【摘要】 骨質(zhì)疏松性椎體壓縮性骨折(OVCF)是老年骨質(zhì)疏松患者常見(jiàn)的臨床并發(fā)癥。經(jīng)皮椎體成形術(shù)(PVP)和經(jīng)皮椎體后凸成形術(shù)(PKP)能夠快速緩解骨折患者疼痛,增強(qiáng)椎體強(qiáng)度和穩(wěn)定性,快速恢復(fù)患者正?;顒?dòng),臨床廣泛使用。但術(shù)后患者傷椎及鄰椎再骨折是常見(jiàn)的并發(fā)癥。引起再骨折的因素有很多,且一直存在爭(zhēng)議。本文從患者自身、PVP/PKP、抗骨質(zhì)疏松治療方面對(duì)患者椎體再骨折的影響因素研究進(jìn)展進(jìn)行綜述,為預(yù)防及降低椎體再骨折的發(fā)生提供參考。
【關(guān)鍵詞】 椎體壓縮性骨折 椎體成形術(shù) 骨質(zhì)疏松癥 危險(xiǎn)因素
Research Progress on the Related Factors of Refracture after Vertebroplasty for Osteoporotic Vertebral Compression Fracture/GONG Defeng. //Medical Innovation of China, 2023, 20(24): -178
[Abstract] Osteoporotic vertebral compression fracture (OVCF) is a common clinical complication in elderly patients with osteoporosis. Percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) can quickly relieve the pain of patients with fractures, enhance the strength and stability of the vertebral body, and quickly restore the normal activities of patients, which are widely used in clinical practice. However, refracture of the injured vertebrae and adjacent vertebrae is a common complication. There are many factors those cause refracture, and they have been controversial. This article reviews the research progress on the related factors of vertebral refracture in patients from the aspects of patient's own, PVP/PKP, anti-osteoporosis treatment, so as to provide reference for preventing and reducing the occurrence of vertebral refracture.
[Key words] Vertebral compression fracture Vertebroplasty Osteoporosis Risk factors
First-author's address: The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
doi:10.3969/j.issn.1674-4985.2023.24.041
