摘要:【目的】探究養(yǎng)殖水體溶解氧晝夜變化下鱖(Sinipercachuatsi)血液生理生化指標(biāo)及血紅蛋白基因(Hb)應(yīng)答的變化規(guī)律,為揭示魚類的短期低氧適應(yīng)機(jī)制提供理論依據(jù)?!痉椒ā恳越】档镊Z幼魚為研究對(duì)象,通過轉(zhuǎn)錄組測(cè)序和基因組測(cè)序數(shù)據(jù)匹配,鑒定出鱖Hb基因序列,并進(jìn)行生物信息學(xué)分析。在7:00、11:00、17:00和23:00等4個(gè)時(shí)間點(diǎn)采集鱖血液樣品,使用PROCANPE-6800血細(xì)胞分析儀測(cè)定紅細(xì)胞數(shù)、血紅蛋白含量、紅細(xì)胞壓積、平均紅細(xì)胞血紅蛋白濃度和平均紅細(xì)胞體積,采用實(shí)時(shí)熒光定量PCR檢測(cè)Hb基因的表達(dá)變化?!窘Y(jié)果】共鑒定獲得11個(gè)鱖Hb基因,包括6個(gè)α型Hb基因(hbae4、hbae、hbae1.1、hbae5、hbaa1和hbaa1.1)及5個(gè)β型Hb基因(hbbe2、hbba2.1、hbba1、hbba1.1和hbba2);除hbae4基因序列由6個(gè)外顯子和5個(gè)內(nèi)含子構(gòu)成外,其余10個(gè)基因序列均由3個(gè)外顯子和2個(gè)內(nèi)含子構(gòu)成。11個(gè)鱖血紅蛋白均不存在跨膜結(jié)構(gòu)和信號(hào)肽,亞細(xì)胞定位于細(xì)胞質(zhì),其二級(jí)結(jié)構(gòu)由α-螺旋、β-折疊、延伸鏈和無(wú)規(guī)則卷曲構(gòu)成。池塘水體溶解氧含量存在周期性的晝夜變化;溶解氧含量最低時(shí)(7:00),鱖血液紅細(xì)胞數(shù)、紅細(xì)胞壓積、血紅蛋白含量和平均紅細(xì)胞血紅蛋白濃度均最高,顯著高于其他3個(gè)時(shí)間點(diǎn)(Plt;0.05,下同);溶解氧含量最高時(shí)(17:00),紅細(xì)胞數(shù)、紅細(xì)胞壓積和血紅蛋白含量則顯著低于其他3個(gè)時(shí)間點(diǎn);平均紅細(xì)胞體積在4個(gè)時(shí)間點(diǎn)無(wú)顯著變化(Pgt;0.05)。hbae4、hbae、hbae1.1、hbae5、hbaa1.1、hbbe2、hbba2.1、hbba1和hbba2基因的相對(duì)表達(dá)量均隨溶解氧晝夜變化呈先上升后下降趨勢(shì),于17:00時(shí)達(dá)最高值,且這9個(gè)Hb基因在4個(gè)時(shí)間點(diǎn)的表達(dá)模式基本一致,即低溶解氧時(shí)相對(duì)表達(dá)量最低,高溶解氧時(shí)相對(duì)表達(dá)量最高;而hbaa1和hbba1.1基因相對(duì)表達(dá)量與溶解氧含量成反比?!窘Y(jié)論】鱖通過調(diào)節(jié)紅細(xì)胞數(shù)、血紅蛋白含量和平均紅細(xì)胞血紅蛋白濃度等機(jī)制及調(diào)控Hb基因表達(dá),以適應(yīng)溶解氧的晝夜變化,從而保持機(jī)體供氧穩(wěn)定。
關(guān)鍵詞:鱖;血紅蛋白;Hb基因;溶解氧;晝夜變化
中圖分類號(hào):S965.127文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)05-1493-09
Effects of diel variation of dissolved oxygen on blood physiologi?cal and biochemical indexes and hemoglobin genes response ex?pression in Sinipercachuatsi
ZHENG Jia1,2,3,YAO Xiao-li1,2,3,LUO Wen-bin1,2,3,HUANG Xiao-peng1,2,3,ZHAO Jin-liang1,2,3*
(1Key Laboratory of Freshwater Aquatic Germplasm Resources of Ministry of Agriculture and Rural Affairs(ShanghaiOcean University),Shanghai 201306,China;2Aquatic Animal Genetics and Breeding Center Shanghai CollaborativeInnovation Center(Shanghai Ocean University),Shanghai 201306,China;3National Experimental TeachingDemonstration Center of Fisheries Science(Shanghai Ocean University),Shanghai 201306,China)
Abstract:【Objective】This study aimed to investigate the response patterns of blood physiological and biochemical indexes and hemoglobin genes(Hb)expression of Sinipercachuatsi under the condition of diel variation of dissolved oxy-gen in aquaculture water,providing theoretical basis for further study on the short-term hypoxia adaptation mechanism in fish.【Method】Healthy juvenile S.chuatsi were used as research objects.The Hb genes sequences were identified by matching the transcriptome sequencing and genome sequencing data,and bioinformatics analysis was carried out.Blood samples were collected at 4 consecutive time points:7:00,11:00,17:00 and 23:00.Red blood cell(RBC)count,he-moglobin(HGB)concentration,hematocrit(HCT),mean corpuscular hemoglobin concentration(MCHC)and mean corpuscular volume(MCV)were determined by using a PROCANPE-6800 blood cell analyzer.The expression levels of Hb genes were detected by real-time fluorescence quantitatively PCR(qRT-PCR).【Result】A total of 11 Hb genes were identified,including sixα-Hb genes(hbae4,hbae,hbae1.1,hbae5,hbaa1 and hbaa1.1)and fiveβ-Hb genes(hbbe2,hbba2.1,hbba1,hbba1.1 and hbba2).Except the hbae4 gene sequence,which was composed of 6 exons and 5 introns,the other 10 gene sequences were all composed of 3 exons and 2 introns.The 11 S.chuatsi hemoglobin had no transmem-brane structure or signal peptide and the subcell were located in the cytoplasm.Their secondary structures were composed ofα-helix,β-turn,extended chain and random coil.A periodic diel variation of dissolved oxygen content was observed in the pond water.RBC count,HCT,HGB concentration and MCHC were the highest when the dissolved oxygen concentra-tion was the lowest(7:00),which were significantly higher than those at the other three time points(Plt;0.05,the same below).At the highest dissolved oxygen concentration(17:00),RBC count,HCT,and HGB concentration significantly lower than those at the other three time points.There was no significant change in MCV among the four time points(Pgt;0.05).The relative expression levels of hbae4,hbae,hbae1.1,hbae5,hbaa1.1,hbbe2,hbba2.1,hbba1 and hbba2 genes showed an overall trend of first increasing and then decreasing with diel variation of dissolved oxygen,reaching the highest value at 17:00.The expression patterns of these nine Hb genes at the four time points were basically the same,that was,the relative expression level was the lowest at low dissolved oxygen concentration and the highest at high dis-solved oxygen concentration.The relative expression of hbaa1 and hbba1.1 genes were inversely proportional to dissolved oxygen concentration.【Conclusion】S.chuatsi adapts to diel variation of dissolved oxygen by regulating RBC count,HGB concentration,MCHC and Hb gene expression to maintainstable oxygen supply to the body.
