摘 " " "要: "次氯酸是一種來(lái)源于線粒體的活性氧,在各種生理和病理過(guò)程中起著重要的作用。但是,當(dāng)細(xì)胞中的 HOCl 濃度超過(guò)正常值時(shí)范圍,它會(huì)導(dǎo)致機(jī)體損傷和一系列疾病。因此,近年來(lái)開(kāi)發(fā)設(shè)計(jì)了一系列能實(shí)時(shí)識(shí)別和監(jiān)測(cè)線粒體中的次氯酸水平的熒光探針,這有助于更好地了解生物體健康狀況和 HOCl 起到的生理作用和病理過(guò)程。本文主要介紹了近幾年HOCl熒光探針的應(yīng)用和發(fā)展,根據(jù)靶向線粒的基團(tuán)類別,分別介紹了三苯基膦類熒光探針,半花菁類熒光探針,氟硼吡咯類熒光探針。
關(guān) "鍵 "詞:次氯酸;線粒體;熒光探針
中圖分類號(hào):O657.3 " " "文獻(xiàn)標(biāo)識(shí)碼: A " " 文章編號(hào): 1004-0935(20202023)0×3-00000426-0×
4
線粒體是一種控制著細(xì)胞進(jìn)行有氧呼吸的細(xì)胞器,存在于很多細(xì)胞中,能夠產(chǎn)生各類活性氧物種,同時(shí)擁有調(diào)控細(xì)胞周期、生長(zhǎng)、凋亡等的能力[1]。HOCl 在免疫系統(tǒng)和調(diào)節(jié)細(xì)胞微環(huán)境的氧化還原穩(wěn)態(tài)中起重要作用,當(dāng)線粒體中的 HOCl 濃度超過(guò)正常值時(shí)范圍,會(huì)引發(fā)關(guān)節(jié)炎、動(dòng)脈硬化、血清異常、心腦血管疾病、細(xì)胞異常死亡等一系列疾病[2-4]。在各種類型的活性氧中,次氯酸是最重要的一種,因此線粒體中次氯酸的實(shí)時(shí)檢測(cè)和成像有助于檢查細(xì)胞的狀態(tài)[5-9]。
目前,已經(jīng)報(bào)道了許多檢測(cè)次氯酸的方法。例如電化學(xué)分析法,因其響應(yīng)速度快,信號(hào)采集和約定容易,數(shù)據(jù)分析簡(jiǎn)單優(yōu)點(diǎn)而被廣泛使用[10]。然而,與這些相比方法,小分子熒光探針擁有更好的膜滲透性,熒光探針技術(shù)可以更好地執(zhí)行實(shí)時(shí)原位成像,卓越的靈敏度和選擇性,簡(jiǎn)單的操作和實(shí)時(shí)監(jiān)控的能力而成為強(qiáng)大的工具[11-13]。在最新的研究中,小分子熒光探針用于檢測(cè) HOCl 得到了迅速的發(fā)展并很好地應(yīng)用于雙向傳感和成像應(yīng)用[14-17]。此外,近紅外熒光探針的背景較低干擾和更高的組織穿透深度,在降低信號(hào)干擾的同時(shí)能將對(duì)生命體細(xì)胞的損傷降低。線粒體靶向的次氯酸熒光探針的設(shè)計(jì)和合成,將能夠幫助更好地研究HOCl在生物體內(nèi)的功能。
根據(jù)靶向線粒體的基團(tuán)類別,本文分別綜述了三種類別的探針:基于半花菁類的熒光探針、基于三苯基膦類的熒光探針以及基于氟硼吡咯類的熒光探針,并總結(jié)了這些探針的結(jié)構(gòu)、性質(zhì)和應(yīng)用。
1 "線粒體靶向的HClO熒光探針
1.1 "基于半花菁類的熒光探針
半花青染料是一種近紅外(NIR,650-~900 nm)熒光發(fā)色團(tuán),在檢測(cè)、生物成像和醫(yī)學(xué)治療應(yīng)用領(lǐng)域具有重要意義。它具有許多突出的優(yōu)點(diǎn),包括近紅外區(qū)域的吸收和發(fā)射、可調(diào)光譜特性、高光穩(wěn)定性以及大的斯托克斯位移。這些特性優(yōu)于香豆素、熒光素、萘酰亞胺、羅丹明和花青等常規(guī)熒光團(tuán)的特性。