隨著社會(huì)人口老齡化,老年性骨質(zhì)疏松的患者越來(lái)越多,1994年,世界衛(wèi)生組織(WHO)將骨質(zhì)疏松癥定義為“以低骨量和骨組織微結(jié)構(gòu)惡化為特征的進(jìn)行性全身性骨骼疾病,從而導(dǎo)致骨脆性和骨折易感性增加”。據(jù)統(tǒng)計(jì)我國(guó)50歲以上有1/3的女性和1/5的男性會(huì)發(fā)生骨質(zhì)疏松性骨折,其中約50%以上發(fā)生在椎體,尤其是胸腰段[1]。椎體骨折后會(huì)引起疼痛、活動(dòng)障礙、脊柱后凸畸形等癥狀,骨折后患者長(zhǎng)期臥床,進(jìn)一步加重骨質(zhì)疏松,并引起許多并發(fā)癥,危及患者生命。由于經(jīng)皮椎體成形術(shù)(PVP)和經(jīng)皮椎體后凸成形術(shù)(PKP)能夠快速緩解患者疼痛,增強(qiáng)椎體強(qiáng)度,快速恢復(fù)患者正?;顒?dòng),越來(lái)越多地應(yīng)用到臨床。但是,椎體成形術(shù)后存在骨水泥滲漏、椎體再骨折等問(wèn)題。Dai等[2]報(bào)道9 372例OVCF患者,1 255例患者在PVP/PKP后再次骨折,再骨折的發(fā)生率為13.39%。與PVP/PKP后再次骨折相關(guān)的主要因素有性別、年齡、骨密度(BMD)、手術(shù)前后椎體高度比、Cobb后凸角矯正率、骨水泥滲漏和抗骨質(zhì)疏松治療等。既有患者自身的影響,也有手術(shù)及抗骨質(zhì)疏松用藥等因素影響。通過(guò)查閱國(guó)內(nèi)外相關(guān)文獻(xiàn),現(xiàn)報(bào)道如下。
1 椎體骨折患者自身基本因素
骨質(zhì)疏松是一種慢性疾病,隨著患者的年齡增長(zhǎng),疾病也在不斷發(fā)展。骨質(zhì)疏松引起的新骨折也是疾病的自然進(jìn)程。Chen等[3]的研究證實(shí)高齡和低BMD是PVP/PKP術(shù)后再骨折重要的危險(xiǎn)因素。在新加坡進(jìn)行的一項(xiàng)研究報(bào)道,高齡可能會(huì)增加椎體成形術(shù)后再次骨折的風(fēng)險(xiǎn),因?yàn)锽MD和骨量會(huì)隨著年齡的增長(zhǎng)而下降[4]。
BMD是衡量骨質(zhì)疏松程度的重要指標(biāo),骨密度越低骨折和再骨折的風(fēng)險(xiǎn)就越大。Zhang等[5]進(jìn)行薈萃分析結(jié)果顯示,低BMD和低體重指數(shù)(BMI)會(huì)增加椎體成形術(shù)后再次發(fā)生椎體骨折的風(fēng)險(xiǎn)。BMI對(duì)骨折的影響一直存在爭(zhēng)議,Tanaka等[6]的研究顯示BMI與骨質(zhì)疏松性骨折是相關(guān)的,BMI低者易發(fā)生髖部骨折,BMI高者易發(fā)生椎體壓縮性骨折。但是,也有研究表明,BMI與PVP/PKP后椎體再發(fā)骨折無(wú)顯著相關(guān)性[7]。有報(bào)道,BMD降低和血清25(OH)D3水平降低可能是PVP后骨水泥椎體高度損失的兩個(gè)關(guān)鍵且重要的危險(xiǎn)因素[8]。
此外,一些能引起及加重骨質(zhì)疏松的疾病,也會(huì)增加再骨折的風(fēng)險(xiǎn),骨質(zhì)疏松癥的繼發(fā)性原因有很多(例如炎癥性腸病、內(nèi)分泌失調(diào)),但在大多數(shù)情況下,骨折風(fēng)險(xiǎn)的增加取決于低BMD或其他因素(例如使用糖皮質(zhì)激素)并不確定。相比之下,類(lèi)風(fēng)濕性關(guān)節(jié)炎會(huì)增加骨折風(fēng)險(xiǎn),而與BMD和糖皮質(zhì)激素的使用無(wú)關(guān)[9]。另外,吸煙、飲酒、口服糖皮質(zhì)激素也會(huì)增加骨折的風(fēng)險(xiǎn)[10]。
2 椎體骨折患者骨折局部因素
2.1 椎體骨折部位
脊柱胸腰段是相對(duì)固定的胸椎和活動(dòng)較多的腰椎的結(jié)合部,應(yīng)力比較集中,很容易出現(xiàn)椎體的壓縮性骨折,造成后凸畸形。研究也發(fā)現(xiàn),胸腰段的椎體是OVCF的好發(fā)部位[11];有報(bào)道PVP/PKP后椎體再發(fā)骨折的好發(fā)部位也在胸12至腰2椎體[12]。Kim等[13]對(duì)913例胸腰椎壓縮性骨折進(jìn)行評(píng)估,發(fā)現(xiàn)胸腰段(T11~L2)PVP后相鄰椎體再骨折發(fā)生率比脊柱其他節(jié)段PVP術(shù)后鄰近椎體的再骨折率高2.7倍。所以,胸腰段的椎體骨折容易出現(xiàn)再骨折。
2.2 椎體骨折數(shù)量
