摘要 藻類和細(xì)菌在生態(tài)系統(tǒng)中重要元素的生物地球化學(xué)循環(huán)、能量流動(dòng)等過(guò)程中具有重要作用。一些細(xì)菌可以通過(guò)促進(jìn)藻類生長(zhǎng)、幫助藻類抵抗逆境脅迫等作用,與藻類發(fā)生有益相互作用,進(jìn)而對(duì)兩者的生存、競(jìng)爭(zhēng)、生理功能方面均產(chǎn)生重要影響。本文對(duì)近年來(lái)藻類和細(xì)菌有益相互作用的主要方式、微生物類群、分子機(jī)制,及其在環(huán)境污染處理、生物質(zhì)能源和合成生物學(xué)等方面的應(yīng)用進(jìn)展進(jìn)行綜述,并對(duì)未來(lái)研究提出展望。這不僅對(duì)理解水體微生物的群落結(jié)構(gòu)與功能、微生物種間關(guān)系的機(jī)制與效應(yīng)具有重要作用,也將為維護(hù)生態(tài)系統(tǒng)的健康、挖掘和利用生物資源造福人類提供重要的科學(xué)依據(jù)。
關(guān)鍵詞 藻類與細(xì)菌相互作用; 生長(zhǎng)促進(jìn)菌; 微生物群落; 抗逆
中圖分類號(hào) Q178 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1000-2421(2024)04-0041-10
藻類是湖泊、海洋等水環(huán)境中的主要初級(jí)生產(chǎn)者,在碳、氮等重要元素的生物地球化學(xué)循環(huán)以及能量流動(dòng)過(guò)程中發(fā)揮著至關(guān)重要的作用。與高等植物不同,藻類在形態(tài)上不具有真正的根、莖等組織分化。然而,藻類在生長(zhǎng)過(guò)程中向胞外分泌碳水化合物、有機(jī)物等營(yíng)養(yǎng)物質(zhì),也可形成一種類似植物根際環(huán)境(rhizosphere)、營(yíng)養(yǎng)相對(duì)豐富的藻際環(huán)境(phycosphere)[1-2],并與其他微生物發(fā)生有益或有害的種間相互作用。近年來(lái),許多研究表明藻類與細(xì)菌的相互作用對(duì)水體微生物群落結(jié)構(gòu)與功能、藻類水華暴發(fā)、初級(jí)生產(chǎn)力等均具有深遠(yuǎn)影響,是水環(huán)境中重要的生態(tài)關(guān)系之一[3]。
在這些藻類與細(xì)菌的相互作用中,一些細(xì)菌可通過(guò)促進(jìn)藻類生長(zhǎng)、幫助藻類抵抗逆境條件脅迫等形式,與藻類產(chǎn)生有益相互作用。深入研究這些相互作用,不僅對(duì)理解水體微生物的功能及其機(jī)制具有重要意義,也將對(duì)有益微生物的資源挖掘、生態(tài)環(huán)境的保護(hù)等方面提供有益啟示。本文擬綜述近年來(lái)在藻類與細(xì)菌有益相互作用方式、菌種資源、分子機(jī)制、應(yīng)用情況等方面的研究進(jìn)展,并對(duì)未來(lái)研究趨勢(shì)提出展望。
1 藻類與細(xì)菌有益相互作用的形式
1.1 生長(zhǎng)互促作用
一些細(xì)菌和藻類共同培養(yǎng)時(shí),可通過(guò)提供維生素、激素等代謝產(chǎn)物促進(jìn)藻類的生長(zhǎng)。例如,許多真核藻類在生長(zhǎng)中需要外源的維生素B12( VB12)[4],而某些細(xì)菌可以自身合成VB12,兩者共存時(shí)藻類可以提供光合產(chǎn)物作為細(xì)菌所需的碳源,同時(shí)利用細(xì)菌提供的VB12,從而形成一種穩(wěn)定的互利共生體系[5]。還有研究表明亞硫酸鹽桿菌可利用硅藻分泌的色氨酸和內(nèi)源性色氨酸,合成激素吲哚-3-乙酸并促進(jìn)硅藻細(xì)胞生長(zhǎng)[6]。Ma 等[7]在研究赤潮中的微生物群落時(shí)發(fā)現(xiàn),細(xì)菌可向硅藻提供多種維生素,同時(shí)分解硅藻產(chǎn)生的腈類和過(guò)氧化氫等有害物質(zhì)。Gonzalez等[8]發(fā)現(xiàn)植物生長(zhǎng)促進(jìn)菌巴西固氮螺菌 (Azospiril?lum brasilense) 可顯著提高小球藻 (Chlorella vul?garis) 的生長(zhǎng)速度、干質(zhì)量和鮮質(zhì)量等指標(biāo)。另外,一些海桿菌屬的藻際細(xì)菌產(chǎn)生對(duì)光敏感的鐵載體Vibrioferrin,可以促進(jìn)錐狀斯氏藻 (Scrippsiella tro?choidea) 吸收生長(zhǎng)所需要的鐵元素[9]。
1.2 增強(qiáng)藻類的抗逆能力
在生長(zhǎng)條件不利時(shí),某些細(xì)菌可協(xié)助藻類抵抗逆境脅迫。例如,一些產(chǎn)VB12 細(xì)菌在與萊茵衣藻(Chlamydomonas reinhardtii) 共生時(shí),可顯著增強(qiáng)衣藻的耐熱能力[10-11]。而近期一項(xiàng)研究也表明,VB12對(duì)藻際細(xì)菌同樣具有高溫保護(hù)效果[12]。在缺氮條件下,固氮菌Mesorhizobium sangaii 與小球藻共培養(yǎng)時(shí),可發(fā)揮固氮作用并提供氮源給小球藻,顯著提高小球藻的油脂產(chǎn)量和生物量[13]。另外,在高鹽或高重金屬含量等脅迫條件下,巴西固氮螺菌( Azospiril?lum brasilense) 、紅球菌 (Rhodococcus qingshengii)MEZX29、氨基桿菌( Aminobacter sp.) Y9菌株可以分別增強(qiáng)不同藻類的耐受能力[14-16]。
1.3 其他有益相互作用
細(xì)菌與藻類共培養(yǎng)時(shí),還會(huì)發(fā)揮促進(jìn)產(chǎn)氫、脂質(zhì)積累、污染物去除等其他作用[17-18],而這些作用已經(jīng)在污染物防治、生物能源利用等方面得到廣泛關(guān)注。
