摘 " " "要: 針對(duì)聚環(huán)氧乙烷(PEO)基聚合物電解質(zhì)室溫易結(jié)晶的問題,將4-4-二羥基-α,α'-二甲基卞聯(lián)氮(DDBA)改性芳綸纖維(DF)摻雜在基體中,抑制PEO結(jié)晶,提高其離子電導(dǎo)率。通過交流阻抗、差式掃描量熱等方法進(jìn)行表征。結(jié)果表明:制備的聚合物電解質(zhì)在少量DF摻雜時(shí)離子電導(dǎo)率有所改善,其中摻雜質(zhì)量分?jǐn)?shù)2.0wt.% DF的電解質(zhì)電化學(xué)性能最好,在25 ℃下電導(dǎo)率達(dá)到1.5×10-5 S/cm,離子遷移數(shù)提高至0.30。
關(guān) "鍵 "詞:聚環(huán)氧乙烯;離子電導(dǎo)率; 4-4-二羥基-α,α'-二甲基卞聯(lián)氮; 離子遷移數(shù)
中圖分類號(hào):TQ314.2 " " 文獻(xiàn)標(biāo)識(shí)碼: A " " 文章編號(hào): 1004-0935(20202023)0×3-00000327-0×4
固態(tài)電解質(zhì)有望從根本上解決液態(tài)電解質(zhì)存在的安全問題[1]。聚環(huán)氧乙烷(PEO)基聚合物電解質(zhì)具有良好的成膜性、易加工性以及電化學(xué)穩(wěn)定性等優(yōu)點(diǎn),是制作固態(tài)電解質(zhì)的理想材料之一[2]。1973年Wright教授首次將鉀鹽溶于PEO中形成絡(luò)合物發(fā)現(xiàn)其具有離子傳導(dǎo)能力[3]。目前國(guó)內(nèi)外研究學(xué)者們主要通過共混[4-6]、共聚[7-9]等方法降低PEO基體的高結(jié)晶度,提高離子電導(dǎo)率。
芳綸纖維是一種芳香族聚酰胺,具有優(yōu)異的機(jī)械性能,近年來被廣泛應(yīng)用在儲(chǔ)能領(lǐng)域[10-11]。Liu,L等人[12]將納米芳綸纖維(ANFs)應(yīng)用在PEO基體中發(fā)現(xiàn)其離子電導(dǎo)率有所提高,但ANFs與PEO基體的相容性不佳。金輝等人[13]通過液晶單體4-4-二羥基-α,α'-二甲基卞聯(lián)氮(DDBA)對(duì)芳綸纖維進(jìn)行改性發(fā)現(xiàn)DDBA有助于提高芳綸纖維的相容性。
本文設(shè)計(jì)在PEO中摻雜DDBA改性芳綸纖維(DF),通過自動(dòng)刮膜技術(shù)制備PEO基聚合物電解質(zhì)。期望DF的引入可以抑制PEO基體的結(jié)晶從而提高離子電導(dǎo)率。
1. " "實(shí)驗(yàn)部分
1.1 "試劑
PEO(ave.Mv=1.0×106 g/mol,Aladdin公司),乙腈(ACN,天津市富宇精細(xì)化工有限公司),雙三氟甲烷磺酰亞胺鋰(LiTFSI,Mackin公司),DDBA改性芳綸纖維(DF,實(shí)驗(yàn)室自制)。
1.2 "儀器
Super型真空手套箱,米開羅那有限公司;CJJ-781型磁力攪拌器,德國(guó)IKA公司;MSK-AFA-Ⅲ型小型流延自動(dòng)涂膜烘干機(jī),合肥科晶材料技術(shù)有限公司。
1.3 "DF/PEO基聚合物電解質(zhì)的制備
將PEO、DF和LiTFSI在真空干燥箱60 ℃恒溫靜置12h后待用。LiTFSI稱取與攪拌均在手套箱中進(jìn)行。分別制備PEO和LiTFSI乙腈溶液,將兩種溶液混合后磁力攪拌3 h得到預(yù)溶液。把DF乙腈溶液加到預(yù)溶液中磁力攪拌3 h得到均勻粘稠共混液。將共混液倒置于清洗干凈的玻璃板上,用小型流延自動(dòng)涂膜烘干機(jī)以5.0 mm/s的速度勻速刮膜,轉(zhuǎn)移至60 ℃的鼓風(fēng)干燥箱干燥12 h后,再移到真空干燥箱(60 ℃)中干燥12 h,揭膜后用裁片機(jī)裁成直徑為16 mm的樣品,命名為DFx/SPE(x為DF的加入量,值質(zhì)量分?jǐn)?shù)為0、1%、2%、3%、4%、5wt.%),放置在手套箱中密封保存。