骨折的椎體越多,PVP/PKP對(duì)脊柱的生物力學(xué)影響越大,越容易出現(xiàn)再骨折。研究報(bào)道,對(duì)于不只一處椎體骨折,再骨折風(fēng)險(xiǎn)的增加更為顯著,骨折后立即發(fā)生再骨折的風(fēng)險(xiǎn)(即將發(fā)生的風(fēng)險(xiǎn))最高,十年內(nèi)超過(guò)三分之一的再骨折發(fā)生在第一年[14-15]。Ren等[16]研究描述,手術(shù)后再次發(fā)生椎體骨折的風(fēng)險(xiǎn)與初始手術(shù)中椎體骨折的數(shù)量相關(guān);并且初始?jí)嚎s性骨折的椎體數(shù)量越多,對(duì)手術(shù)后整個(gè)脊柱的生物力學(xué)和壓力負(fù)荷的影響就越大。傳遞的影響越大,這可能會(huì)增加再次發(fā)生椎體骨折的風(fēng)險(xiǎn)。
2.3 椎體壓縮性骨折的程度和形態(tài)
椎體骨折的嚴(yán)重程度不同,對(duì)椎體穩(wěn)定性的影響也不同,雖然PVP/PKP可以增加椎體的強(qiáng)度和穩(wěn)定性,但由于力學(xué)和載荷的改變,骨折的嚴(yán)重程度也是再骨折的危險(xiǎn)因素。Samelson等[17]報(bào)道中重度骨折患者在隨訪期間的再骨折發(fā)生率是輕度骨折參與者的5倍。且椎體壓縮程度越大,椎體再骨折的概率就越高。
椎體骨折的形態(tài)改變包括椎體裂隙征,椎體后凸畸形,終板破裂等。椎體裂隙征,臨床上又稱Kummel's病,對(duì)再骨折也有影響,椎體裂隙征首先由Maldague等報(bào)道,是缺血性椎體塌陷的表現(xiàn),在X線片上,它表現(xiàn)為橫向、線性或半月形的透光陰影,也被稱為“椎體真空癥”等[18]。有學(xué)者通過(guò)術(shù)前、后核磁共振檢查,發(fā)現(xiàn)伴有椎體內(nèi)裂隙征骨折的患者再骨折的發(fā)生率明顯增高[19]。Lin等[20]提出再骨折的原因與骨折后骨壞死,骨水泥填充不均勻,載荷重新分布有關(guān)。椎體的后凸畸形也是影響椎體成形術(shù)后再骨折的因素,Kang等[21]研究發(fā)現(xiàn)椎體的后凸角大于15°,矢狀角指數(shù)大于12°的患者,術(shù)后再骨折的風(fēng)險(xiǎn)較高。終板皮質(zhì)破裂也是引起再骨折的原因,Xiong等[22]報(bào)道終板皮質(zhì)斷裂是PVP后骨水泥椎體再骨折的高危因素。Zhong等[23]報(bào)道終板皮質(zhì)破裂容易造成椎間盤(pán)內(nèi)骨水泥滲漏,引起生物力學(xué)改變,增加再骨折的風(fēng)險(xiǎn)。
3 椎體成形術(shù)相關(guān)因素
正常椎體的載荷主要經(jīng)過(guò)上下終板和椎間盤(pán)進(jìn)行傳導(dǎo),椎體的骨小梁也起著分散應(yīng)力的作用,PVP/PKP后,由于椎體的強(qiáng)度、骨小梁的分布發(fā)生改變,以及上下終板和椎間盤(pán)的破壞,使脊柱椎體的力學(xué)和載荷傳導(dǎo)方式發(fā)生改變,從而增加骨折椎體和鄰近椎體再骨折的風(fēng)險(xiǎn)。具體因素包括以下幾個(gè)方面:
3.1 手術(shù)方式
椎體成形術(shù)包括PVP和PKP兩種手術(shù)方式,PKP通過(guò)球囊擴(kuò)張,可以更好地恢復(fù)椎體高度,減少骨水泥滲漏,但是骨水泥的彌散分布較PVP手術(shù)差。Li等[24]報(bào)道230例患者經(jīng)雙側(cè)PVP或PKP,PKP后患者的再骨折率(16.19%),明顯高于PVP后患者的再骨折率(2.94%)。Frankel等[25]對(duì)PKP或PVP患者進(jìn)行回顧性分析,術(shù)后3個(gè)月PKP組有25%發(fā)生手術(shù)后椎體再骨折,PVP組無(wú)一例發(fā)生再骨折??梢钥闯觯@兩種手術(shù)方式對(duì)再骨折的影響有明顯不同。PVP/PKP分為單側(cè)和雙側(cè)穿刺方式,雖然,骨水泥雙側(cè)穿刺較單側(cè)穿刺分布更均勻,但Chen等[26]進(jìn)行回顧性研究認(rèn)為單側(cè)和雙側(cè)穿刺,患者的再骨折率沒(méi)有明顯差異。
3.2 骨水泥材料