2 與藻類發(fā)生有益相互作用的細(xì)菌
與藻類發(fā)生有益相互作用的細(xì)菌種屬分布較為廣泛(表1)。這些細(xì)菌大多數(shù)屬于變形菌門,例如圓褐固氮菌屬 (Azotobacter) 、固氮螺菌屬 (Azospiril?lum) 、根瘤菌屬( Rhizobium) 、假單胞菌屬( Pseudo?monas) 等革蘭氏陰性菌,這些細(xì)菌往往可通過(guò)分泌特定的物質(zhì)促進(jìn)藻類的生長(zhǎng)或促進(jìn)抗逆能力。此外,也有其他一些菌株,如:產(chǎn)卟啉菌屬( Porphyrob?acter) 、芽孢桿菌屬( Bacillus) 、農(nóng)桿菌屬( Agrobac?terium) 、泛菌屬 (Pantoea) 、黃桿菌屬 (Flavobacte?rium) 、貪噬菌屬( Variovorax) 、甲基桿菌屬( Meth?ylobacterium) 等,被發(fā)現(xiàn)在與藻類共培養(yǎng)時(shí)可以促進(jìn)藻類的生物質(zhì)積累。
然而,針對(duì)藻類有益細(xì)菌的系統(tǒng)性資源挖掘并不多見(jiàn),而且同一細(xì)菌在不同條件下也可能表現(xiàn)出不同的相互作用效果[17-18]。因此,深入挖掘藻類有益細(xì)菌的資源及其功能鑒定依然需要進(jìn)一步的研究。
3 藻類與細(xì)菌有益相互作用的分子機(jī)制
近年來(lái),隨著多組學(xué)、分子生物學(xué)的發(fā)展,藻類與細(xì)菌之間的營(yíng)養(yǎng)物質(zhì)交換、信號(hào)轉(zhuǎn)導(dǎo)、基因表達(dá)調(diào)控等機(jī)制已得到部分闡明[41],圖1 為兩者之間的相互作用模式圖,深入理解這些分子機(jī)制將對(duì)我們認(rèn)識(shí)微生物種間關(guān)系、水體生態(tài)系統(tǒng)的內(nèi)在規(guī)律具有重要意義。
3.1 信號(hào)轉(zhuǎn)導(dǎo)機(jī)制
群體感應(yīng)( quorum sensing, QS) 是廣泛存在于微生物的通訊系統(tǒng)。多種細(xì)菌可通過(guò)分泌小分子信號(hào)感知周圍群體密度和物種組成變化,引起基因在轉(zhuǎn)錄水平的協(xié)調(diào)表達(dá),從而改變細(xì)菌的生長(zhǎng)和行為[42-43]。Wagner-D?bler 等[44]發(fā)現(xiàn)一種通常與藻類共存的細(xì)菌——玫瑰桿菌屬,能夠通過(guò)N-?;呓z氨酸內(nèi)酯( N-acyl-L-homoserine lactones, AHLs)分子調(diào)節(jié)初級(jí)代謝過(guò)程。實(shí)際上,許多變形菌門細(xì)菌可產(chǎn)生QS 物質(zhì),并能分泌一些誘導(dǎo)性物質(zhì)作用于藻類;同時(shí)藻類也能合成分泌一些類似于信息素的物質(zhì)反作用于細(xì)菌,兩者相互影響彼此的生理代謝[45]。因此,QS 介導(dǎo)的相互作用對(duì)菌藻共生關(guān)系有著廣泛影響,在微生物群落結(jié)構(gòu)和生態(tài)功能等方面有著重要作用[46]。
其他分子也可介導(dǎo)藻類與細(xì)菌之間的互作。Amin等[6]的研究證明,硫桿菌( Sulfitobacter sp.) 分泌的激素吲哚-3-乙酸作為一種信號(hào)分子參與復(fù)雜的營(yíng)養(yǎng)物質(zhì)交換,最終促進(jìn)硅藻的細(xì)胞分裂。許多藻類也產(chǎn)生homoserine、fucoserratene 等分子[47-48],在調(diào)控與細(xì)菌之間的相互作用中發(fā)揮關(guān)鍵功能。
3.2 基因表達(dá)調(diào)控模式
轉(zhuǎn)錄組學(xué)和蛋白質(zhì)組學(xué)等多組學(xué)方法為揭示藻類與細(xì)菌之間的基因表達(dá)調(diào)控模式提供了新的線索。例如,Amin 等[6]在硅藻和亞硫酸鹽桿菌相互作用的研究中,對(duì)單獨(dú)和共培養(yǎng)的樣品進(jìn)行了比較轉(zhuǎn)錄組學(xué)和靶向代謝物分析,結(jié)果表明在亞硫酸鹽桿菌中,負(fù)責(zé)色氨酸生長(zhǎng)素吲哚-3-乙酸生物合成的基因上調(diào),而細(xì)菌可利用硅藻提供的氨基酸來(lái)合成這種化合物。Helliwell 等[49]采用蛋白質(zhì)組學(xué)方法探究綠藻Lobomonas rostrata 響應(yīng)細(xì)菌Mesorhizobiumloti 提供VB12的機(jī)制,發(fā)現(xiàn)藻類有不少抗逆類蛋白表達(dá)量升高。本研究組在利用蛋白質(zhì)組學(xué)技術(shù)研究細(xì)菌促進(jìn)衣藻耐熱的分子機(jī)制中,也發(fā)掘了一批藻類和細(xì)菌相互作用過(guò)程中特殊的差異表達(dá)蛋白[50]。這些高通量技術(shù)的發(fā)展與應(yīng)用,將繼續(xù)為揭示藻類與細(xì)菌雙方在相互作用時(shí)獨(dú)特的誘導(dǎo)表達(dá)基因、生化途徑的調(diào)整提供有益幫助。
3.3 營(yíng)養(yǎng)物質(zhì)的運(yùn)輸
一般來(lái)說(shuō),藻類通過(guò)光合作用提供O2和有機(jī)物供細(xì)菌利用,而細(xì)菌通過(guò)產(chǎn)生CO2、生長(zhǎng)因子、鐵載體等物質(zhì)促進(jìn)藻類生長(zhǎng),兩者的營(yíng)養(yǎng)物質(zhì)形成良性的交換[51]。藻類和細(xì)菌均具有大量的轉(zhuǎn)運(yùn)蛋白用于運(yùn)輸磷酸鹽[52]、維生素[53]、氨基酸[54-55]、激素[56]、糖類[57-58]等物質(zhì),而細(xì)胞的胞外聚合物可以提供結(jié)合位點(diǎn)增強(qiáng)營(yíng)養(yǎng)元素的運(yùn)輸[59]。然而,這些運(yùn)輸體系如何參與藻類與細(xì)菌相互作用還存在許多值得研究的方面。例如,針對(duì)VB12 的運(yùn)輸,細(xì)菌中存在BtuBCDF 轉(zhuǎn)運(yùn)體系[60],藻類中也已鑒定出CBA1 類的VB12 獲取蛋白[61-62]。然而,這些轉(zhuǎn)運(yùn)蛋白在產(chǎn)VB12 細(xì)菌-藻類相互作用中的具體作用與調(diào)控模式尚不清楚。