1.4 "聚合物電解質(zhì)性能表征
美國(guó)TA公司的Q20型差式掃描量熱分析儀做熱分析;上海晨華公司CHI660E對(duì)電解質(zhì)做交流阻抗和計(jì)時(shí)電流測(cè)試;采用荷蘭飛鈉公司的Phenom ProX型電鏡觀察表明形貌。
2 "結(jié)果與討論
2.1 "DF對(duì)PEO基聚合物電解質(zhì)離子電導(dǎo)率的影響
通過ZsimpWin軟件對(duì)DF2/SPE膜的交流阻抗數(shù)據(jù)進(jìn)行擬合分析,當(dāng)擬合電路為圖1中插圖時(shí),擬合效果最佳。插圖中Rb為DF2/SPE膜的本體電阻,值為高頻區(qū)半圓與X軸的交點(diǎn);Rint為界面電阻,值為中高頻區(qū)半圓與X軸的交點(diǎn)[14]。
為探究DF對(duì)PEO基聚合物電解質(zhì)離子電導(dǎo)率的影響,將制備得到的DFx/SPE膜在手套箱中組裝不銹鋼對(duì)稱電池(SS||DFx/SPE||SS)后進(jìn)行交流阻抗測(cè)試(頻率為0.1 Hz~106 Hz)。圖2為25 ℃下,DFx/SPE膜的EIS曲線,表1為離子電導(dǎo)率數(shù)據(jù)。從表和圖中可以看出,隨著DF含量增加,DFx/PEO的Rint和Rb都呈先減小后增加的趨勢(shì)。當(dāng)測(cè)試溫度為25℃,DF摻雜質(zhì)量分?jǐn)?shù)為量為2.0wt.%時(shí),離子電導(dǎo)率達(dá)到最大值1.98×10-5 S/cm,增加了一個(gè)數(shù)量級(jí)。
DF表面的路易斯酸性物質(zhì)與PEO基體中C-O鍵路易斯堿形成絡(luò)合物,抑制PEO鏈段結(jié)晶,無定性區(qū)面積增加。此外,DF與LiTFSI陰離子基團(tuán)發(fā)生相互作用會(huì)進(jìn)一步促進(jìn)Li+的解離[12],體系中可自由移動(dòng)的鋰離子數(shù)增加。二者的相互作用使得DFx/SPE的離子電導(dǎo)率增加。當(dāng)DF摻雜量高于2.0wt.%時(shí),離子電導(dǎo)率逐漸降低。這是由于在25℃下,DF為結(jié)晶態(tài)。當(dāng)基體中DF含量過高反而會(huì)影響DFx/SPE的相對(duì)結(jié)晶度,從而影響離子電導(dǎo)率。
DF表面的路易斯酸性物質(zhì)與PEO基體中C-O鍵路易斯堿形成絡(luò)合物,抑制PEO鏈段結(jié)晶,無定性區(qū)面積增加。此外,DF與LiTFSI陰離子基團(tuán)發(fā)生相互作用會(huì)進(jìn)一步促進(jìn)Li+的解離[12],體系中可自由移動(dòng)的鋰離子數(shù)增加。二者的相互作用使得DFx/SPE的離子電導(dǎo)率增加。當(dāng)DF摻雜質(zhì)量分?jǐn)?shù)高于2.0%時(shí),離子電導(dǎo)率逐漸降低。這是由于在25 ℃下,DF為結(jié)晶態(tài)。當(dāng)基體中DF含量過高反而會(huì)影響DFx/SPE的相對(duì)結(jié)晶度,從而影響離子電導(dǎo)率。
2.2 "聚合物電解質(zhì)的離子遷移數(shù)
鋰離子遷移數(shù)(tLi+ )通過計(jì)時(shí)電流與交流阻抗聯(lián)合測(cè)試得出。計(jì)算公式如2.(1)1所示:
。 " " " " "(2.1)(1)
式中: 為—極化電壓;
I0為—初始電流;
Is為—穩(wěn)態(tài)電流;
R0為—初始電阻;
Rs為—穩(wěn)態(tài)電阻。
為探究DF添加量質(zhì)量分?jǐn)?shù)為2.0wt.%時(shí),PEO基聚合物電解質(zhì)的離子遷移數(shù)。在真空手套箱中組裝鋰對(duì)稱半電池(Li||DF2/SPE||Li)后,在60℃下進(jìn)行計(jì)時(shí)電流(?V=1 mV, t=3 600 s)和極化前后交流阻抗測(cè)試(頻率為0.1 Hz~106 Hz)。圖3為計(jì)時(shí)電流曲線,插圖為極化前后的EIS圖。由EIS圖可知,極化后聚合物電解質(zhì)的Rb增加(從544.9Ω增加到773.4Ω),界面電阻降低。通過公式2.1計(jì)算得出DF2/SPE的離子遷移數(shù)為0.30,而未加DF時(shí),DF0/SPE的離子遷移數(shù)為0.24(由實(shí)驗(yàn)數(shù)據(jù)計(jì)算得出,和文獻(xiàn)報(bào)道的一致[15-16])。DF表明的路易斯酸性物質(zhì)與C-O鍵路易斯堿形成的絡(luò)合物不僅會(huì)抑制PEO基體結(jié)晶,也在PEO與DF的界面相之間形成Li+傳輸通道,增強(qiáng)離子傳輸,離子遷移數(shù)增加。
圖3 "60 ℃下DF2/SPE的計(jì)時(shí)電流曲線
由EIS圖可知,極化后聚合物電解質(zhì)的Rb增加(從544.9 Ω增加到773.4 Ω),界面電阻降低。通過公式(1)計(jì)算得出DF2/SPE的離子遷移數(shù)為0.30,而未加DF時(shí),DF0/SPE的離子遷移數(shù)為0.24(由實(shí)驗(yàn)數(shù)據(jù)計(jì)算得出,和文獻(xiàn)報(bào)道的一致[15-16])。DF表明的路易斯酸性物質(zhì)與C-O鍵路易斯堿形成的絡(luò)合物不僅會(huì)抑制PEO基體結(jié)晶,也在PEO與DF的界面相之間形成Li+傳輸通道,增強(qiáng)離子傳輸,離子遷移數(shù)增加。
2.3 "DFx/SPE結(jié)晶性能分析
DSC測(cè)試常被用來研究聚合物電解質(zhì)的相對(duì)結(jié)晶度,計(jì)算公式如(2)2.2所示。
。 " " (2.2)(2)
式中:
:—PEO的相對(duì)結(jié)晶度,%;
:—PEO的熔融焓,J/g;
:—PEO在100%結(jié)晶時(shí)的熔融焓,213.7 J/g。
圖4為DFx/PEO的DSC曲線,通過公式(2)計(jì)算得出的相對(duì)結(jié)晶度數(shù)據(jù)如表2所示,Tm為熔點(diǎn)。
圖4為DFx/PEO的DSC曲線,通過公式2.2計(jì)算得出的相對(duì)結(jié)晶度數(shù)據(jù)如表2所示,Tm為熔點(diǎn)。由圖可知制備得到的聚合物電解質(zhì)只有一個(gè)熔融峰即DF與PEO基體的相容性良好,未發(fā)生相分離。隨著DF含量增加,熔融焓和相對(duì)結(jié)晶度都呈先減小后增加的趨勢(shì)。當(dāng)DF加入量質(zhì)量分?jǐn)?shù)為2.0wt.%時(shí),DF2/SPE的熔融焓為73.5 J/g,相對(duì)結(jié)晶度達(dá)到最小為34.4%,這是由于DF的引入破壞了PEO球晶的規(guī)整排列,基體結(jié)晶度降低。隨著DF含量繼續(xù)增加,相對(duì)結(jié)晶度增加,當(dāng)DF加入量質(zhì)量分?jǐn)?shù)為5.0wt.%時(shí),相對(duì)結(jié)晶度為47.2%。說明少量DF的摻雜有助于抑制PEO基體結(jié)晶,而低的結(jié)晶度有助于提供更高的離子電導(dǎo)率,這與交流阻抗測(cè)試結(jié)果是一致的。