2020年Lan等人[18]設(shè)計(jì)并合成了探針1(見(jiàn)圖1)。該探針通過(guò)在吲哚鹽部位上引入羥基(使其具有更大的水溶性),然后與香豆素結(jié)合,其靈敏度較高、能特異性檢測(cè)次氯酸。并對(duì)HClO 的選擇性優(yōu)于普通陰離子和其他活性氧,在 pH 5-~10范圍內(nèi)響應(yīng)良好,且響應(yīng)時(shí)間較短(2 min分鐘),次氯酸檢出限為 49.1 nM。 此外,該探針表現(xiàn)出良好的細(xì)胞膜通透性能,成功對(duì)線粒體、人肝癌細(xì)胞和動(dòng)物中的內(nèi)源性次氯酸進(jìn)行實(shí)時(shí)成像。同時(shí)探針 1 在加入 HOCl 或者LPS 誘導(dǎo)的關(guān)節(jié)炎中藍(lán)色熒光增強(qiáng),可以用來(lái)檢測(cè)內(nèi)源性和外源性的次氯酸。這種高選擇性探針將有助于研究與次氯酸有關(guān)的疾病。
2021年Jiang等人[19]以花菁染料為探針前體,設(shè)計(jì)合成了一種基于半花菁的近紅外比率型熒光探針2,用于靶向線粒體檢測(cè)HClO。該探針具有兩個(gè)發(fā)射峰(發(fā)射波長(zhǎng)分別在780 nm和449 nm),兩個(gè)發(fā)射峰之間不會(huì)相互干擾,其表現(xiàn)出許多令人印象深刻的優(yōu)點(diǎn),包括超快響應(yīng)(lt;10 s)、超低檢測(cè)限(22.6 nM)、出色的選擇性和抗干擾性。得益于其無(wú)干擾、低細(xì)胞毒性和良好的線粒體靶向功能的比率發(fā)射,探針2具有監(jiān)測(cè)活細(xì)胞外源性和內(nèi)源性HOCl的能力。 隨后為進(jìn)一步研究探針2在生物成像中的應(yīng)用,使用活體成像系統(tǒng)進(jìn)行信號(hào)采集,探針2能夠?qū)钚∈篌w內(nèi)的 HOCl 進(jìn)行生物成像。上述成功的生物學(xué)應(yīng)用使其能夠進(jìn)一步探索其生理和病理作用。
1.2 "基于三苯基膦類的熒光探針
以三苯基膦作為線粒體定位基團(tuán)的熒光探針因其定位基團(tuán)中的磷小分子具有良好的水溶性和生物相容性,因此這類探針在進(jìn)入線粒體時(shí)具有更好的細(xì)胞通透性,更容易進(jìn)入其中,同時(shí)能有效準(zhǔn)確地特異性選擇線粒體,提高了探針整體的檢測(cè)性能,是使此類探針越來(lái)越受到科研人員的關(guān)注和研究。
2019年Mao課題組[20]開(kāi)發(fā)了一種具有遠(yuǎn)紅外至近紅外的線粒體靶向雙光子熒光探針3(見(jiàn)圖2), 能與次氯酸發(fā)生反應(yīng)的部位是二苯甲酰肼,探針3反應(yīng)后在650 nm處的熒光強(qiáng)度不斷增加。該探針具有高選擇性、在體外時(shí)對(duì)HClO 具有出色的靈敏度,線性范圍為 6.0×10-8 至 1.0×10-5 M,檢測(cè)限為2.5×10-8M,成功應(yīng)用于MPO/H2O2/Cl 系統(tǒng)中次氯酸生成的檢測(cè)。 由于其大的雙光子截面(267 GM)和遠(yuǎn)紅外至近紅外發(fā)射,探針3在體內(nèi)也表現(xiàn)出優(yōu)異的性能包括低自發(fā)熒光、光穩(wěn)定熒光信號(hào)、和深層組織滲透(230 mM)。此外,探針3成功對(duì)細(xì)菌感染的細(xì)胞和炎癥小鼠模型中內(nèi)源性次氯酸進(jìn)行成像。以上結(jié)果證明探針探針3是監(jiān)測(cè)HClO 的強(qiáng)大工具,可用于檢測(cè)和成像由內(nèi)源性次氯酸鹽引起的炎癥和與線粒體有關(guān)的各種疾病。
同年,Wang課題組[21]以香豆素為骨架設(shè)計(jì)并合成了熒光探針4,該探針具有簡(jiǎn)單的化學(xué)結(jié)構(gòu),合成操作簡(jiǎn)單,其檢測(cè)限為9.86×10-8M,對(duì)HClO的響應(yīng)時(shí)間為20 s,其中的C-O鍵作為識(shí)別HClO的受體,具有優(yōu)異的熒光性能。HClO能促進(jìn)香豆素內(nèi)酯的開(kāi)環(huán)過(guò)程,因此探針4表現(xiàn)出優(yōu)異的熒光“開(kāi)啟”效應(yīng)。為了測(cè)定線粒體中的HClO,而引入了三苯基膦基團(tuán)以形成探針4。該探針對(duì)細(xì)胞表現(xiàn)出低毒性,具有高度靶向線粒體的能力,通過(guò)熒光顯微鏡成功對(duì)線粒體中的HClO進(jìn)行外源性和實(shí)時(shí)性成像。研究結(jié)果表明,探針4可以實(shí)時(shí)監(jiān)控線粒體中內(nèi)源性或外源性的HClO。