3.4 藻類與細(xì)菌之間的協(xié)同進(jìn)化
在漫長(zhǎng)的進(jìn)化過(guò)程中,基因的水平轉(zhuǎn)移也可能發(fā)生在相鄰的藻類和細(xì)菌之間[63]。Sch?nknecht等[64]在研究單細(xì)胞真核生物嗜硫原始紅藻(Galdie?ria suluraria)如何適應(yīng)高溫、有毒、富含金屬等不利生存環(huán)境時(shí)發(fā)現(xiàn),來(lái)自細(xì)菌和古菌的水平基因轉(zhuǎn)移具有重要作用。Raymond 等[65]發(fā)現(xiàn),屬于金藻綱(Chrysophyceae)的一種藻類中存在活性較弱的冰結(jié)合蛋白,系統(tǒng)發(fā)育樹分析顯示該蛋白最匹配的是細(xì)菌蛋白,而其他藻類中存在的冰結(jié)合蛋白在細(xì)菌和古菌中也曾被發(fā)現(xiàn)。這種基因的水平轉(zhuǎn)移可能使藻類功能多樣化,更加適應(yīng)極端環(huán)境。
最近的研究表明,曾被認(rèn)為是海洋藻類Braaru?dosphaera bigelow 內(nèi)共生體的固氮藍(lán)細(xì)菌Atelocya?nobacterium thalassa(或稱UCYN-A),被發(fā)現(xiàn)已進(jìn)化為藻類細(xì)胞中一個(gè)專門用來(lái)固氮的細(xì)胞器,為藻類提供氮源[66]。這些發(fā)現(xiàn)不僅表明藻類與細(xì)菌之間存在著更直接的協(xié)同進(jìn)化,也為微生物種間關(guān)系、真核生物細(xì)胞器起源等研究提供了重要材料。
4 藻類與細(xì)菌有益相互作用的應(yīng)用
近年來(lái),藻類-細(xì)菌共生體系也展現(xiàn)出了引人注目的應(yīng)用潛力,在環(huán)境保護(hù)、食品等方面具有廣泛的實(shí)用價(jià)值。
4.1 環(huán)境治理
研究證明,藻類和細(xì)菌共培養(yǎng)體系比單獨(dú)的藻類或細(xì)菌具有更好的污水治理效果,共培養(yǎng)體系極大地提高了生物體對(duì)于環(huán)境中N、P 的吸收能力,從而達(dá)到更好地處理廢水的效果[67]。在該體系中,一方面細(xì)菌將水體中的污染物進(jìn)行分解產(chǎn)生CO2等物質(zhì)被藻類所利用,從而促進(jìn)藻類的生長(zhǎng);另一方面藻類進(jìn)行高效光合作用的同時(shí),吸收水體中的N、P 等元素用于自身的生長(zhǎng)[68],并將產(chǎn)物供細(xì)菌生長(zhǎng)利用,達(dá)到藻類和細(xì)菌協(xié)同處理污水的目的[69]。
藻菌共生系統(tǒng)處理污水的效率受多種因素影響,如藻與菌的種類、接種比例等內(nèi)部因素以及溫度、光照、pH 等外部因素[70]。Gao 等[71]的研究表明,在混合營(yíng)養(yǎng)條件下光照強(qiáng)度影響細(xì)菌與藻類異養(yǎng)代謝與光合作用的協(xié)同作用,進(jìn)而影響營(yíng)養(yǎng)物質(zhì)N、P的去除性能。此外,Wang 等[72]證明菌藻共生系統(tǒng)的固定化技術(shù)對(duì)污水處理效率有影響,選擇海藻酸鈉作為包埋劑,可以減少水體中的N、P 及有機(jī)物的含量,對(duì)高濃度的廢水中COD、氨氮和總磷去除能達(dá)到良好的效率。Wang 等[73]篩選獲得好氧菌微小桿菌(Exiguobacterium) 和地衣芽孢桿菌( Bacillus lichen?iformis),構(gòu)建了小球藻-細(xì)菌共生體,用于養(yǎng)豬場(chǎng)廢水的處理,為藻類-細(xì)菌聯(lián)合處理廢水提供了參考。
4.2 生物質(zhì)能源生產(chǎn)
一些藻類由于富含脂類而被認(rèn)為是生物柴油的良好生產(chǎn)原料之一[74]。Wei 等[13]在缺氮條件下將普通小球藻 (C. vulgaris)與固氮好氧菌 Mesorhizobi?um sangaii 共培養(yǎng),發(fā)現(xiàn)共培養(yǎng)組小球藻的生長(zhǎng)、生物量、脂肪含量、脂肪酸組成較純?cè)迮囵B(yǎng)顯著提高;細(xì)菌通過(guò)調(diào)節(jié)藻類代謝和胞外多聚物組成影響藻類的生物量和脂質(zhì)積累。張靖潔等[75]將埃氏小球藻(Chlorella emersonii)與藻際優(yōu)勢(shì)促生菌共培養(yǎng)時(shí),發(fā)現(xiàn)小球藻的生物量和油脂中單不飽和脂肪酸含量較對(duì)照組顯著提高。因此,藻菌共生體系的建立是一種增加藻類生物質(zhì)的方法,為提高藻類生物質(zhì)能源的生產(chǎn)提供了有益參考。
氫能源是另一種清潔的可再生能源。目前,萊茵衣藻由于氫酶活性高、培養(yǎng)容易、基因組背景清晰而被作為研究光制氫的模式物種之一[76]。Li 等[77]從萊茵衣藻的污染培養(yǎng)物中分離的3 株細(xì)菌分別與衣藻共培養(yǎng),發(fā)現(xiàn)共培養(yǎng)體系的高呼吸速率導(dǎo)致O2的快速消耗和氫酶活性的提高,從而顯著促進(jìn)藻類H2的積累。藻類與細(xì)菌也被應(yīng)用于微生物燃料電池與生物光伏發(fā)電的研究中。在以藻類與細(xì)菌組成的微生物燃料電池中,藻類可在陰極進(jìn)行光合作用產(chǎn)生氧氣而促進(jìn)電子的接收,從而提高了微生物燃料電池在產(chǎn)能、廢水處理等方面的應(yīng)用能力[78]。在生物光伏發(fā)電中,Zhu 等[79]設(shè)計(jì)了一種具有定向電子流的藍(lán)藻-希瓦氏菌合成微生物組:藍(lán)藻通過(guò)光合作用生成D-乳酸,希瓦氏菌代謝利用D-乳酸進(jìn)行產(chǎn)電。結(jié)合連續(xù)流加的培養(yǎng)方式,該微生物組可實(shí)現(xiàn)長(zhǎng)期的生物光伏發(fā)電輸出。這些研究也啟示著,藻類與細(xì)菌的聯(lián)合作用在能源生產(chǎn)中具有廣闊的應(yīng)用前景。