Key words:Sinipercachuatsi;hemoglobin;Hb gene;dissolved oxygen;diel variation
Foundation items:China Agriculture Research System(CARS-46)
0引言
【研究意義】血紅蛋白(Hemoglobin,Hb)由2條α鏈和2條β鏈組成,承擔(dān)著轉(zhuǎn)運(yùn)氧氣(O2)的功能,通過鐵卟啉環(huán)和組氨酸多肽鏈可逆性結(jié)合O2,除南極冰魚類外,幾乎存在于所有的脊椎動(dòng)物紅細(xì)胞和部分無(wú)脊椎動(dòng)物組織中(Weber and Vinogradov,2001;Sidell and O'Brien,2006),負(fù)責(zé)運(yùn)輸O2以滿足機(jī)體對(duì)養(yǎng)分的需求。正常條件下,血紅蛋白促進(jìn)細(xì)胞內(nèi)O2擴(kuò)散和儲(chǔ)存;而缺氧條件下,血紅蛋白的表達(dá)量和生理特性會(huì)發(fā)生相應(yīng)變化(Roesner et al.,2008)。不同水域環(huán)境中的溶解氧含量不同,且存在晝夜變化差異,溶解氧含量低通常會(huì)引起魚類產(chǎn)生強(qiáng)烈的應(yīng)激反應(yīng)(Bao et al.,2018)。與大多數(shù)陸生動(dòng)物不同,魚類生存在低氧且不斷變化的環(huán)境中。魚類血紅蛋白在缺氧條件下呈動(dòng)態(tài)變化,并遵循物種特異性表達(dá)模式(Wang et al.,2011)。因此,探究溶解氧晝夜變化對(duì)魚類生理指標(biāo)及血紅蛋白基因(Hb)表達(dá)規(guī)律的影響,明確魚類對(duì)低氧環(huán)境的適應(yīng)機(jī)制,對(duì)科學(xué)指導(dǎo)魚類養(yǎng)殖生產(chǎn)具有重要意義。【前人研究進(jìn)展】鱖(Sinipercachuatsi)是東亞特有魚類,生存適應(yīng)能力強(qiáng),在我國(guó)的黑龍江、松花江、淮河、長(zhǎng)江及南方地區(qū)的江河和湖泊中均有分布(李思忠,1991;曾萌冬等,2021;田田等,2023)。已有研究證實(shí),與鯽(Carassius auratus gibelio)(付立霞和喬德亮,2009)、黃顙魚(Tachysurusfulvidraco)(楊凱等,2010)和尼羅羅非魚(Oreochromis niloticus)(王輝等,2011)的幼魚相比,鱖幼魚的窒息點(diǎn)(0.72±0.24 mg/L)更高,說明鱖對(duì)低氧的耐受性較弱(宋銀都等,2019)。對(duì)于短期的低氧刺激,魚類可通過調(diào)整呼吸頻率等方式而增加吸氧量或減少耗氧量,還會(huì)改變自身的生理生化水平以適應(yīng)低氧環(huán)境(Kupit-tayanant and Kinchareon,2011)。在低氧環(huán)境中,魚類可通過釋放儲(chǔ)存的紅細(xì)胞及加速血液循環(huán)中未成熟紅細(xì)胞的成熟或產(chǎn)生新的紅細(xì)胞,以增強(qiáng)血液的攜氧能力(Murad et al.,1990),因此魚類血液成分含量變化可反映其對(duì)環(huán)境的適應(yīng)狀況(周玉等,2001)。Roesner等(2008)研究表明,在低氧環(huán)境中金魚(Carassius auratus)的紅細(xì)胞數(shù)增多,血紅蛋白的O2結(jié)合能力增強(qiáng);Kupittayanant和Kinchareon(2011)研究發(fā)現(xiàn),低氧條件下羅漢魚(Cichlasomaspp.)的紅細(xì)胞數(shù)、白細(xì)胞數(shù)、紅細(xì)胞壓積及血紅蛋白濃度均顯著升高;Xia等(2016)研究證實(shí),在低氧環(huán)境中魚類常通過減緩運(yùn)動(dòng)來(lái)減少耗氧量,或通過增加紅細(xì)胞與血紅蛋白以提高攜氧能力,還會(huì)通過調(diào)控基因表達(dá)與翻譯后修飾等途徑而應(yīng)對(duì)低氧環(huán)境。目前,已從斑馬魚(Danio rerio)、青鳉(Oryziaslatipes)、虹鱒(Oncorhynchus mykiss)和鯉(Cyprinus carpio)等魚類成功克隆獲得Hb基因(Mao et al.,2023),并證實(shí)不同魚類在應(yīng)對(duì)低氧環(huán)境時(shí),其Hb基因表達(dá)調(diào)控機(jī)制存在一定差異(陳祺昌等,2020)。在低氧環(huán)境中,斑馬魚Hb基因表達(dá)水平顯著下降(Roesner etal.,2006),金魚Hb基因相對(duì)表達(dá)量基本保持不變(Roesner etal.,2008),而青鳉Hb基因表達(dá)顯著上調(diào)(Wawrowski et al.,2011)。此外,在慢性低氧脅迫下,茉莉花鳉(Poecilialatipinna)Hb基因表達(dá)水平呈升高趨勢(shì)(Timmerman and Chapman,2004)?!颈狙芯壳腥朦c(diǎn)】鱖對(duì)低氧的耐受性較弱(宋銀都等,2019),在溶解氧晝夜變化時(shí)可能具有不同的低氧適應(yīng)機(jī)制,但具體機(jī)理還有待進(jìn)一步探究。【擬解決的關(guān)鍵問題】以健康的鱖幼魚為研究對(duì)象,探究養(yǎng)殖水體溶解氧晝夜變化下鱖血液生理生化指標(biāo)及Hb基因應(yīng)答的變化規(guī)律,為揭示魚類的短期低氧適應(yīng)機(jī)制提供理論依據(jù)。