1.3 "基于氟硼吡咯類的熒光探針
自1968年BODIPY類熒光染料的合成被提出以來(lái),基于該發(fā)色團(tuán)的衍生物一直是人們研究的焦點(diǎn)之一,其出色的熒光性質(zhì)和物理性質(zhì)是這么多年備受關(guān)注的原因。例如:1.具有較高的光量子產(chǎn)率,在溶劑中不易淬滅。2.光穩(wěn)定性較強(qiáng),不會(huì)因此在熒光分析過(guò)程中受激發(fā)光照射而光降解,保證了分析時(shí)光信號(hào)的穩(wěn)定。3.光敏性能和檢測(cè)靈敏度都很高,有利于在生物領(lǐng)域方面的應(yīng)用。
2017年錢鷹課題組[22]基于HClO促進(jìn)的脫硫反應(yīng)設(shè)計(jì)了一種高選擇性近紅外雙光子熒光探針5(見(jiàn)圖3),用于檢測(cè)次氯酸。其優(yōu)勢(shì)在于有較高的光量子產(chǎn)率、較好的光穩(wěn)定性,在近紅外一區(qū)有相對(duì)較強(qiáng)且清晰穩(wěn)定的吸收和發(fā)射。該探針以氟硼吡咯作為發(fā)色團(tuán),為了擴(kuò)大結(jié)構(gòu)的共軛體系來(lái)增大發(fā)射波長(zhǎng)使其向長(zhǎng)波方向移動(dòng)而在氟硼吡咯上引入了對(duì)甲氧基苯醛(引入后該探針發(fā)射波長(zhǎng)由656 nm紅移至688 nm),在熒光分析檢測(cè)過(guò)程中以肉眼可看到反應(yīng)前后的熒光變化。將探針5與A357細(xì)胞(惡性黑色腫瘤細(xì)胞)共同孵育,細(xì)胞能清晰地顯示出黃綠色熒光,可以清晰地在細(xì)胞中線粒體成像,該結(jié)果表明這是一個(gè)良好的生物顯像試劑。
2019年Chong課題組[23]開(kāi)發(fā)了一種新的基于氟硼吡咯發(fā)色團(tuán)的比率型熒光探針6,該探針中反應(yīng)位點(diǎn)為硫醚基團(tuán),與次氯酸反應(yīng)后變?yōu)閬嗧炕鶊F(tuán),具有高亮度紅色熒光,探針6的光穩(wěn)定性極為出色、具有較高的熒光量子產(chǎn)率、光敏性能及檢測(cè)靈敏度高(檢測(cè)限低至59 nM)、在不同pH中熒光信號(hào)穩(wěn)定及響應(yīng)迅速(30 s),同時(shí)具有一些獨(dú)特的特征,例如:優(yōu)異的抗光漂白性、高熒光亮度、高選擇性以及良好的生物相容性和低細(xì)胞毒性。這些出色的熒光、物理及生物性質(zhì)使該探針能應(yīng)用于活細(xì)胞及小鼠體內(nèi)內(nèi)源性次氯酸的熒光成像,實(shí)現(xiàn)了次氯酸水平的實(shí)時(shí)監(jiān)測(cè),對(duì)研究與次氯酸有關(guān)的疾病和生理過(guò)程有重要意義。
2 "總結(jié)與展望
HOCl主要來(lái)自于線粒體并在各種病理和生理過(guò)程中起關(guān)鍵作用。在本綜述中,根據(jù)線粒體基質(zhì)具有強(qiáng)負(fù)電勢(shì)的特點(diǎn),對(duì)不同線粒體靶向基團(tuán)的次氯酸選擇性熒光探針進(jìn)行了分類。分別介紹探針的結(jié)構(gòu)、熒光性質(zhì)、生物成像應(yīng)用及響應(yīng)機(jī)制。目前,HOCl熒光探針的開(kāi)發(fā)也進(jìn)一步應(yīng)用于活細(xì)胞、斑馬魚(yú)中和小鼠中內(nèi)源性 HOCl 的成像,也成功應(yīng)用次氯酸選擇性熒光探針診斷一些疾病。用于檢測(cè)次氯酸的線粒體靶向探針已經(jīng)取得了重大的進(jìn)展,但由于生物體內(nèi)的環(huán)境極其復(fù)雜,探針在其中的響應(yīng)性會(huì)受到影響,大多數(shù)探針還是無(wú)法在實(shí)際臨床中應(yīng)用,因此設(shè)計(jì)合成發(fā)射波長(zhǎng)更長(zhǎng)、光穩(wěn)定性更好、靈敏度更高、更有實(shí)際應(yīng)用價(jià)值的探針,有助于加快癌癥治療、病理研究、疾病診斷的實(shí)際應(yīng)用,成為臨床上有用的分子工具。