目前,椎體成形術(shù)最常用的材料是聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)。PMMA機(jī)械強(qiáng)度高,易于注射,可塑性性,被臨床廣泛應(yīng)用。但是,也存在著無(wú)法生物降解、固化時(shí)產(chǎn)熱、聚合過(guò)程中釋放單體,可以引起心腔內(nèi)骨水泥栓塞和肺骨水泥栓塞等問(wèn)題[27]。Zhai等[28]通過(guò)對(duì)比研究發(fā)現(xiàn)PMMA固化后有很高的彈性模量,容易產(chǎn)生應(yīng)力遮擋,引起鄰近椎體再骨折。Zhu等[29]利用在PMMA中加入礦化膠原(MC)來(lái)治療OVCF,發(fā)現(xiàn)明顯改變生物相容性,下調(diào)了彈性模量,椎體再骨折率低于PMMA組。Urrutia等[30]認(rèn)為骨水泥固化過(guò)程中溫度升高可能會(huì)導(dǎo)致骨及周?chē)M織的不可逆損傷,或者骨水泥可能會(huì)擴(kuò)散到椎體內(nèi)的血管中并栓塞,導(dǎo)致相應(yīng)區(qū)域的椎體缺血性壞死。并導(dǎo)致椎體塌陷或再次骨折。近年,磷酸鈣骨水泥(calcium phosphate cement,CPC)、硅酸鈣骨水泥(calcium silicate cements,CSCs)、納米復(fù)合材料等開(kāi)始應(yīng)用于臨床,以期達(dá)到既有一定的機(jī)械強(qiáng)度,又有很好的生物相容性,減少對(duì)椎體的影響。
3.3 骨水泥填充量
目前對(duì)于椎體骨水泥的注入量尚無(wú)統(tǒng)一結(jié)論,過(guò)多或過(guò)少都會(huì)增加椎體再骨折的發(fā)生率。有的學(xué)者認(rèn)為,骨水泥的過(guò)度填充可能會(huì)增加相鄰椎體的壓力負(fù)荷,導(dǎo)致隨后鄰近椎體的再骨折[31]。而Li等[24]進(jìn)行的一項(xiàng)回顧性研究的結(jié)果發(fā)現(xiàn),骨水泥填充量較少的患者術(shù)后再次骨折的風(fēng)險(xiǎn)較高。但是,還有越來(lái)越多的證據(jù)表明骨水泥的用量與新的椎體壓縮性骨折的發(fā)生無(wú)關(guān)[32]。
3.4 椎體高度過(guò)度矯正和Cobb后凸角矯正率
椎體成形術(shù)后椎體高度也是影響再骨折的一個(gè)因素。Mckiernan等[33]認(rèn)為椎體高度的恢復(fù)并沒(méi)有帶來(lái)額外的疼痛緩解和生活質(zhì)量的改善。椎體成形術(shù)獲得的椎體前緣高度越大,發(fā)生再骨折的風(fēng)險(xiǎn)越大。Liebschner等[34]通過(guò)有限元分析方法得出結(jié)論,只需少量骨水泥(約15%的體積分?jǐn)?shù))即可將椎體剛度恢復(fù)至損傷前水平,而更大的填充量可導(dǎo)致剛度大幅增加,這種過(guò)度填充因?yàn)椴粚?duì)稱分布可以導(dǎo)致單邊載荷轉(zhuǎn)移,這些結(jié)果表明,大的填充量可能不是最優(yōu)的生物力學(xué)配置,通過(guò)使用較低的骨水泥體積和對(duì)稱的放置可能達(dá)到好的效果。
脊柱椎體壓縮性骨折形成后凸畸形,Cobb后凸角矯正率影響脊柱的力線。Chen等[12]認(rèn)為椎體前緣高度恢復(fù)較大而Cobb后凸角沒(méi)有得到很好矯正,也是再骨折的危險(xiǎn)因素。Li等[24]認(rèn)為Cobb角過(guò)度矯正也是危險(xiǎn)因素之一,這會(huì)導(dǎo)致椎體應(yīng)力失衡,給相鄰節(jié)段帶來(lái)額外的負(fù)荷。最后,它會(huì)導(dǎo)致鄰近的椎體骨折。Kang等[21]報(bào)道對(duì)于壓縮性骨折且局部后凸角gt;15°,包括椎間盤(pán)在內(nèi)的鄰近軟組織的損傷嚴(yán)重。雖然椎體成形術(shù)恢復(fù)了骨折椎體的變形角度,但鄰近的軟組織會(huì)惡化,包括椎間盤(pán),它們維持脊柱穩(wěn)定性的能力較差,這可能導(dǎo)致再骨折。
3.5 骨水泥的彌散分布