另外,細(xì)菌也被用于藻類細(xì)胞的絮凝收獲,是藻類生物質(zhì)收獲的一種經(jīng)濟(jì)可行、綠色清潔的方法。藻類和細(xì)菌形成絮凝物可能是由于細(xì)菌產(chǎn)生的用于相互作用、保護(hù)、通訊和黏附的胞外多聚物(多糖、蛋白質(zhì)、糖醛酸和核酸等)[80]。藻細(xì)胞表面存在的官能團(tuán)可以根據(jù)pH 值的變化產(chǎn)生電荷。一項(xiàng)研究表明,微擬球藻 (Nannochloropsis oceanica) 和1 株芽孢桿菌 (Bacillus sp.) 菌株的聚集依賴于pH 和鈣離子中和作用[81]。因此,藻類與細(xì)菌相互作用實(shí)現(xiàn)藻類生物質(zhì)的收獲是一種經(jīng)濟(jì)可行、綠色清潔的方法。
4.3 合成生物學(xué)研究
藻類和細(xì)菌分別具有光合作用與多種生物活性分子的合成能力,兩者的有益相互作用體系也可為高價(jià)值代謝產(chǎn)物的合成、培養(yǎng)成本的降低提供新的機(jī)遇。Na 等[82]研究鞘氨醇單胞菌(Sphingomonas)KNU100 與卵囊藻(Oocystis sp.) KNUA044 中發(fā)現(xiàn),藻株在細(xì)菌的上清液中可產(chǎn)生單糖巖藻糖,并積累多不飽和脂肪酸。因此,鞘氨醇單胞菌可促進(jìn)卵囊藻生物量增加和高價(jià)值生物活性副產(chǎn)物的合成。Zhang 等[83]將藻株Aurantiochytrium sp. SW1 和乳酸菌、枯草芽孢桿菌、地衣芽孢桿菌以及各種大腸桿菌分別構(gòu)建共生體系,結(jié)果發(fā)現(xiàn)大腸桿菌SUC 菌株持續(xù)生成琥珀酸的同時(shí),顯著提高了藻株的生長(zhǎng)和脂質(zhì)含量。
另外,藻類產(chǎn)生的光合產(chǎn)物也可作為微生物發(fā)酵的碳源。研究表明,乳酸菌可將紅藻水解物作為底物生產(chǎn)乳酸[84],以開發(fā)可生物降解的聚乳酸材料。El-Malek 等[85]將藻類Corallina mediterranea 的水解產(chǎn)物作為碳源和氮源,在嗜鹽單胞菌(Halomonas pa?cifica) ASL10 和Halomonas salifodiane ASL11 中生產(chǎn)獲得高濃度的聚-β-羥基丁酸酯( PHB)。
5 研究展望
結(jié)合藻類和細(xì)菌有益相互作用的研究進(jìn)展與實(shí)際問(wèn)題,我們認(rèn)為以下的研究方向?qū)⒅档弥攸c(diǎn)關(guān)注。
1)藻類和細(xì)菌有益相互作用的微生物資源挖掘。資源挖掘是一件復(fù)雜且繁瑣的任務(wù),細(xì)菌和藻類在生長(zhǎng)代謝方面有很大不同,造成共生體系中菌株和藻株的篩選困難。未來(lái)研究應(yīng)該在資源獲取的技術(shù)方法上進(jìn)行突破,系統(tǒng)性開展菌株篩選、物種鑒定、專一性分析等資源挖掘工作,廣泛獲取微生物資源并探究其在分類上的規(guī)律。
2)模式體系的建立。目前,藻類與產(chǎn)VB12細(xì)菌、產(chǎn)生長(zhǎng)素細(xì)菌等相互作用已得到了較多的機(jī)制研究。然而,研究者還應(yīng)該進(jìn)一步將這些體系發(fā)展為易于實(shí)驗(yàn)室培養(yǎng)、具有成熟遺傳操作技術(shù)、科學(xué)意義重要的通用模式研究體系,并注重開展多物種相互作用、多因子復(fù)雜相互作用的模式研究體系的探索。
3)分子機(jī)制研究。未來(lái)應(yīng)持續(xù)加強(qiáng)對(duì)藻類和細(xì)菌雙方的分子應(yīng)答、關(guān)鍵基因的表達(dá)調(diào)控、協(xié)同進(jìn)化等機(jī)制和規(guī)律的研究。這些機(jī)制研究成果不僅有助于加深我們對(duì)于自然界微生物種間關(guān)系的認(rèn)識(shí),也可為設(shè)計(jì)和精準(zhǔn)調(diào)控的藻類和細(xì)菌共培養(yǎng)體系提供有益的支撐。
4)應(yīng)用研究。藻類與細(xì)菌之間有益相互作用已在環(huán)境治理、能源生產(chǎn)等方面展現(xiàn)出了廣闊的應(yīng)用前景。未來(lái)的研究應(yīng)該更加注重如何進(jìn)一步提高雙方生長(zhǎng)能力、抗逆能力與聯(lián)合作用發(fā)揮的效率。例如,可通過(guò)藻類有益微生物的篩選與遺傳改造,提升藻類與細(xì)菌之間的協(xié)同代謝能力與電子傳遞效能,進(jìn)一步促進(jìn)其產(chǎn)電的效率與穩(wěn)定性。而上述的微生物資源研究、機(jī)制研究等方面的成果也將為實(shí)際應(yīng)用提供關(guān)鍵幫助。
綜上所述,藻類與其周際的細(xì)菌在長(zhǎng)期的共存過(guò)程中形成了特定的有益相互作用關(guān)系,深入研究這些有益相互作用,將對(duì)我們理解水體生物的群落結(jié)構(gòu)與功能、探索微生物種間關(guān)系的機(jī)制與生態(tài)效應(yīng),挖掘和利用微生物資源、保護(hù)生態(tài)系統(tǒng)健康提供重要的幫助。
參考文獻(xiàn)References
[1] BELL W,MITCHELL R.Chemotactic and growth responses
of marine bacteria to algal extracellular products[J].The biological
bulletin,1972,143(2): 265-277.