參考文獻(xiàn):
[1]ADEGOKE O,F(xiàn)ORBES P B C. Challenges and advances in quantum dot fluorescent probes to detect reactive oxygen and nitrogen species:a review[J]. Anal Chim Acta,2015,862:1-13
[2]ZHANG L J,ZHAO X,YANG D,et al. A new water-soluble and mitochondria-targeted fluorescence probe for ratiometric detection of hypochlorous acid in living cells[J]. Sens Actuators B:Chem,2018,276:8-12.
[3]WANG W,NING J Y,LIU J T,et al. A mitochondria-targeted ratiometric fluorescence sensor for the detection of hypochlorite in living cells[J]. Dyes Pigm,2019,171:107708.
[4]WANG T R,ZHANG X F,HUANG X Q,et al. Rapid and selective visualization of mitochondrial hypochlorite by a red region water-soluble fluorescence probe[J]. Spectrochim Acta A:Mol Biomol Spectrosc,2021,247:119115.
[5]XI L L,GUO X F,WANG C L,et al. A near-infrared ratiometric fluorescent probe for rapid and selective detection of hypochlorous acid in aqueous solution and living cells[J]. Sens Actuators B:Chem,2018,255:666-671.
[6]HUANG Y,HE N,WANG Y,et al. Detection of hypochlorous acid fluctuation via a selective near-infrared fluorescent probe in living cells and in vivo under hypoxic stress[J]. J Mater Chem B,2019,7(15):2557-2564.
[7]ZHANG L J,ZHAO X,YANG D,et al. A new water-soluble and mitochondria-targeted fluorescence probe for ratiometric detection of hypochlorous acid in living cells[J]. Sens Actuators B:Chem,2018,276:8-12.
[8]WANG W,NING J Y,LIU J T,et al. A mitochondria-targeted ratiometric fluorescence sensor for the detection of hypochlorite in living cells[J]. Dyes Pigm,2019,171:107708.
[9]WANG T R,ZHANG X F,HUANG X Q,et al. Rapid and selective visualization of mitochondrial hypochlorite by a red region water-soluble fluorescence probe[J]. Spectrochim Acta A:Mol Biomol Spectrosc,2021,247:119115.
