fù)雜,僅僅依靠宏觀特征量不能對(duì)其相似程度進(jìn)行全面評(píng)估,還需考慮道砟細(xì)節(jié)信息的相似程度。因此,參考周志宏等[29]相似度評(píng)估方法,結(jié)合道砟的宏觀特征量和細(xì)節(jié)信息提出一個(gè)綜合相似度因子用于評(píng)估道砟顆粒形態(tài)重構(gòu)結(jié)果的可靠性。 在眾多道砟顆粒的宏觀特征量中,基本幾何尺寸不僅簡(jiǎn)單易獲得,還可以有效反映道砟顆粒的形狀特征,因此本文選用表1所示的8個(gè)幾何尺寸作為描述道砟宏觀形狀的特征量,并引入百分比差異的概念比較兩個(gè)顆粒是否相似,其定義式為 (12) 式中:Δxi為基于表1列舉的幾何尺寸指標(biāo)計(jì)算的重構(gòu)道砟顆粒與真實(shí)道砟顆粒幾何特征量百分比差異;xi,F為重構(gòu)道砟顆粒的幾何特征量;xi,R為真實(shí)道砟顆粒的幾何特征量。 (13) (14) 幾何特征相似率可從宏觀特征上反映道砟的相似程度,但忽略了道砟顆粒之間細(xì)節(jié)信息的相似程度,因此引入道砟形狀差異率來(lái)評(píng)價(jià)道砟之間的形狀差異。道砟形狀差異率定義為兩個(gè)道砟非重疊部分的面積與平均面積的比值,見(jiàn)圖7。 圖7 道砟形狀差異率 在極坐標(biāo)中,道砟顆粒和非重疊部分的面積可以采用積分方法求得。假設(shè)真實(shí)道砟與重構(gòu)道砟的面積分別為AR、AF,非重疊部分的面積為Adif,則根據(jù)定義,道砟形狀差異率Rat可以表示為 Rat=Adif/Aave×100% (15) 式中:Aave為真實(shí)道砟顆粒與重構(gòu)道砟顆粒面積的平均值,即 Aave=(AR+AF)/2 (16) 要評(píng)估道砟重構(gòu)輪廓與真實(shí)輪廓的相似度,需綜合考慮道砟幾何特征相似率和道砟形狀差異率,因此,采用加權(quán)的方法計(jì)算道砟顆粒的相似度,計(jì)算式為 Par=[r1·Gsr+r2·(1-Rat)]×100% (17) r1+r2=1 (18) 式中:Par為道砟顆粒相似度;r1、r2為加權(quán)因子。 綜上所述,通過(guò)式(5)~式(11)便可以根據(jù)道砟的長(zhǎng)度L、最小外接圓半徑Rc以及最大內(nèi)切圓半徑Ri重構(gòu)道砟形態(tài),并根據(jù)式(12)~式(18)計(jì)算重構(gòu)道砟顆粒形態(tài)與真實(shí)道砟顆粒形態(tài)的相似程度,具體實(shí)現(xiàn)步驟見(jiàn)圖8。 圖8 道砟顆粒形態(tài)重構(gòu)流程 為驗(yàn)證本文提出的基于幾何真實(shí)形態(tài)的碎石道砟顆粒形態(tài)重構(gòu)方法的可靠性,根據(jù)圖8所示流程重構(gòu)了圖3中的道砟顆粒,結(jié)果見(jiàn)圖9。其中,圖9(a)為中心距離函數(shù)的對(duì)比,由圖可知重構(gòu)道砟中心距離函數(shù)有著與真實(shí)道砟輪廓中心距離函數(shù)相似的變化規(guī)律;圖9(b)為輪廓形狀對(duì)比,由圖可知重構(gòu)道砟的輪廓與真實(shí)道砟輪廓的形狀基本相同,并且很大程度上還原了真實(shí)道砟的細(xì)節(jié)特征;圖9(c)為重構(gòu)道砟與真實(shí)道砟采樣點(diǎn)中心距離的對(duì)比,由圖可知重構(gòu)值與真實(shí)值比較吻合,數(shù)據(jù)點(diǎn)落在直線y=x周圍,擬合優(yōu)度R2達(dá)到了 0.982 1,表明重構(gòu)道砟與真實(shí)道砟較為接近。 