1材料與方法
1.1試驗(yàn)材料
供試鱖幼魚于2023年7月購(gòu)自浙江省湖州市南潯區(qū)菱湖鎮(zhèn)姚氏家庭農(nóng)場(chǎng)。挑選健康無(wú)傷、平均體質(zhì)量26.00±0.03 g、平均體長(zhǎng)10.0±0.5 cm的鱖幼魚100尾,放入池塘網(wǎng)箱(1 m×1 m×1 m)暫養(yǎng)7 d。暫養(yǎng)期間,網(wǎng)箱內(nèi)水體溶解氧保持在5 mg/L以上,分別在上午7:00和晚上19:00投喂足量適口鯽。試驗(yàn)前24h及試驗(yàn)過程中停止投喂。動(dòng)物試驗(yàn)由上海海洋大學(xué)動(dòng)物倫理委員會(huì)批準(zhǔn),批準(zhǔn)號(hào)SHOU-DW-2016-004。
1.2鱖Hb基因鑒定及生物信息學(xué)分析
從農(nóng)業(yè)農(nóng)村部淡水水產(chǎn)種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室的鱖轉(zhuǎn)錄組數(shù)據(jù)庫(kù)中檢索Hb基因cDNA序列,利用序列匹配鱖基因組數(shù)據(jù)庫(kù),獲得Hb家族基因cDNA序列,再通過Softberry對(duì)基因組匹配得到的Hb基因序列進(jìn)行比對(duì)分析,并以Lasergene 7.0預(yù)測(cè)鱖Hb基因編碼序列(CDS)及其推導(dǎo)氨基酸序列。同時(shí),使用TMHMM-2.0預(yù)測(cè)鱖血紅蛋白跨膜結(jié)構(gòu),利用Sig-nalP-4.1預(yù)測(cè)鱖血紅蛋白信號(hào)肽,運(yùn)用WolfPsort進(jìn)行亞細(xì)胞定位分析,SOPMA預(yù)測(cè)鱖血紅蛋白二級(jí)結(jié)構(gòu),通過DNAMAN對(duì)Hb氨基酸序列進(jìn)行多序列比對(duì)分析,并以MEGA 11.0中的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹。
1.3溶解氧晝夜試驗(yàn)
試驗(yàn)在上海海洋大學(xué)濱海試驗(yàn)基地進(jìn)行,池塘一側(cè)架3個(gè)網(wǎng)箱(1 m×1 m×1 m),每個(gè)網(wǎng)箱中放入30尾規(guī)格一致的健康鱖幼魚。試驗(yàn)期間不設(shè)增氧設(shè)備,采用Seven2GoTM Pro S9便攜式溶解氧儀(瑞士梅特勒托利特公司)檢測(cè)水體溶解氧含量和水溫,檢測(cè)頻率為1次/h,連續(xù)測(cè)量3 d,繪制溶解氧—水溫曲線。根據(jù)溶解氧—水溫曲線,設(shè)采樣時(shí)間點(diǎn):7:00(低氧)、11:00、17:00(高氧)和23:00。
1.4血液樣本采集及測(cè)定分析
于各采樣時(shí)間點(diǎn)分別從3個(gè)網(wǎng)箱中隨機(jī)取3尾鱖幼魚,使用4℃預(yù)冷且以抗凝劑潤(rùn)洗過的一次性注射器(1 mL)從尾靜脈采血,一部分血液樣品轉(zhuǎn)移至離心管中,搖勻,插入碎冰保溫,然后通過PROCANPE-6800血細(xì)胞分析儀(深圳市普康醫(yī)療器械有限公司)測(cè)定血液中的紅細(xì)胞數(shù)、血紅蛋白含量、紅細(xì)胞壓積、平均紅細(xì)胞血紅蛋白濃度和平均紅細(xì)胞體積;另一部分血液樣品置于1.5 mL凍存管中,液氮速凍后-80℃冰箱保存?zhèn)溆谩?/p>
1.5實(shí)時(shí)熒光定量PCR
采用TRIzol法提取血液總RNA,通過OneDropTM分光光度計(jì)檢測(cè)RNA濃度和A260/A280。使用反轉(zhuǎn)錄試劑盒(AG11705)將RNA反轉(zhuǎn)錄合成cDNA,-20℃保存?zhèn)溆谩8鶕?jù)轉(zhuǎn)錄組數(shù)據(jù),以Primer Premier 5.0設(shè)計(jì)11對(duì)Hb基因擴(kuò)增引物(表1),委托蘇州金唯智生物科技有限公司合成。實(shí)時(shí)熒光定量PCR反應(yīng)體系20.0μL:2×SYBR?GreenPrc Taq HS Premix 10.0μL,cDNA模板1.0μL,上、下游引物各0.4μL,RNase-free H2O 8.2μL。擴(kuò)增程序:95℃預(yù)變性30 s;95℃8 s,60℃30 s,進(jìn)行40個(gè)循環(huán);95℃15 s,65℃1 min,95℃30 s并結(jié)束程序。以β-Actin為內(nèi)參基因,采用2-ΔΔCt法計(jì)算目的基因相對(duì)表達(dá)量。