良好的骨水泥彌散分布,既可以使骨折椎體等到均勻強(qiáng)化,又使應(yīng)力均勻傳遞,不易出現(xiàn)新的骨折。Qian等[35]進(jìn)行的研究顯示,骨水泥分散不良的患者再骨折發(fā)生率明顯高于骨水泥分散良好的患者。Lee等[36]根據(jù)402例椎體成形術(shù)后4年的隨訪,發(fā)現(xiàn)注入骨水泥的體積和椎體體積相差較大,骨水泥沿上下軸分布偏斜是再骨折的顯著危險(xiǎn)因素。注射骨水泥應(yīng)沿上下軸均勻?qū)ΨQ分布,相對(duì)骨水泥體積不宜過(guò)大,能夠防止椎體再骨折。An等[37]發(fā)現(xiàn)骨水泥未接觸上、下終板可使傷椎再骨折的風(fēng)險(xiǎn)比骨水泥充分彌散到上下終板的對(duì)照組高2.5倍。Xiong等[22]認(rèn)為骨水泥與上下終板都有接觸,由于載荷通過(guò)較硬骨水泥上下終板間傳遞,因此在垂直方向上可以提供更好的支撐。當(dāng)骨水泥沒(méi)有接觸上下終板,從而產(chǎn)生應(yīng)力屏蔽效應(yīng),因此骨水泥可能會(huì)將應(yīng)力集中在周?chē)嗳醯墓趋郎?,?dǎo)致再骨折。
3.6 骨水泥滲漏
骨水泥滲漏是PVP/PKP手術(shù)最常見(jiàn)的并發(fā)癥,骨水泥可以向脊柱旁、椎間盤(pán)和硬膜外滲漏,也可沿著血管擴(kuò)散。Li等[38]報(bào)道椎體成形術(shù)后有65%的骨質(zhì)疏松性骨折患者出現(xiàn)骨水泥滲漏。Gao等[39]認(rèn)為椎旁和椎間盤(pán)骨水泥滲漏亞型是術(shù)后再骨折的重要危險(xiǎn)因素。多數(shù)學(xué)者認(rèn)為骨水泥椎間盤(pán)滲漏才是術(shù)后再骨折的主要因素[40]。通常認(rèn)為骨水泥滲漏后椎間盤(pán)局部應(yīng)力增高,椎間盤(pán)發(fā)生變性、緩沖分散作用減弱、柱狀效應(yīng)增強(qiáng)、鄰椎受力增大,可能造成鄰椎骨折塌陷??傊?,骨水泥滲漏是再骨折的潛在風(fēng)險(xiǎn)因素,手術(shù)醫(yī)生應(yīng)精準(zhǔn)穿刺,控制好骨水泥的黏度,充分透視,減少骨水泥的滲漏。
4 抗骨質(zhì)疏松治療
OVCF的病理基礎(chǔ)是骨質(zhì)疏松癥,骨折后積極采取規(guī)范的抗骨質(zhì)疏松治療,是抑制急性骨丟失,提高骨強(qiáng)度,減少并預(yù)防再骨折的根本措施[41]。骨質(zhì)疏松癥的治療,包括基礎(chǔ)措施和抗骨質(zhì)疏松藥物治療。基礎(chǔ)措施主要是健康的生活方式和預(yù)防跌倒。根據(jù)個(gè)體差異進(jìn)行適當(dāng)?shù)剡\(yùn)動(dòng),可降低再骨折的風(fēng)險(xiǎn)。抗骨質(zhì)疏松藥物包括基礎(chǔ)藥物鈣劑和維生素D,抗骨吸收藥物,促骨形成藥物等。關(guān)于聯(lián)合補(bǔ)充鈣和維生素D,薈萃分析報(bào)告了髖部和非椎體骨折的減少,可能也減少椎體骨折[42]。在中國(guó),首次骨折后,69.6%的患者服用補(bǔ)充和/或抗骨質(zhì)疏松藥物,其中39.6%的患者僅服用鈣劑和/或維生素D補(bǔ)充劑[43]。Qian等[35]研究說(shuō)明術(shù)后聯(lián)合標(biāo)準(zhǔn)化抗骨質(zhì)疏松藥物治療可促進(jìn)BMD改善、緩解疼痛、并提高質(zhì)量。將術(shù)后抗骨質(zhì)疏松治療是否標(biāo)準(zhǔn)化作為OVCF患者術(shù)后再骨折的觀察指標(biāo),結(jié)果證實(shí)術(shù)后抗骨質(zhì)疏松治療未標(biāo)準(zhǔn)化是發(fā)生再骨折的獨(dú)立危險(xiǎn)因素。Mcclung等[44]進(jìn)行的研究骨質(zhì)疏松患者應(yīng)用雙磷酸鹽藥物,可以顯著降低骨質(zhì)疏松性椎體骨折的風(fēng)險(xiǎn)。在患嚴(yán)重骨質(zhì)疏松的絕經(jīng)后婦女中進(jìn)行的兩項(xiàng)隨機(jī)對(duì)照研究表明,骨骼合成代謝藥物的抗骨折療效優(yōu)于抗骨吸收藥物。在骨質(zhì)疏松女性椎體骨折治療比較研究中,在治療2年后,皮下注射特立帕肽,每日1次,每次20 μg與口服利塞膦酸鹽,每周1次,每次35 mg,相比,新發(fā)椎體骨折顯著減少[45]。而一項(xiàng)隨機(jī)對(duì)照試驗(yàn)的薈萃分析調(diào)查顯示,在減少絕經(jīng)后骨質(zhì)疏松椎體骨折方面,羅莫佐單抗(Romosozumab)的治療效果最好,而雷洛昔芬和阿侖膦酸鹽的總體嚴(yán)重不良事件發(fā)生率較低[46]。所以,進(jìn)行規(guī)范的抗骨質(zhì)疏松藥物治療,可以顯著降低再骨折的發(fā)生率。由于骨質(zhì)疏松癥的患者藥物依從性比較差,近年來(lái),骨折聯(lián)絡(luò)服務(wù)(fracture liaison service,F(xiàn)LS)在全球得到推廣,有報(bào)道,與非FLS醫(yī)院相比,有FLS醫(yī)院的再骨折減少約30%,主要部位(髖部、脊柱、股骨、骨盆及肱骨)再骨折減少約40%[47]。FLS的推廣提高了抗骨質(zhì)疏松藥物的使用率、管理率和依從性,顯著地降低了再骨折的發(fā)生率。