圖9 重構(gòu)道砟輪廓形狀分析 表3所示為該道砟重構(gòu)輪廓與真實(shí)輪廓的幾何特征量,據(jù)此計(jì)算重構(gòu)道砟輪廓與真實(shí)道砟輪廓的幾何特征相似率Gsr為96.69%。根據(jù)面積的定義,在極坐標(biāo)系下,計(jì)算道砟形狀差異率為4.81%。取r1=0.7,r2=0.3,根據(jù)式(17)計(jì)算圖9所示重構(gòu)道砟輪廓與真實(shí)道砟輪廓的相似度為96.24%,表明重構(gòu)道砟與真實(shí)道砟的幾何形態(tài)比較接近。 表3 幾何特征量計(jì)算結(jié)果 進(jìn)一步地,將400個(gè)道砟樣本所有采樣點(diǎn)的重構(gòu)值與真實(shí)值進(jìn)行對(duì)比分析,結(jié)果見(jiàn)圖10。由圖10可見(jiàn),所有樣本的重構(gòu)輪廓與真實(shí)輪廓比較吻合,整體擬合優(yōu)度為0.925 9。此外,采用所提方法對(duì)道砟重構(gòu)輪廓與實(shí)際道砟輪廓的相似度進(jìn)行分析,圖11為所有道砟重構(gòu)輪廓與實(shí)際輪廓相似度的分布情況。由圖11可知,相似度的平均值為95.21%,其中80%以上道砟輪廓的重構(gòu)值與真實(shí)值的相似度超過(guò)94%。結(jié)合圖10和圖11可知,本文提出的基于幾何形態(tài)的碎石道砟顆粒形態(tài)重構(gòu)方法整體上可以較為準(zhǔn)確的模擬真實(shí)道砟輪廓。然而,由于部分道砟的表面尖角較多,使用實(shí)數(shù)傅里葉變換會(huì)導(dǎo)致重構(gòu)顆粒在尖角處發(fā)生稍許偏差,因此在今后的研究中,需注重道砟尖角的還原,以進(jìn)一步提升道砟輪廓重構(gòu)的準(zhǔn)確性。 圖10 全部采樣點(diǎn)重構(gòu)值與真實(shí)值對(duì)比分析 圖11 重構(gòu)輪廓與真實(shí)輪廓相似度的統(tǒng)計(jì)分析 本文利用數(shù)字圖像處理技術(shù)和快速傅里葉變換分析道砟顆粒表面形態(tài)特征,并采用響應(yīng)面法建立碎石道砟幾何形態(tài)特征與傅里葉描述符的響應(yīng)關(guān)系,提出基于真實(shí)幾何特征的碎石道砟顆粒形態(tài)重構(gòu)方法,最后通過(guò)相似度分析法驗(yàn)證了重構(gòu)方法的可靠性,得出以下結(jié)論: 1)基于傅里葉變換法分析道砟形態(tài)特征時(shí),當(dāng)采樣點(diǎn)數(shù)取128時(shí),可滿足道砟輪廓刻畫的精度要求,此時(shí)得到的傅里葉描述符D2、D3、D8可作為表征道砟輪廓的關(guān)鍵參數(shù)。 2)道砟顆粒長(zhǎng)度L、最小外接圓Rc、最大內(nèi)切圓半徑Ri對(duì)傅里葉描述符D2、D3、D8有顯著影響,可以采用響應(yīng)面法建立兩者之間的映射關(guān)系,進(jìn)而根據(jù)傅里葉逆變換重構(gòu)道砟顆粒形態(tài)。 3)本文所提出的基于真實(shí)幾何特征的碎石道砟顆粒形態(tài)重構(gòu)方法可以較為準(zhǔn)確地刻畫道砟顆粒的細(xì)節(jié)特征,道砟重構(gòu)輪廓與真實(shí)輪廓的平均相似度為95.21%,且80%以上道砟的相似度超過(guò)94%。2 基于真實(shí)幾何特征的碎石道砟顆粒形態(tài)重構(gòu)方法
2.1 道砟形狀樣本獲取
2.2 響應(yīng)面模型建立
2.3 相似性評(píng)估
3 基于真實(shí)幾何特征的碎石道砟顆粒形態(tài)重構(gòu)方法的評(píng)價(jià)
4 結(jié)論