1.6統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用SPSS 24.0進(jìn)行統(tǒng)計(jì)整理,然后進(jìn)行單因素方差分析(One-way ANOVA)或t檢驗(yàn),并以GraphPad Prism 8.0制圖。
2結(jié)果與分析
2.1鱖Hb基因結(jié)構(gòu)特點(diǎn)
通過對(duì)鱖轉(zhuǎn)錄組數(shù)據(jù)庫(kù)進(jìn)行檢索,共獲得11個(gè)Hb基因,包括6個(gè)α型Hb基因(hbae4、hbae、hbae1.1、hbae5、hbaa1和hbaa1.1)及5個(gè)β型Hb基因(hbbe2、hbba2.1、hbba1、hbba1.1和hbba2)。除hbae4基因由6個(gè)外顯子和5個(gè)內(nèi)含子構(gòu)成外,其余10個(gè)基因均由3個(gè)外顯子和2個(gè)內(nèi)含子構(gòu)成。hbae4、hbae、hbae1.1、hbae5、hbaa1、hbaa1.1、hbbe2、hbba2.1、hbba1、hbba1.1和hbba2基因CDS序列長(zhǎng)分別為426、423、435、432、432、432、444、444、447、444和444 bp,對(duì)應(yīng)編碼141、143、144、143、143、143、147、147、148、147和147個(gè)氨基酸殘基。11個(gè)鱖血紅蛋白均不存在跨膜結(jié)構(gòu)和信號(hào)肽,定位于細(xì)胞質(zhì),其二級(jí)結(jié)構(gòu)由α-螺旋、β-折疊、延伸鏈和無(wú)規(guī)則卷曲構(gòu)成。
通過Lasergene 7.0推導(dǎo)出鱖Hb氨基酸序列,再以DNAMAN對(duì)Hb氨基酸序列進(jìn)行多序列比對(duì)分析,結(jié)果(圖1)顯示,鱖Hb氨基酸序列與其他魚類的Hb氨基酸序列具有不同程度的相似性,其中,與尖吻鱸魚(Lates calcarifer)的Hb氨基酸序列相似性較高,為90%~93%,與青鳉和斑馬魚的Hb氨基酸序列相似性為60%~70%?;贖b氨基酸序列相似性,采用MEGA 11.0構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹,結(jié)果(圖2)顯示,α型Hb氨基酸序列聚為一支,β型Hb氨基酸序列聚為一支。無(wú)論是α型Hb氨基酸序列(hbae4、hbae、hbae 1.1、hbae5、hbaa 1和hbaa1.1),還是β型Hb氨基酸序列(hbbe2、hbba2.1、hbba 1、hbba 1.1和hbba2),均表現(xiàn)為鱖先與尖吻鱸聚為一支,再依次與青鳉和斑馬魚聚類在一起。
2.2池塘水體溶解氧與水溫的晝夜變化情況
由圖3可看出,池塘水體24 h的溶解氧含量變化趨勢(shì)均呈下降—上升的波動(dòng)變化趨勢(shì),17:00—次日7:00的池塘水體溶解氧含量呈下降趨勢(shì),至7:00時(shí)池塘水體溶解氧含量最低,平均為3.23 mg/L;7:00—17:00的池塘水體溶解氧含量呈上升趨勢(shì),于17:00時(shí)達(dá)最高值,平均為10.28 mg/L。池塘水溫的晝夜變化幅度較小,平均水溫為29.7~31.4℃。
2.3鱖血液生理生化指標(biāo)的晝夜變化情況
鱖血液生理生化指標(biāo)的晝夜變化如表2所示。在7:00時(shí),鱖的紅細(xì)胞數(shù)、血紅蛋白含量、紅細(xì)胞壓積和平均紅細(xì)胞血紅蛋白濃度均顯著高于11:00、17:00和23:00(Plt;0.05,下同);至17:00時(shí),紅細(xì)胞數(shù)、血紅蛋白含量和紅細(xì)胞壓積則顯著低于7:00、11:00和23:00。在4個(gè)時(shí)間點(diǎn)中,鱖的平均紅細(xì)胞體積相對(duì)穩(wěn)定,無(wú)顯著變化(Pgt;0.05)。
2.4鱖血紅蛋白基因表達(dá)的晝夜變化情況
由圖4可知,鱖α型Hb基因中hbae4和hbae1.1的相對(duì)表達(dá)量在7:00時(shí)最低,11:00—17:00呈逐漸升高趨勢(shì),至23:00時(shí)又開始下降;hbae、hbae5和hbaa1.1基因的相對(duì)表達(dá)量在7:00和11:00時(shí)較低,17:00時(shí)達(dá)最高值,23:00時(shí)呈下降趨勢(shì),但仍顯著高于7:00和11:00時(shí);hbaa1基因相對(duì)表達(dá)量在7:00時(shí)達(dá)最高值,隨后逐漸下降,至17:00時(shí)達(dá)最低值,23:00時(shí)的相對(duì)表達(dá)量又顯著回升。在鱖β型Hb基因中,hbbe2、hbba2.1、hbba1和hbba2基因相對(duì)表達(dá)量的晝夜變化均表現(xiàn)為先升高后下降,于17:00時(shí)達(dá)最高值,顯著高于其他時(shí)間點(diǎn)的相對(duì)表達(dá)量;hbba1.1基因相對(duì)表達(dá)量的變化趨勢(shì)恰好相反,呈先下降后升高的變化趨勢(shì),以17:00時(shí)的相對(duì)表達(dá)量最低,顯著低于其他時(shí)間點(diǎn)的相對(duì)表達(dá)量(圖5)。
3討論