2.4 "DFx/SPE表觀形貌分析
由DSC和交流阻抗測(cè)試結(jié)果可知,當(dāng)DF摻雜量質(zhì)量分?jǐn)?shù)為2.0wt.%時(shí),DFx/SPE離子電導(dǎo)率最佳,相對(duì)結(jié)晶度最小,為探究DF摻雜對(duì)電解質(zhì)膜表觀形貌的影響,取DF2/SPE樣品進(jìn)行表觀形貌測(cè)試。結(jié)果如圖5所示。當(dāng)未摻雜DF時(shí)(a圖),DF0/SPE膜表面規(guī)整且排列有序,是PEO基體球晶結(jié)構(gòu)所致。DF摻入量質(zhì)量分?jǐn)?shù)為2.0wt.%時(shí)(b圖),膜表面有序結(jié)構(gòu)被破壞,出現(xiàn)大量連續(xù)的褶皺和少數(shù)微孔。這是由于膜制備過程中乙腈溶劑揮發(fā)導(dǎo)致表面出現(xiàn)微孔。而DF的特殊結(jié)構(gòu)破壞了PEO基體的規(guī)整排列使得膜表面出現(xiàn)褶皺,抑制PEO基體的結(jié)晶,降低聚合物的結(jié)晶度。這與DSC的測(cè)試結(jié)果保持一致。
圖5 "(a)DF0/SPE和(b)DF2/SPE 掃描電鏡照片
3 "結(jié) 論
通過自動(dòng)刮膜技術(shù)制備了摻雜DF的PEO基聚合物電解質(zhì)。DFx/SPE在較低的DF摻雜量下,離子電導(dǎo)率和離子遷移數(shù)有所改善。在25 ℃下,離子電導(dǎo)率達(dá)到1.98×10-5 S/cm,離子遷移數(shù)為0.30,電化學(xué)性能最好。相比于PEO基聚合物電解質(zhì),電導(dǎo)率提高了一個(gè)數(shù)量級(jí),離子遷移數(shù)增幅較大。
參考文獻(xiàn):
[1]LI J, MA C, CHI M, et al. Solid Electrolyte: the Key for High-voltage Lithium Batteries[J]. Advanced Energy Materials, 2015, 5(4): 1401408.
[2]HE L, OH J A S, CHUA J J J, et al. Solid-state electrolytes: Advances and perspectives[J]. Functional Materials Letters, 2021, 14 (03): 21300.
[3]FENTON D. E., PARKER J. M., WRIGHT P. V, et al. Complexes of Alkali Metal Ions with Poly(Ethylene Oxide)[J]. Polymer, 1973, 14 (11): 580–-589.
[4]LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A,2016, 4(26): 10038-10069.
[5]ECHEVERRI M, KIM N, KYU T. ionic conductivity in Relation to Ternary Phase Diagram of Poly(ethylene oxide), Succinonitrile, and Lithium Bis(trifluoromethane)sulfonimide Blends[J]. Macromolecules, 2012, 45(15): 6068-6077.