5 總結(jié)與展望
綜上所述,OVCF患者在PVP/PKP術(shù)后再骨折是一個(gè)常見(jiàn)的并發(fā)癥。引起再骨折的原因很多,既有患者低骨密度、嚴(yán)重骨折等自身的原因,也有手術(shù)及抗骨質(zhì)疏松治療等治療方面的原因。隨著對(duì)OVCF研究的深入,提高手術(shù)的精細(xì)度,精準(zhǔn)穿刺,適量的骨水泥;系統(tǒng)規(guī)范化的抗骨質(zhì)疏松治療;同時(shí)開(kāi)展FLS,對(duì)患者進(jìn)行規(guī)范化管理??捎行У販p少患者再骨折的發(fā)生率,提高骨質(zhì)疏松患者的生活質(zhì)量。
參考文獻(xiàn)
[1] LIN X,XIONG D,PENG Y Q,et al.Epidemiology and management of osteoporosis in the People's Republic of China: current perspectives[J].Clin Interv Aging,2015,10:1017-1033.
[2] DAI C,LIANG G,ZHANG Y,et al.Risk factors of vertebral re-fracture after PVP or PKP for osteoporotic vertebral compression fractures, especially in Eastern Asia: a systematic review and meta-analysis[J].J Orthop Surg Res, 2022,17(1):161.
[3] CHEN Z,WU Y,Ning S,et al.Risk factors of secondary vertebral compression fracture after percutaneous vertebroplasty or kyphoplasty: a retrospective study of 650 patients[J].Med Sci Monit,2019,25:9255-9261.
[4] TAN W L,LOW S L,SHEN L,et al.Osteoporotic hip fractures: 10-year review in a Singaporean hospital[J].J Orthop Surg Hong Kong,2015,23(2):150-154.
[5] ZHANG Z,F(xiàn)AN J,DING Q,et al.Risk factors for new osteoporotic vertebral compression fractures after vertebroplasty: a systematic review and meta-analysis[J/OL].J Spinal Disord Tech,2013,26(4):E150-E157.https://pubmed.ncbi.nlm.nih.gov/23027362/.
[6] TANAKA S,KURODA T,SAITO M,et al.Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women[J].Osteoporos Int,2013,24(1):69-76.
[7] BORENSZTEIN M,CAMINO W,MARTINEZ M,et al.Analysis of risk factors for new vertebral fracture after percutaneous vertebroplasty[J].Global Spine J,2018,8(5):446-452.