本研究基于鱖轉(zhuǎn)錄組與基因組數(shù)據(jù),鑒定獲得11個(gè)Hb基因(hbae、hbae1.1、hbae4、hbae5、hbaa1、hbaa1.1、hbbe2、hbba2.1、hbba1、hbba1.1和hbba2),除hbae4基因序列由6個(gè)外顯子和5個(gè)內(nèi)含子構(gòu)成外,其余10個(gè)基因序列均由3個(gè)外顯子和2個(gè)內(nèi)含子構(gòu)成。hbae4、hbae、hbae1.1、hbae5、hbaa1、hbaa1.1、hbbe2、hbba2.1、hbba1、hbba1.1、hbba2基因分別編碼141、143、144、143、143、143、147、147、148、147和147個(gè)氨基酸殘基,與其他硬骨魚Hb氨基酸序列具有較高的相似性,部分功能基序和氨基酸位點(diǎn)較保守,對(duì)應(yīng)的編碼蛋白均無(wú)信號(hào)肽和跨膜結(jié)構(gòu),亞細(xì)胞位于細(xì)胞質(zhì)。Hb基因家族成員的數(shù)量和種類在不同種間存在明顯差異。在頭帶冰魚(Chaeno-cephalusaceratus)中僅鑒定到1個(gè)Hb基因(Mao et al.,2023);東方紅鰭鲀(Takifugurubripes)、青斑河鲀(Tetraodon nigroviridis)和大彈涂魚(Boleophthal-muspectinirostris)的Hb基因家族成員(4~7個(gè))也相對(duì)較少(Mao et al.,2023);在斑點(diǎn)雀鱔(Lepisosteus oculatus)中鑒定到8個(gè)完整的Hb基因(Opazoetal.,2013);在大西洋鱈魚(Gadus morhua)中鑒定出9個(gè)Hb基因(Borza et al.,2009);在斑馬魚(Danio rerio)中鑒定到14個(gè)Hb基因(Ganis etal.,2012;孟琳和陳良標(biāo),2021);其他真骨魚類的Hb基因家族成員一般在10~15個(gè)(Mao et al.,2023)。與斑馬魚基因組相比,鱖缺少3個(gè)Hb基因(hbae3、hbaa2和hbbe3),究其原因可能是硬骨魚類在快速進(jìn)化過程中存在基因復(fù)制或丟失事件(Quinn et al.,2010)。
自然水體中,溶解氧晝夜含量呈常氧—低氧的周期性動(dòng)態(tài)變化。當(dāng)溶解氧含量下降時(shí),鱖通過增加無(wú)氧呼吸和抑制有氧呼吸的方式來(lái)調(diào)節(jié)機(jī)體的呼吸代謝水平,其呼吸方式由以有氧呼吸為主轉(zhuǎn)換為以無(wú)氧呼吸為主(宋銀都等,2023)。血液氧親和力通常在機(jī)體對(duì)抗低氧脅迫時(shí)快速增加,紅細(xì)胞是魚類血液的重要組分,其主要生理功能是攜帶和運(yùn)輸O2,而血紅蛋白參與O2運(yùn)輸,低氧條件下魚類血液中的紅細(xì)胞數(shù)和血紅蛋白含量顯著升高(王曉雯等,2016)。本研究結(jié)果也表明,鱖在低氧(7:00)時(shí)血液中的紅細(xì)胞數(shù)和血紅蛋白含量達(dá)最高值,隨著溶解氧含量的回升(11:00),紅細(xì)胞數(shù)和血紅蛋白含量則呈逐漸下降趨勢(shì),至高氧(17:00)時(shí)降至最低值;隨后,溶解氧含量開始下降(23:00),而紅細(xì)胞數(shù)和血紅蛋白含量又逐漸回升,與王志飛等(2019)對(duì)秀麗高原鰍(Triplophysavenusta)、高云濤等(2022)對(duì)斑石鯛(Oplegnathuspunctatus)的研究結(jié)果基本一致。血液攜氧量除了依賴于紅細(xì)胞數(shù)的增加外,還可通過提高血紅蛋白含量和單個(gè)紅細(xì)胞與O2的結(jié)合能力來(lái)實(shí)現(xiàn)(張曦等,2011)。本研究發(fā)現(xiàn),低氧(7:00)時(shí)鱖血液中血紅蛋白含量最高,隨著溶解氧含量的回升開始下降,至高氧(17:00)時(shí)血紅蛋白含量降至最低值。此外,鱖紅細(xì)胞壓積隨溶解氧含量的下降而顯著上升,說明在低氧條件下鱖同樣可通過增加紅細(xì)胞壓積以降低自身對(duì)O2的需求,從而增加對(duì)低氧環(huán)境的適應(yīng)性,與Timmerman和Chapman(2004)、Li等(2019)、高云濤等(2023)的研究結(jié)果相似。
血紅蛋白在魚類中的低氧響應(yīng)可能具有物種特異性。在低氧條件下,斑馬魚胚胎型(Ton etal.,2003)和成體型(Roesner etal.,2006),以及金魚成體型(Roesner etal.,2008)的Hb基因表達(dá)呈下調(diào)趨勢(shì);而青鳉成體型Hb基因表達(dá)顯著上調(diào)(Wawrowski et al.,2011)。本研究中,鱖hbae4、hbae、hbae1.1、hbae5、hbaa1.1、hbbe2、hbba2.1、hbba1和hbba2基因的相對(duì)表達(dá)量均隨溶解氧晝夜變化呈先上升后下降趨勢(shì),于17:00時(shí)達(dá)最高值。這9個(gè)Hb基因在4個(gè)時(shí)間點(diǎn)的表達(dá)模式基本一致,均表現(xiàn)為低氧時(shí)相對(duì)表達(dá)量最低,高氧時(shí)相對(duì)表達(dá)量最高。