[6]TSUCHIDA E, OHNO H, TSUNEMI K, et al. Lithium ionic conduction in poly (methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate[J]. Solid State Ionics, 1983, 11(3): 227-233.
[7]張夢(mèng). 新型固態(tài)電解質(zhì)的合成及性能研究[D].上海交通大學(xué),2020.
[8]SUN J, STONE G M, BALSARA N P, et al. Structure-Conductivity Relationship for Peptoid-Based PEO–Mimetic Polymer Electrolytes[J]. Macromolecules, 2012, 45(12): 5151-5156.
[9]TEW, Versek C, TOUMINEN M, et al. Tunable Networks from Thiolene Chemistry for Lithium-ion Conduction[J]. ACS Macro Letters, 2012, 1(6): 737-741.
[10]DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials science and Engineering: R: Reports, 2019, 136: 27-46.
[11]ZHAO Y, LI X, SHEN J, et al. The potential of Kevlar aramid nanofiber composite membranes[J]. Journal of Materials Chemistry A, 2020, 8 (16): 7548-7568.
[12]LIU L, LYU J, MO J, et al. Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries[J]. Nano Energy, 2020, 69: 104398.
[13]金輝. 芳綸增強(qiáng)橡膠密封復(fù)合材料的研究 [D]. 沈陽工業(yè)大學(xué)[D].沈陽.
[14]WANG X, WEI X, ZHU J, et al. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J]. eTransportation, 2021, 7: 100093.
[15]TANG Wen Jing Tang, TANG Shan Tang, ZHANG Cui Juan, Zhang et al. Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets[J]. 2018, 1800866.
[16]ZHAO YAN RAN Zhao, HUANG Zhen Huang, CHEN Shao Jie CHEN. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries[J]. Solid State Ionics. ,2016, :65-71.
Effect of DDBA Modified Aramid Fiber on PEO Polymer Electrolyte
GUO Bao-ming,ZHANG Ai-ling,TANG Kai-hong,WANG Yan-qi
(School College of Environmental and Chemical Engineering, Liaoning Shenyang 110870,China)
Abstract: "To address the problem that polyethylene oxide (PEO)-based polymer electrolytes are prone to crystallization at room temperature, 4-4-dihydroxy-α,α'-dimethylbianonitrile (DDBA)-modified aramid fibers (DF) were doped into the matrix to inhibit PEO crystallization and improve its ionic conductivity. Characterization was performed by AC impedance and differential scanning calorimetry. The results show that the prepared polymer electrolytes have improved ionic conductivity with a small amount of DF doping, and the electrolyte doped with 2.0 wt.% DF has the best electrochemical performance, reaching a conductivity of 1.5 × 10-5S/cm at 25 °C and ion mobility number from improving to 0.30.
Key words: "Polyethylene oxide; "Ionic conductivity; "4-4-dihydroxy-α,α'-dimethylpyrolactone; "Ion mobility numberEffect of DDBA Modified Aramid Fiber on PEO Polymer Electrolyte
GUO Bao-ming, ZHANG Ai-ling, TANG Kai-hong, WANG Yan-qi
(School College of Environmental and Chemical Engineering, Shenyang University of Technology,
Shenyang Liaoning 110870, China)
Abstract: "To address the problem that polyethylene oxide (PEO)-based polymer electrolytes are prone to crystallization at room temperature, 4-4-dihydroxy-α,α'-dimethylbianonitrile (DDBA)-modified aramid fibers (DF) were doped into the matrix to inhibit PEO crystallization and improve its ionic conductivity. Characterization was performed by AC impedance and differential scanning calorimetry. The results showed that the prepared polymer electrolytes improved ionic conductivity with a small amount of DF doping, and the electrolyte doped with 2.0%(mass fraction) DF had the best electrochemical performance, reaching the conductivity of 1.5×10-5 S·cm-1 at 25 ℃ and ion mobility number increased to 0.30.
Key words: Polyethylene oxide; Ionic conductivity; 4-4-Dihydroxy-α,α'-dimethylpyrolactone; Ion mobility number