[8] LIN S,CAI X,CHENG Q,et al.Association between bone turnover markers,BMD and height loss of cemented vertebrae after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures[J].J Orthop Surg Res,2022,17(1):202.
[9] KANIS J A,JOHANSSON H,ODEN A,et al.A meta-analysis of prior corticosteroid use and fracture risk[J].J Bone Mineral Research,2004,19:893-899.
[10] KANIS J A,JOHNELL O,ODEN A,et al.Smoking and fracture risk: a meta-analysis[J].Osteoporos Int,2005,16(2):155-162.
[11] WANG Y T,WU X T,CHEN H,et al.Adjacent-level symptomatic fracture after percutaneous vertebral augmentation of osteoporotic vertebral compression fracture: a retrospective analysis[J].J Orthop Sci,2014,19(6):868-876.
[12] CHEN L H,HSIEH M K,LIAO J C,et al.Repeated percutaneous vertebroplasty for refracture of cemented vertebrae[J].Arch Orthop Trauma Surg,2011,131(7):927-933.
[13] KIM S H,KANG H S,CHOI J A,et al.Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty[J]. Acta Radiol,2004,45(4):440-445.
[14] KANIS J A,JOHANSSON H,ODéN A,et al.Characteristics of recurrent fractures[J].Osteoporos Int,2018,29(8):1747-1757.
[15] KANIS J A,JOHANSSON H,HARVEY N C,et al.Adjusting conventional FRAX estimates of fracture probability according to the recency of sentinel fractures[J].Osteoporos Int,2020,31(10):1817-1828.
[16] REN H L,JIANG J M,CHEN J T,et al.Risk factors of new symptomatic vertebral compression fractures in osteoporotic patients undergone percutaneous vertebroplasty[J].Eur Spine J,2015,24(4):750-758.
[17] SAMELSON E J,HANNAN M T,ZHANG Y,et al.Incidence and risk factors for vertebral fracture in women and men: 25-year follow-up results from the population-based Framingham study[J].J Bone Miner Res,2006,21(8):1207-1214.
[18] WU A M,CHI Y L,NI W F.Vertebral compression fracture with intravertebral vacuum cleft sign: pathogenesis,image, and surgical intervention[J].Asian Spine J,2013,7(2):148-155.
[19] LIN W C,LU C H,CHEN H L,et al.The impact of preoperative magnetic resonance images on outcome of cemented vertebrae[J].Eur Spine J,2010,19(11):1899-1906.
[20] LIN W C, LEE Y C, LEE C H,et al.Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis[J].Eur Spine J,2008,17(4):592-599.
[21] KANG S K,LEE C W,PARK N K,et al.Predictive risk factors for refracture after percutaneous vertebroplasty[J].Ann Rehabil Med,2011,35(6):844-851.
[22] XIONG Y C,GUO W,XU F,et al.Refracture of the cemented vertebrae after percutaneous vertebroplasty: risk factors and imaging findings[J].BMC Musculoskelet Disord,2021,22(1):459.
[23] ZHONG B Y,HE S C,ZHU H D,et al.Nomogram for predicting intradiscal cement leakage following percutaneous vertebroplasty in patients with osteoporotic related vertebral compression fractures[J/OL].Pain Physician,2017,20(4):E513-E520.https://pubmed.ncbi.nlm.nih.gov/28535560/.
[24] LI Y X,GUO D Q,ZHANG S C,et al.Risk factor analysis for re-collapse of cemented vertebrae after percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP)[J].Int Orthop,2018,42(9):2131-2139.
[25] FRANKEL B M,MONROE T,WANG C.Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty[J].Spine J,2007,7(5):575-582.
[26] CHEN Y,ZHANG H,CHEN H,et al.Comparison of the effectiveness and safety of unilateral and bilateral percutaneous vertebroplasty for osteoporotic vertebral compression fractures: a protocol for systematic review and meta-analysis[J/OL].Medicine (Baltimore),2021,100(51):e28453.https://pubmed.ncbi.nlm.nih.gov/34941201/.
[27] HATZANTONIS C,CZYZ M,PYZIK R,et al.Intracardiac bone cement embolism as a complication of vertebroplasty: management strategy[J].Eur Spine J,2017,26(12):3199-3205.
[28] ZHAI Q,HAN F,HE Z,et al.The\"Magnesium sacrifice\"strategy enables pmma bone cement partial biodegradability and osseointegration potential[J].Int J Mol Sci,2018,19(6):1746.