此外,鱖hbaa1和hbba1.1基因的表達(dá)模式與青鳉(Wawrowski et al.,2011)、茉莉花鳉(Timmerman and Chapman,2004)相似,即溶解氧含量與相對(duì)表達(dá)量成反比。在低氧條件下,紅細(xì)胞的生成速率明顯加快,有可能是從脾臟等貯藏組織中釋放出來(lái),以增加血液中的血紅蛋白含量(Wawrowski et al.,2011)。低氧還會(huì)導(dǎo)致魚類血紅蛋白的氧結(jié)合特性發(fā)生改變,其氧親和力增加,以此提高血液對(duì)O2的攜帶和運(yùn)輸。血紅蛋白含量的升高和攜氧能力的增強(qiáng),能保證低氧條件下O2的攝取和輸送受影響較小,但會(huì)消耗大量能量,是一種有效的保護(hù)機(jī)制(Roesner et al.,2006)。由此推測(cè),hbaa1和hbba1.1基因表達(dá)上調(diào)能增強(qiáng)血液對(duì)O2的運(yùn)輸能力,滿足短期低氧時(shí)機(jī)體內(nèi)臟器官的氧氣供應(yīng);其余9個(gè)Hb基因表達(dá)下調(diào)則會(huì)減少能量消耗,以維持短期缺氧條件下的正常生理活動(dòng)。
4結(jié)論
鱖通過調(diào)節(jié)紅細(xì)胞數(shù)、血紅蛋白含量和平均紅細(xì)胞血紅蛋白濃度等機(jī)制及調(diào)控Hb基因表達(dá),以適應(yīng)溶解氧的晝夜變化,從而保持機(jī)體供氧穩(wěn)定。
參考文獻(xiàn)(References):
陳祺昌,鄭志琴,劉丹,王發(fā)艷,晁燕,章昭,祁得林.2020.硬骨魚類血紅蛋白轉(zhuǎn)換表達(dá)的新模式——以黃河裸裂尻魚胚胎型血紅蛋白研究為例[J].水生生物學(xué)報(bào),44(6):1199-1207.[Chen Q C,Zheng Z Q,Liu D,Wang F Y,Chao Y,Zhang Z,Qi D L,2020.A new pattern of hemo-globin switching in teleost fish-study of the embryonic hemoglobin in the Schizopygopsispylzovi[J].Journal of Hydrobiology,44(6):1199-1207.]doi:10.7541/2020.139.
付立霞,喬德亮.2009.異育銀鯽耗氧率和窒息點(diǎn)的研究[J].水產(chǎn)養(yǎng)殖,30(4):15-19.[Fu L X,Qiao D L.2009.Research on oxygen consumption rate and suffocation point in allogynogenetic sliver crucian carp[J].Journal of Aquacul-ture,30(4):15-19.]doi:10.3969/j.issn.1004-2091.2009.04.003.
高云濤,高云紅,李明月,王嘉偉,孟振,關(guān)長(zhǎng)濤,賈玉東.2023.許氏平鲉低氧耐受能力及血液學(xué)和鰓組織學(xué)變化[J].水產(chǎn)學(xué)報(bào),47(9):38-49.[Gao Y T,Gao Y H,Li M Y,Wang J W,Meng Z,Guan C T,Jia Y D.2023.Hypoxia tolerance and alternation of hematology and gill morpho-logy in blackrockfish(Sebastes schlegelii)[J].Journal of Fisheries of China,47(9):38-49.]doi:10.11964/jfc.2021 0813028.
高云濤,高云紅,李明月,趙俠,李文升,龐尊方,關(guān)長(zhǎng)濤,賈玉東.2022.斑石鯛低氧耐受能力及血液生理生化指標(biāo)變化研究[J].漁業(yè)科學(xué)進(jìn)展,43(6):79-88.[Gao Y T,Gao Y H,Li M Y,Zhao X,Li W S,Pang Z F,Guan C T,Jia Y D.2022.Hypoxia tolerance and alternation of blood phy-siological and biochemical indexes in spotted knifejaw Oplegnathuspunctatus[J].Progress in Fishery Sciences,43(6):79-88.]doi:10.19663/j.issn2095-9869.20210811002.
李思忠.1991.鱖亞科魚類地理分布的研究[J].動(dòng)物學(xué)雜志,26(4):40-44.[Li S Z.1991.Study on the geographical distribution of Siniperidae fishes[J].Chinese Journal of Zoology,26(4):40-44.]doi:10.13859/j.cjz.1991.04.015.