[2] COLE J J. Interactions between bacteria and algae in aquatic
ecosystems[J].Annual review of ecology,evolution,and systematics,
1982,13: 291-314.
[3] SEYMOUR J R,AMIN S A,RAINA J B,et al.Zooming in on
the phycosphere: the ecological interface for phytoplankton-bacteria
relationships[J/OL].Nature microbiology,2017,2: 17065
[2024-06-20].https://doi.org/10.1038/nmicrobiol.2017.65.
[4] CROFT M T,LAWRENCE A D,RAUX-DEERY E,et al.
Algae acquire vitamin B12 through a symbiotic relationship
with bacteria[J].Nature,2005,438(7064): 90-93.
[5] KAZAMIA E,CZESNICK H,VAN NGUYEN T T,et al.
Mutualistic interactions between vitamin B12 ‐ dependent algae
and heterotrophic bacteria exhibit regulation[J].Environmental
microbiology,2012,14(6): 1466-1476.
[6] AMIN S A,HMELO L R,VAN TOL H M,et al.Interaction
and signalling between a cosmopolitan phytoplankton and associated
bacteria[J].Nature,2015,522(7554): 98-101.
[7] MA X,JOHNSON K B,GU B W,et al.The in-situ release of
algal bloom populations and the role of prokaryotic communities
in their establishment and growth[J/OL].Water research,
2022,219:118565[2024-06-20]. https://doi. org/10.1016/j.
watres.2022.118565.
[8] GONZALEZ L E,BASHAN Y.Increased growth of the microalga
Chlorella vulgaris when coimmobilized and cocultured
in alginate beads with the plant-growth-promoting bacterium
Azospirillum brasilense[J].Applied and environmental microbiology,
2000,66(4): 1527-1531.
[9] AMIN S A,GREEN D H,HART M C,et al. Photolysis of
iron-siderophore chelates promotes bacterial-algal mutualism
[J].PNAS,2009,106(40): 17071-17076.
[10] XIE B,BISHOP S,STESSMAN D,et al. Chlamydomonas
reinhardtii thermal tolerance enhancement mediated by a mutualistic
interaction with vitamin B12-producing bacteria[J].
The ISME journal,2013,7(8): 1544-1555.
[11] 周璇,李軍英,伍剛,等. 維生素B12在細(xì)菌與真核藻類相互作
用中的功能研究進(jìn)展[J]. 微生物學(xué)通報(bào),2015,42(5): 913-
919.ZHOU X,LI J Y,WU G,et al.The roles of vitamin B12 in
the interaction between bacteria and eukaryotic algae[J]. Microbiology
China,2015,42(5): 913-919 (in Chinese with
English abstract).
[12] MARS BRISBIN M,SCHOFIELD A,MCILVIN M R,et al.
Vitamin B12 conveys a protective advantage to phycosphere-associated
bacteria at high temperatures[J/OL].ISME communications,
2023,3(1): 88[2024-06-20]. https://doi. org/
10.1038/s43705-023-00298-6.
[13] WEI Z J,WANG H N,LI X,et al.Enhanced biomass and lipid
production by co-cultivation of Chlorella vulgaris with Meso?
rhizobium sangaii under nitrogen limitation[J].Journal of applied
phycology,2020,32(1): 233-242.
[14] PALACIOS O A,LóPEZ B R,PALACIOS-ESPINOSA
A,et al.The immediate effect of riboflavin and lumichrome on
the mitigation of saline stress in the microalga Chlorella soroki?
niana by the plant-growth-promoting bacterium Azospirillum
brasilense[J/OL].Algal research,2021,58: 102424[2024-06-
20].https://doi.org/10.1016/j.algal.2021.102424.
[15] 周璇,靳元霈,趙娜,等. 一株可增強(qiáng)萊茵衣藻耐鹽能力細(xì)菌
MEZX29 的分離與鑒定[J]. 微生物學(xué)通報(bào),2022,49(11):
4538-4548.ZHOU X,JIN Y P,ZHAO N,et al.Isolation and
identification of bacterial strain MEZX29 that can enhance the
salt tolerance of Chlamydomonas reinhardtii[J].Microbiology
China,2022,49(11): 4538-4548( in Chinese with English abstract).
[16] 石遵計(jì),曹政,胡科鑫,等. 鎘離子污染條件下微生物群落中
細(xì)菌與藻類的相互作用[J]. 微生物學(xué)報(bào),2019,59(6): 1156-
1163.SHI Z J,CAO Z,HU K X,et al.Interactions between
bacteria and phytoplankton in microbial communities under
cadmium contamination conditions[J].Acta microbiologica sinica,
2019,59(6): 1156-1163 (in Chinese with English abstract).
[17] WU G,GE L X,ZHAO N,et al.Environment dependent microbial
co‐occurrences across a cyanobacterial bloom in a freshwater
lake[J]. Environmental microbiology,2021,23(1):
327-339.
[18] SEYEDSAYAMDOST M R,CASE R J,KOLTER R,et al.
The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis
[J].Nature chemistry,2011,3(4): 331-335.
[19] LEE C S,JEON M S,KIM J Y,et al.Effects of an auxin-producing
symbiotic bacterium on cell growth of the microalga Haema?
tococcus pluvialis: elevation of cell density and prolongation of
exponential stage[J/OL]. Algal research,2019,41: 101547
[2024-06-20].https://doi.org/10.1016/j.algal.2019.101547.