[10]GAO G,ZHAO P,ZHOU J,et al. A commercially available NIR fluorescence probe for the detection of hypochlorite and its application in cell imaging[J]. Microchem J,2020,159:105311.
[11]LIN X,CHEN Y,BAO L,et al. A two-photon near-infrared fluorescent probe for imaging endogenous hypochlorite in cells,tissue and living mouse[J]. Dyes Pigm,2020,174:108113.
[12]LIU L,WEI P,YUAN W,et al. Detecting basal myeloperoxidase activity in living systems with a near-infrared emissive“turn-on”probe[J]. Anal Chem,2020,92(16):10971-10978.
[13]NIE J,SUN H,MIAO B,et al. A novel coumarin-based ratiometric near-infrared fluorescence probe for hypochlorous acid in living cells[J]. Dyes Pigm,2020,181:108590.
[14]XU L,WU M,ZHAO L,et al. A novel highly sensitive and near-infrared fluorescent probe for detecting hypochlorite and its application in actual water sample and bioimaging[J]. Talanta,2020,215:120892.
[15]YANG J,ZHENG W,SHEN Y,et al. A novel near-infrared fluorescent probe based on phenoxazine for the specific detection of HOCl[J]. J Lumin,2020,226:117460.
[16]ZHANG M,ZUO M,WANG C,et al. Monitoring neuroinflammation with an HOCl-activatable and blood-brain barrier permeable upconversion nanoprobe[J]. Anal Chem,2020,92(7):5569-5576.
[17]ZHENG W,YANG J,SHEN Y,et al. The near-infrared fluorescent probes based on phenoxazine for the rapid detection of hypochlorous acid[J]. Dyes Pigm,2020,179:108404.
[18] LAN J S,LIU L,ZENG R F,et al. Rational modulation of coumarin-hemicyanine platform based on OH substitution for higher selective detection of hypochlorite[J]. Chem Comm,2020,56(8):1219-1222.
[19] JIANG C,LI Y,YAN L,et al. A ratiometric fluorescence mitochondrial-targeted probe for imaging HOCl in vitro and in vivo[J]. Dyes Pigm,2022,198:109975.
[20] MAO G J,GAO G Q,LIANG Z Z,et al. A mitochondria-targetable two-photon fluorescent probe with a far-red to near-infrared emission for sensing hypochlorite in biosystems[J]. Anal Chim Acta 2019,1081:184-192.
[21]WANG Q M, Jin L, Shen Z Y, et al. Mitochondria-targeting turn-on fluorescent probe for HClO detection and imaging in living cells[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2019, 228: 117825.
[22]SHEN B X,QIAN Y,QI Z Q,et al. Near-infrared BODIPY-based two-photon ClO?probe based on thiosemicarbazide desulfurization reaction:naked-eye detection and mitochondrial imaging[J]. J Mater Chem B,2017,5(29):5854-5861.
[23] DUAN C., WON M., P VERWILST P., et al. In vivo imaging of endogenously produced HClO in zebrafish and mice using a bright, photostable ratiometric fluorescent probe [J].Anal. Chem., 2019, 91(6), 4172-4178..
Probes for the Detection of Hypochlorous Acid
LI Meng-ting
(College of Chemistry amp; Chemical Engineering, Yunnan Normal University, Kunming Yunnan 650500, China)
Abstract: "Hypochlorous acid is a reactive oxygen species derived from mitochondria and plays an important role in various physiological and pathological processes. However, when the concentration of HOCl in cells exceeds the normal range, it can cause damage to the body and a range of diseases. Therefore, in recent years, a series of fluorescent probes that can identify and monitor the level of hypochlorous acid in mitochondria in real time have been developed and designed, which can help to better understand the health status of organisms and the physiological roles and pathological processes played by HOCl. In this paper, the application and development of HOCl fluorescent probes in recent years were mainly introduced. According to the types of groups targeting mitochondria, triphenylphosphine fluorescent probes, hemicyanine fluorescent probes and fluoroboron pyrrole fluorescent probes were introduced respectively.
Key words: Hypochlorous acid; Mitochondria; Fluorescent probe