孟琳,陳良標(biāo).2021.CRISPR/Cas9技術(shù)敲除hbae1.1基因?qū)Π唏R魚血紅蛋白生成的影響[J].生物學(xué)雜志,38(5):12-16.[Meng L,Chen L B.2021.The effect of hbae1.1 gene on hemoglobin production in zebrafish knocked out by CRISPR/Cas9[J].Journal of Biology,38(5):12-16.]doi:10.3969/j.issn.2095-1736.2021.05.012.
宋銀都,唐首杰,趙金良.2019.鱖幼魚窒息點(diǎn),耗氧率的初步研究[J].水產(chǎn)養(yǎng)殖,40(3):3-5.[Song YD,Tang S J,Zhao J L.2019.Preliminary study on asphyxiation point and oxygen consumption rate of juvenile Sinipercachuatsi[J].Journal of Aquaculture,40(3):3-5.]doi:10.3969/j.issn.1004-2019.2019.03.002.
宋銀都,趙亮亮,馬晨夕,趙金良.2023.池塘溶氧晝夜變化對(duì)鱖葡萄糖代謝和血糖含量的影響[J].漁業(yè)科學(xué)進(jìn)展,44(3):124-132.[Song Y D,Zhao L L,Ma C X,Zhao J L.2023.The effect of diel variation of dissolved oxygen con-tent in a pond on the glucose metabolism and plasma glucose level of Sinipercachuatsi[J].Progress in Fishery Science,44(3):124-132.]doi:10.19663/j.issn2095-9869.20210726003.
田田,張風(fēng)光,王茂元,黃洪貴,秦志清,賴銘勇,劉銀華,黃柳婷,吳妹英.2023.2月齡斑鱖形態(tài)性狀與體質(zhì)量的相關(guān)性研究[J].河南農(nóng)業(yè)科學(xué),52(8):126-134.[Tian T,Zhang F G,Wang M Y,Huang H G,Qin Z Q,Lai M Y,Liu Y H,Huang L T,Wu M Y.2023.Correlation between morpho-logical traits and body weight of 2-month-old Sinipercascherzeri[J].Journal of Henan Agricultural Sciences,52(8):126-134.]doi:10.15933/j.cnki.1004-3268.2023.08.014.
王輝,強(qiáng)俊,李瑞偉.2011.溫度、鹽度、pH和體質(zhì)量對(duì)尼羅羅非魚幼魚窒息點(diǎn)的影響[J].廣東海洋大學(xué)學(xué)報(bào),31(3):37-42.[Wang H,Qiang J,Li R W.2011.Effects of tem-perature,salinity,pH and body weight on asphyxiation point of juvenile nile tilapia(Oreochromis niloticus)[J].Journal of Guangdong Ocean University,31(3):37-42.]doi:10.3969/j.issn.1673-9159.2011.03.007.
王曉雯,朱華,胡紅霞,馬國(guó)慶.2016.低氧脅迫對(duì)西伯利亞鱘幼魚生理狀態(tài)的影響[J].水產(chǎn)科學(xué),35(5):459-465.[Wang X W,Zhu H,Hu H X,Ma G Q.2016.Effects of hypoxia on physiological status of siberian sturgeon Acipenser baeri juveniles[J].Fisheries Science,35(5):459-465.]doi:10.16378/j.cnki.1003-1111.2016.05.001.
王志飛,左鵬翔,冷云,李光華,鐘文武,張建斌,梁祥,繆祥軍,崔麗莉,張宇,姜志武.2019.秀麗高原鰍幼魚窒息點(diǎn)與耗氧率的研究[J].黑龍江水產(chǎn),(2):42-45.[Wang Z F,Zuo P X,Leng Y,Li G H,Zhong W W,Zhang J B,Liang X,Miao X J,Cui L L,Zhang Y,Jiang Z W.2019.Study on asphyxiation point and oxygen consumption rate of juve-nileTriplophysavenusta[J].Northern Chinese Fisheries,(2):42-45.]doi:10.3969/j.issn.1674-2419.2019.02.017.
楊凱,樊啟學(xué),張磊,楊磊,周華,李波,方巍.2010.溶氧水平對(duì)黃顙魚稚魚攝食、生長(zhǎng)及呼吸代謝的影響[J].淡水漁業(yè),40(2):24-29.[Yang K,F(xiàn)an Q X,Zhang L,Yang L,Zhou H,Li B,F(xiàn)ang W.2010.Effects of dissolved oxygen on feed in take growth and respiratory metabolism of juve-nilePelteobagrusfulvidracor[J].Freshwater Fisheries,40(2):24-29.]doi:10.3969/j.issn.1000-6907.2010.02.005.
曾萌冬,徐俊,宋銀都,趙金良.2021.配合飼料替代活餌對(duì)鱖生長(zhǎng)性能、消化功能及小肽轉(zhuǎn)運(yùn)載體基因表達(dá)的影響[J].南方農(nóng)業(yè)學(xué)報(bào),52(1):228-237.[Zeng M D,Xu J,Song Y D,Zhao J L.2021.Effects of replacing live bait with compound feed on growth,digestion and expression ofsmall peptide transporter(PepT1)gene of Sinipercachuatsi[J].Journal of Southern Agriculture,52(1):228-237.]doi:10.3969/j.issn.2095-1191.2021.01.028.
張曦,付世建,彭姜嵐,曹振東.2011.急性低氧對(duì)鯽魚幼魚血液基礎(chǔ)指標(biāo)的影響[J].重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),28(4):19-22.[Zhang X,F(xiàn)u S J,Peng J L,Cao Z D.2011.The effect of exhaustive exercise training on the anaerobic metabolism for juvenile crucian carp[J].Journal of Chongqing Normal University(Natural Science),28(4):19-22.]doi:50-1165/N.20110707.1744.005.