[20] PAGNUSSAT L A, DO NASCIMENTO M, MARONICHE
G,et al.Azospirillum baldaniorum improves acclimation,
lipid productivity and oxidative response of a microalga
under salt stress[J/OL].Algal research,2023,74: 103192
[2024-06-20].https://doi.org/10.1016/j.algal.2023.103192.
[21] DE-BASHAN L E,ANTOUN H,BASHAN Y.Involvement
of indole‐3‐acetic acid produced by the growth‐promoting bacterium
Azospirillum spp.in promoting growth of Chlorella vul?
garis(1)[J].Journal of phycology,2008,44(4): 938-947.
[22] BARBOSA-NU?EZ J A,PALACIOS O A,DE-BASHAN
L E,et al.Active indole-3-acetic acid biosynthesis by the bacterium
Azospirillum brasilense cultured under a biogas atmosphere
enables its beneficial association with microalgae[J].
Journal of applied microbiology,2022,132(5): 3650-3663.
[23] PALACIOS O A,ESPINOZA-HICKS J C,CAMACHODáVILA
A A,et al. Differences in exudates between strains
of Chlorella sorokiniana affect the interaction with the microalga
growth-promoting bacteria Azospirillum brasilense[J].Microbial
ecology,2023,85(4): 1412-1422.
[24] AMAVIZCA E,BASHAN Y,RYU C M,et al.Enhanced performance
of the microalga Chlorella sorokiniana remotely induced
by the plant growth-promoting bacteria Azospirillum
brasilense and Bacillus pumilus[J/OL]. Scientific reports,
2017,7(1): 41310[2024-06-20]. https://doi. org/10.1038/
srep41310.
[25] PENG H X,DE BASHAN L E,HIGGINS B T.Comparison
of algae growth and symbiotic mechanisms in the presence of
plant growth promoting bacteria and non-plant growth promoting
bacteria[J/OL].Algal research,2021,53: 102156[2024-
06-20].https://doi.org/10.1016/j.algal.2020.102156.
[26] JIN Y P,REN S G,WU Y C,et al. Microbial community
structures and bacteria-Cylindrospermopsis raciborskii interactions
in Yilong Lake[J/OL]. FEMS microbiology ecology,
2024,100 (5) : fiae048 [2024-06-20]. https://doi. org/
10.1093/femsec/fiae048.
[27] XU L L,CHENG X L,WANG Q X.Enhanced lipid production
in Chlamydomonas reinhardtii by co-culturing with Azoto?
bacter chroococcum[J/OL].Frontiers in plant science,2018,9:
741[2024-06-20].https://doi.org/10.3389/fpls.2018.00741.
[28] VILLA J A,RAY E E,BARNEY B M. Azotobacter vine?
landii siderophore can provide nitrogen to support the culture
of the green algae Neochloris oleoabundans and Scenedesmu
ssp.BA032[J].FEMS microbiology letters,2014,351(1):
70-77.
[29] XIAO L M,CHEN Z J,YANG Y W,et al.Growth promotion
of Chlorella by symbiotic bacteria under adverse environments
[J/OL]. Algal research,2022,66: 102799[2024-06-20].
https://doi.org/10.1016/j.algal.2022.102799.
[30] ASTAFYEVA Y,GURSCHKE M,QI M,et al. Microalgae
and bacteria interaction-evidence for division of diligence in
the alga microbiota[J/OL]. Microbiology spectrum,2022,10
(4): e0063322[2024-06-20]. https://doi. org/10.1128/spectrum.
00633-22.
[31] TOYAMA T,HANAOKA T,YAMADA K,et al.Enhanced
production of biomass and lipids by Euglena gracilis via coculturing
with a microalga growth-promoting bacterium,Emti?
cicia sp. EG3[J/OL]. Biotechnology for biofuels,2019,12
(1): 205[2024-06-20]. https://doi. org/10.1186/s13068-
019-1544-2.
[32] LIU B L,ELTANAHY E E,LIU H W,et al. Growth-promoting
bacteria double eicosapentaenoic acid yield in microalgae
[J/OL].Bioresource technology,2020,316: 123916[2024-
06-20].https://doi.org/10.1016/j.biortech.2020.123916.
[33] KRUG L,MORAUF C,DONAT C,et al.Plant growth-promoting
Methylobacteria selectively increase the biomass of
biotechnologically relevant microalgae[J/OL].Frontiers in microbiology,
2020,11: 427[2024-06-20]. https://doi. org/
10.3389/fmicb.2020.00427.
[34] LI X J,CAI F S,LUAN T G,et al.Pyrene metabolites by bacterium
enhancing cell division of green alga Selenastrum capri?
cornutum[J]. Science of the total environment,2019,689:
287-294.
[35] ZHU J M,HONG P C,WANG S Q,et al.Phycocomes zhen?
gii Gen. nov.,sp. nov.,a marine bacterium of the family Rhodobacteraceae
isolated from the phycosphere of Chlorella vul?
garis[J]. International journal of systematic and evolutionary
microbiology,2019,69(2): 535-541.
[36] BERTHOLD D E,SHETTY K G,JAYACHANDRAN K,
et al.Enhancing algal biomass and lipid production through bacterial
co-culture[J]. Biomass and bioenergy,2019,122:
280-289.
[37] WANG T,LI D,TIAN X,et al. Mitigating salinity stress
through interactions between microalgae and different forms
(free-living amp; alginate gel-encapsulated) of bacteria isolated
from estuarine environments[J/OL].Science of the total environment,
2024,926: 171909[2024-06-20]. https://doi. org/
10.1016/j.scitotenv.2024.171909.
[38] KIM B H,RAMANAN R,CHO D H,et al.Role of Rhizobi?
um,a plant growth promoting bacterium,in enhancing algal
biomass through mutualistic interaction[J].Biomass and bioenergy,
2014,69: 95-105.
[39] GHADERIARDAKANI F,LANGHANS L,KURBEL V B,
et al. Metabolite profiling reveals insights into the species-dependent
cold stress response of the green seaweed holobiont
Ulva (Chlorophyta)[J/OL].Environmental and experimental
botany,2022,200: 104913[2024-06-20]. https://doi. org/
10.1016/j.envexpbot.2022.104913.