[29] ZHU J,ZHANG K, LUO K,et al.Mineralized collagen modified polymethyl methacrylate bone cement for osteoporotic compression vertebral fracture at 1-year follow-up[J].Spine,2019,44(12):827-838.
[30] URRUTIA J,BONO C M,MERY P,et al.Early histologic changes following polymethylmethacrylate injection (vertebroplasty) in rabbit lumbar vertebrae[J].Spine,2008,33(8):877-882.
[31] SEEL E H,DAVIES E M.A biomechanical comparison of kyphoplasty using a balloon bone tamp versus an expandable polymer bone tamp in a deer spine model[J].J Bone Joint Surg Br,2007,89(2):253-257.
[32] LEE K A,HONG S J,LEE S,et al.Analysis of adjacent fracture after percutaneous vertebroplasty: does intradiscal cement leakage really increase the risk of adjacent vertebral fracture?[J].Skeletal Radiol,2011,40(12):1537-1542.
[33] MCKIERNAN F,F(xiàn)ACISZEWSKI T,JENSEN R.Does vertebral height restoration achieved at vertebroplasty matter?[J].J Vasc Interv Radiol,2005,16(7):973-979.
[34] LIEBSCHNER M A,ROSENBERG W S,KEAVENY T M.Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty[J].Spine,2001,26(14):1547-1554.
[35] QIAN L,CHEN Q,WANG D,et al.Study on the relationship between the use of bisphosphonates for antiosteoporosis and vertebral re-fracture after vertebroplasty[J].Evid Based Complement Alternat Med,2022:3223437.
[36] LEE H J,PARK J,LEE I W,et al.Clinical,radiographic, and morphometric risk factors for adjacent and remote vertebral compression fractures over a minimum follow-up of 4 years after percutaneous vertebroplasty for osteoporotic vertebral compression fractures: novel three-dimensional voxel-based morphometric analysis[J/OL].World Neurosurg,2019,125:e146-e157.https://pubmed.ncbi.nlm.nih.gov/30682507/.
[37] AN Z,CHEN C,WANG J,et al.Logistic regression analysis on risk factors of augmented vertebra recompression after percutaneous vertebral augmentation[J].J Orthop Surg Res,2021,16(1):374.
[38] LI K C, LI A F,HSIEH C H,et al.Transpedicle body augmenter in painful osteoporotic compression fractures[J].Eur Spine J,2007,16(5):589-598.
[39] GAO C,ZONG M,WANG W T,et al.Analysis of risk factors causing short-term cement leakages and long-term complications after percutaneous kyphoplasty for osteoporotic vertebral compression fractures[J].Acta Radiol,2018,59(5):577-585.
[40] MARTINEZ-FERRER A,BLASCO J,CARRASCO J L,et al.Risk factors for the development of vertebral fractures after percutaneous vertebroplasty[J].J Bone Miner Res,2013,28(8):1821-1829.
[41]中華醫(yī)學(xué)會(huì)骨科學(xué)分會(huì)骨質(zhì)疏松學(xué)組.骨質(zhì)疏松性骨折診療指南[J].中華骨科雜志,2017,37(1):1-10.
[42] YAO P,BENNETT D,MAFHAM M,et al.Clarke R (2019) Vitamin D and calcium for the prevention of fracture: a systematic review and meta-analysis[J/OL].JAMA Netw Open 2:e1917789.https://pubmed.ncbi.nlm.nih.gov/31860103/.
[43] WANG O,HU Y,GONG S,et al.A survey of outcomes and management of patients post fragility fractures in China[J].Osteoporos Int,2015,26(11):2631-2640.
[44] MCCLUNG M,HARRIS S T,MILLER P D,et al.Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday[J].Am J Med,2013,126(1):13-20.
[45] RITTMASTER R S,BOLOGNESE M,ETTINGER M P,et al.Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate[J].J Clin Endocrinol Metab,2000,85(6):2129-2134.
[46] MIGLIORINI F,COLAROSSI G,BARONCINI A,et al.Pharmacological management of postmenopausal osteoporosis: a level Ⅰ evidence based—expert opinion[J].Expert Rev Clin Pharmacol,2021,14(1):105-119.
[47] NAKAYAMA A,MAJOR G,HOLLIDAY E,et al.Evidence of effectiveness of a fracture liaison service to reduce the re-fracture rate[J].Osteoporos Int,2016,27(3):873-879.