周玉,郭文場(chǎng),楊振國(guó),張凱.2001.魚類血液學(xué)指標(biāo)研究的進(jìn)展[J].上海水產(chǎn)大學(xué)學(xué)報(bào),10(2):163-165.[Zhou Y,Guo W C,Yang Z G,Zhang K.2001.Advances in the study of haemotological indices of fish[J].Journal of Shanghai Ocean University,10(2):163-165.]doi:10369/j.issn.1004-7271.2001.02.013.
Bao J W,Qiang J,Tao Y F,Li H X,He J,Xu P,Chen D J.2018.Responses of blood biochemistry,fatty acid compo-sition and expression of microRNAs to heat stress in genetically improved farmed tilapia(Oreochromis niloti-cus)[J].Journal of Thermal Biology,73:91-97.doi:10.1016/j.jtherbio.2018.02.007.
Borza T,Stone C,GamperlA K,Bowman S.2009.Atlantic cod(Gadus morhua)hemoglobin genes:Multiplicity and poly-morphism[J].BMC Genetics,10(1):51.doi:10.1186/1471-2156-10-51.
Ganis J J,Hsia N,Trompouki E,de Jong J L,DiBiase A,Lam-bert J S,Jia Z Y,Sabo P J,Weaver M,Sandstrom R,Sta-matoyannopoulos J A,Zhou Y,Zon L I.2012.Zebrafish globin switching occurs in two developmental stages andis controlled by the LCR[J].Developmental Biology,366(2):185-194.doi:10.1016/j.ydbio.2012.03.021.
Kupittayanant P,Kinchareon W.2011.Hematological and bio-chemical responses of the flowerhorn fish to hypoxia[J].Journal of Animalamp;Veterinary Advances,10(20):2631-2638.doi:10.3923/javaa.2011.2631.2638.
Li X R,Wang T,Yin S W,Zhang G S,Cao Q Q,Wen X,Zhang H Y,Wang D,Zhu W X.2019.The improved energy metabolism and blood oxygen-carrying capacity for puffer-fish,Takifugu fasciatus,against acute hypoxia under the regulation of oxygen sensors[J].Fish Physiology and Bio-chemistry,45(1):323-340.doi:10.1007/s 10695-018-0565-2.
Mao Y,Peng T T,Shao F,Zhao Q Y,Peng Z G.2023.Molecu-lar evolution of the hemoglobin gene family across verte-brates[J].Genetica,151(3):201-213.doi:10.1007/s 10709-023-00187-9.
Murad A,Houston A,Samson L.1990.Haematological response to reduced oxygen-carrying capacity,increased tempera-ture and hypoxia in goldfish,Carassius auratus L[J].Jour-nal of Fish Biology,36(3):289-305.doi:10.1111/j.1095-8649.1990.tb05610.x.
Opazo J C,Tyler B G,Nery M F,Storz J F,Hoffmann F G.2013.Whole-genome duplication and the functional diver-sification of teleost fish hemoglobins[J].Molecular Bio-logy and Evolution,30(1):140-153.doi:10.1093/molbev/mss212.
Quinn N L,Boroevich K A,Lubieniecki K P,Chow W,David-son E A,Phillips R B,Koop B F,Davidson W S.2010.Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire[J].BMC Genomics,11(1):539.doi:10.1186/1471-2164-11-539.
Roesner A,Hankeln T,Burmester T.2006.Hypoxia induces a complex response of globin expression in zebrafish(Danio rerio)[J].Journal of Experimental Biology,209(11):2129-2137.doi:10.1242/jeb.02243.
Roesner A,Mitz S A,Hankeln T,Burmester T.2008.Globins and hypoxia adaptation in the goldfish,Carassius auratus[J].The FEBS Journal,275(14):3633-3643.doi:10.1111/j.1742-4658.2008.06508.x.
Sidell B D,O'Brien K M.2006.When bad things happen to good fish:The loss of hemoglobin and myoglobin expres-sion in Antarctic icefishes[J].Journal of Experimental Bio-logy,209(10):1791-1802.doi:10.1242/jeb.02091.
Timmerman C M,Chapman L J.2004.Behavioral and physio-logical compensation for chronic hypoxia in the sailfin molly(Poecilialatipinna)[J].Physiologicalamp;Biochemi-cal Zoology,77(4):601-610.doi:10.1086/421754.
Ton C,Stamatiou D,Liew C C.2003.Gene expression profile of zebrafish exposed to hypoxia during development[J].Physiological Genomics,13(2):97-106.doi:10.1152/phy-siolgenomics.00128.2002.
Wang Z S,Qi Z T,Tian J Y,Qiu M,Zhao W H,Wang A M,Huang J T,Guo X J.2011.Cloning of hemoglobin-α1from half-smooth tongue sole(Cynoglossussemilaevis)andits expression under short-term hypoxia[J].Zoological Re-search,32(6):641-646.doi:10.3724/SP.J.1141.2011.06641.Wawrowski A,Gerlach F,Hankeln T,Burmester T.2011.
Changes of globin expression in the Japanese medaka(Oryziaslatipes)in response to acute and chronic hypoxia[J].Journal of Comparative Physiology B,181(2):199-208.doi:10.1007/s00360-010-0518-2.
Weber R E,Vinogradov S N.2001.Nonvertebrate hemoglo-bins:Functions and molecular adaptations[J].Physiologi-cal Reviews,81(2):569-628.doi:10.1152/physrev.2001.81.2.569.
Xia M Z,Chao Y,Jia J L,Li C Z,Kong Q H,Zhao Y L,Guo S C,Qi D L.2016.Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish,Schizopygopsispylzovi[J].Journal of Comparative Physio-logy B,186(8):1033-1043.doi:10.1007/s00360-016-1013-1.
(責(zé)任編輯蘭宗寶)