[40] YANG Q,GE Y M,IQBAL N M,et al.Sulfitobacter alexand?
rii sp. nov.,a new microalgae growth-promoting bacterium
with exopolysaccharides bioflocculanting potential isolated
from marine phycosphere[J].Antonie van leeuwenhoek,2021,
114(7): 1091-1106.
[41] KOUZUMA A,WATANABE K. Exploring the potential of
algae/bacteria interactions[J].Current opinion in biotechnology,
2015,33:125-129.
[42] ZHANG B,LI W,GUO Y,et al.Microalgal-bacterial consortia:
from interspecies interactions to biotechnological applications
[J/OL]. Renewable and sustainable energy reviews,
2020,118:109563[2024-06-20]. https://doi. org/10.1016/j.
rser.2019.109563.
[43] FUQUA W C,WINANS S C,GREENBERG E P.Quorum
sensing in bacteria:the LuxR-LuxI family of cell density-responsive
transcriptional regulators[J].Journal of bacteriology,
1994,176(2):269-275.
[44] WAGNER-D?BLER I,BIEBL H. Environmental biology of
the marine Roseobacter lineage[J].Annual review of microbiology,
2006,60(1):255-280.
[45] 艾可筠. 擬微綠球藻與海洋細(xì)菌共生關(guān)系的初步探究[D]. 大
連:遼寧師范大學(xué),2018.AI K J.A preliminary exploration of
the relationship between nannochloropsis maritime and marine
bacteria[D]. Dalian:Liaoning Normal University,2017 (in
Chinese with English abstract).
[46] ZHOU J,LYU Y H,RICHLEN M L,et al.Quorum sensing
is a language of chemical signals and plays an ecological role in
algal-bacterial interactions[J].Critical reviews in plant sciences,
2016,35(2):81-105.
[47] DERENBACH J B.Investigations into a small fraction of volatile
hydrocarbons:II. Indication for possible pheromones in
open sea phytoplankton[J]. Marine chemistry,1985,15(4):
305-309.
[48] POHNERT G,BOLAND W.Biosynthesis of the algal pheromone
hormosirene by the fresh-water diatom Gomphonema
parvulum( Bacillariophyceae)[J].Tetrahedron,1996,52(30):
10073-10082.
[49] HELLIWELL K E,PANDHAL J,COOPER M B,et al.
Quantitative proteomics of a B12-dependent alga grown in coculture
with bacteria reveals metabolic tradeoffs required for
mutualism[J].New phytologist,2018,217(2):599-612.
[50] ZHAO N,LIU F,DONG W X,et al.Quantitative proteomics
insights into Chlamydomonas reinhardtii thermal tolerance enhancement
by a mutualistic interaction with Sinorhizobium
meliloti [J/OL]. Microbiology spectrum,2024:00219-24
[2024-06-20].https://doi.org/10.1128/spectrum.00219-24.
[51] LEE C S,LEE S A,KO S R,et al.Effects of photoperiod on
nutrient removal,biomass production,and algal-bacterial population
dynamics in lab-scale photobioreactors treating municipal
wastewater[J].Water research,2015,68:680-691.
[52] TóTH D,KUNTAM S,F(xiàn)ERENCZI á,et al. Chloroplast
phosphate transporter CrPHT4-7 regulates phosphate homeostasis
and photosynthesis in Chlamydomonas[J].Plant physiology,
2024,194(3):1646-1661.
[53] NIJLAND M,MARTíNEZ FELICES J M,SLOTBOOM
D J,et al. Membrane transport of cobalamin[M]//Vitamins
and hormones.Amsterdam:Elsevier,2022:121-148.
[54] TEGEDER M,WARD J M. Molecular evolution of plant
AAP and LHT amino acid transporters[J/OL]. Frontiers in
plant science,2012,3:21[2024-06-20]. https://doi. org/
10.3389/fpls.2012.00021.
[55] HOSIE A H F,POOLE P S. Bacterial ABC transporters of
amino acids[J]. Research in microbiology,2001,152(3/4):
259-270.
[56] BOGAERT K A,BLOMME J,BEECKMAN T,et al.Auxin’
s origin:do PILS hold the key?[J]. Trends in plant science,
2022,27(3):227-236.
[57] FLEET J,ANSARI M,PITTMAN J K.Phylogenetic analysis
and structural prediction reveal the potential functional diversity
between green algae SWEET transporters[J/OL].
Frontiers in plant science,2022,13:960133[2024-06-20].
https://doi.org/10.3389/fpls.2022.960133.
[58] RIVERS D M R,ORESNIK I J.The sugar kinase that is necessary
for the catabolism of rhamnose in Rhizobium leguminos?
arum directly interacts with the ABC transporter necessary for
rhamnose transport[J]. Journal of bacteriology,2015,197
(24):3812-3821.
[59] LI X,ZHANG C F,QU W Y,et al.Role of nitrogen transport
for efficient energy conversion potential in low carbon and high
nitrogen/phosphorus wastewater by microalgal-bacterial system
[J/OL].Bioresource technology,2022,351:127019[2024-
06-20].https://doi.org/10.1016/j.biortech.2022.127019.
[60] BEAUVAIS M,SCHATT P,MONTIEL L,et al.Functional
redundancy of seasonal vitamin B12 biosynthesis pathways in
coastal marine microbial communities[J]. Environmental microbiology,
2023,25(12):3753-3770.
[61] BERTRAND E M,ALLEN A E,DUPONT C L,et al.Influence
of cobalamin scarcity on diatom molecular physiology and
identification of a cobalamin acquisition protein[J]. PNAS,
2012,109(26):1762-1771.
[62] SAYER A P,LLAVERO-PASQUINA M,GEISLER K,et
al.Conserved cobalamin acquisition protein 1 is essential for vitamin
B12 uptake in both Chlamydomonas and Phaeodactylum
[J].Plant physiology,2024,194(2):698-714.
[63] 金忠友,陳志宏,鄭政,等. 水環(huán)境菌藻共生相互作用研究進(jìn)
展[J]. 環(huán)境污染與防治,2023,45(6):870-874. JIN Z Y,
CHEN Z H,ZHENG Z,et al.Research progress of bacteriaalgae
symbiotic interaction in water environment[J].Environmental
pollution amp; control,2023,45(6):870-874 (in Chinese
with English abstract).
[64] SCH?NKNECHT G,CHEN W H,TERNES C M,et al.
Gene transfer from bacteria and archaea facilitated evolution of
an extremophilic eukaryote[J]. Science,2013,339(6124):
1207-1210.
[65] RAYMOND J A,REMIAS D. Ice-binding proteins in a
Chrysophycean snow alga:acquisition of an essential gene by
horizontal gene transfer[J/OL]. Frontiers in microbiology,
2019,10:2697 [2024-06-20]. https://doi. org/10.3389/
fmicb.2019.02697.
[66] COALE T H,LOCONTE V,TURK-KUBO K A,et al.Nitrogen-
fixing organelle in a marine alga[J].Science,2024,384
(6692):217-222.
[67] NAMBIAR K R,BOKIL S D. Luxury uptake of nitrogen in
flocculating algal-bacterial system[J].Water research,1981,15
(6):667-669.
[68] 于殿江,施定基,何培民,等. 微藻規(guī)?;囵B(yǎng)研究進(jìn)展[J].
微生物學(xué)報(bào),2021,61(2):333-345.YU D J,SHI D J,HE P
M,et al.Progress in large-scale culture of microalgae[J].Acta
microbiologica sinica,2021,61(2):333-345 (in Chinese with
English abstract).
[69] 劉恒恒,董世瑞,王素英. 光合微藻潛在生物質(zhì)能開發(fā)的研究
進(jìn)展[J]. 基因組學(xué)與應(yīng)用生物學(xué),2020,39(11):5271-5277.
LIU H H,DONG S R,WANG S Y.Research progress on potential
biomass energy development of photosynthetic microalgae
[J]. Genomics and applied biology,2020,39(11):5271-
5277( in Chinese with English abstract).
[70] 陳鵬,潘紅忠. 菌藻共生系統(tǒng)在養(yǎng)殖尾水處理中的研究進(jìn)展
[J]. 江西水產(chǎn)科技,2024(2):36-40.CHEN P,PAN H Z.Research
progress of symbiotic system of bacteria and algae in
aquaculture tail water treatment[J].Jiangxi fishery science and
technology,2024(2):36-40( in Chinese).
[71] GAO Y D,GUO L,LIAO Q R,et al.Mariculture wastewater
treatment with Bacterial-Algal coupling system (BACS):effect
of light intensity on microalgal biomass production and nutrient
removal[J/OL]. Environmental research,2021,201:
111578 [2024-06-20]. https://doi. org/10.1016/j. envres.
2021.111578.
[72] WANG Y J,GAO P,F(xiàn)AN M H,et al. Preliminary study of
purification for livestock wastewater of immobilized Microcys?
tis aeruginosa[J].Procedia environmental sciences,2011,11:
1316-1321.
[73] WANG Y Y,WANG S Y,SUN L Q,et al. Screening of a
Chlorella-bacteria consortium and research on piggery wastewater
purification[J/OL]. Algal research,2020,47:101840
[2024-06-20].https://doi.org/10.1016/j.algal.2020.101840.
[74] TAKAGI M,KARSENO,YOSHIDA T. Effect of salt concentration
on intracellular accumulation of lipids and triacylglyceride
in marine microalgae Dunaliella cells[J]. Journal of
bioscience and bioengineering,2006,101(3):223-226.
[75] 張靖潔,段露露,程蔚蘭,等. 菌藻共生提高小球藻生物量和
產(chǎn)油率[J]. 生物技術(shù)通報(bào),2019,35(5):76-84.ZHANG J J,
DUAN L L,CHENG W L,et al.Algae-bacteria symbiosis increases
biomass and oil production of Chlorella emersonii[J].
Biotechnology bulletin,2019,35(5):76-84 (in Chinese with
English abstract).
[76] MELIS A.Photosynthetic H2 metabolism in Chlamydomonas
reinhardtii( unicellular green algae)[J].Planta,2007,226(5):
1075-1086.
[77] LI X X,HUANG S,YU J,et al. Improvement of hydrogen
production of Chlamydomonas reinhardtii by co-cultivation
with isolated bacteria[J].International journal of hydrogen energy,
2013,38(25):10779-10787.
[78] SABA B,CHRISTY A D,YU Z,et al. Sustainable power
generation from bacterio-algal microbial fuel cells (MFCs):an
overview[J].Renewable and sustainable energy reviews,2017,
73:75-84.
[79] ZHU H W,MENG H K,ZHANG W,et al.Development of
a longevous two-species biophotovoltaics with constrained
electron flow[J/OL].Nature communications,2019,10(1):
4282 [2024-06-20]. https://doi. org/10.1038/s41467-019-
12190-w.
[80] JIMOH T A,KESHINRO M O,COWAN K A.Microalgalbacterial
flocs and extracellular polymeric substances:two essential
and valuable products of integrated algal pond systems
[J/OL].Water,air amp; soil pollution,2019,230(4):95[2024-
06-20].https://doi.org/10.1007/s11270-019-4148-3.
[81] POWELL R J,HILL R T,VOORDOUW G. Mechanism of
algal aggregation by Bacillus sp. strain RP1137[J]. Applied
and environmental microbiology,2014,80(13):4042-4050.
[82] NA H,JO S W,DO J M,et al. Production of algal biomass
and high-value compounds mediated by interaction of microalgal
Oocystis sp. KNUA044 and bacterium Sphingomonas
KNU100[J]. Applied microbiology and biotechnology,2021,
31(3):387-397.
[83] ZHANG M Y,XU X R,ZHAO R P,et al.Mechanism of enhanced
microalgal biomass and lipid accumulation through
symbiosis between a highly succinic acid-producing strain of
Escherichia coli SUC and Aurantiochytrium sp.SW1[J/OL].
Bioresource technology,2024,394:130232[2024-06-20].
https://doi.org/10.1016/j.biortech.2023.130232.
[84] LIN H T V,HUANG M Y,KAO T Y,et al. Production of
lactic acid from seaweed hydrolysates via lactic acid bacteria
fermentation[J/OL].Fermentation,2020,6(1):37[2024-06-
20].https://doi.org/10.1016/j.chemosphere.2022.136694.
[85] EL-MALEK F A,ROFEAL M,F(xiàn)ARAG A,et al. Polyhydroxyalkanoate
nanoparticles produced by marine bacteria cultivated
on cost effective mediterranean algal hydrolysate media
[J].Journal of biotechnology,2021,328:95-105.
(責(zé)任編輯:邊書京)