【摘要】 乳腺癌作為世界上常見的女性惡性腫瘤,其中腋窩淋巴結(jié)轉(zhuǎn)移與否是預(yù)后和復(fù)發(fā)的關(guān)鍵因素,并影響患者的臨床治療方案。磁共振成像技術(shù)包括磁共振波譜、動態(tài)對比增強、彌散加權(quán)成像及其衍生序列等,廣泛應(yīng)用于診斷及鑒別乳腺癌腋窩淋巴結(jié)轉(zhuǎn)移。本文對磁共振成像在乳腺癌腋窩淋巴結(jié)轉(zhuǎn)移的相關(guān)研究進展予以綜述。
【關(guān)鍵詞】 乳腺癌 磁共振成像 腋窩淋巴結(jié)轉(zhuǎn)移
Research Progress of Magnetic Resonance Imaging in Axillary Lymph Node Metastasis of Breast Cancer/DING Hui, CHEN Wubiao. //Medical Innovation of China, 2023, 20(24): -168
[Abstract] As a common female malignant tumor in the world, axillary lymph node metastasis is the key factor for prognosis and recurrence, and affects clinical treatment options. Magnetic resonance imaging techniques, including magnetic resonance spectroscopy, dynamic contrast-enhanced, diffusion-weighted imaging and its derived sequences, are widely used in the diagnosis and differentiation of axillary lymph node metastasis of breast cancer. This article reviews the research progress of MRI in axillary lymph node metastasis of breast cancer.
[Key words] Breast cancer Magnetic resonance imaging Axillary lymph node metastasis
First-author's address: Guangdong Medical University, Zhanjiang 524000, China
doi:10.3969/j.issn.1674-4985.2023.24.039
據(jù)2021年在CA Cancer J Clin上發(fā)表的癌癥統(tǒng)計數(shù)據(jù),在全球范圍內(nèi)乳腺癌作為一種常見女性惡性腫瘤,近年來發(fā)病率以每年約0.5%的速度持續(xù)增長,已經(jīng)超過肺癌成為最常見的癌癥,且在絕大多數(shù)國家中死亡率居首位[1-2]。在導(dǎo)致乳腺癌患者死亡的諸多因素中,腫瘤的遠(yuǎn)處轉(zhuǎn)移及局部復(fù)發(fā)為主要死因,其中腋窩淋巴結(jié)轉(zhuǎn)移(axillary lymph node metastasis,ALNM)是最關(guān)鍵的轉(zhuǎn)移途徑。ALNM是乳腺癌患者預(yù)后的關(guān)鍵因素,并對最終臨床治療方案的選擇產(chǎn)生影響[3]。臨床對可疑ALNM的患者除選擇在超聲定位下行穿刺活檢術(shù)外,也可行前哨淋巴結(jié)活檢(sentinel lymph node biopsy,SLNB),以及進一步腋窩淋巴結(jié)清掃(axillary lymph node dissection,ALND)。雖然高達(dá)70%的臨床患者在行ALND后顯示沒有ALNM,但遭受ALND造成的并發(fā)癥[4]。盡管SLNB比ALND的并發(fā)癥更少,但其除增加手術(shù)時間外,還需行痛苦的術(shù)前注射,并可能出現(xiàn)假陽性結(jié)果[5]。因此通過無創(chuàng)的影像學(xué)檢查手段評估淋巴結(jié)狀態(tài)顯得尤為重要。在眾多影像學(xué)檢查手段中,磁共振成像(magnetic resonance imaging,MRI)無輻射及創(chuàng)傷,具有多參數(shù)、多方位成像、組織分辨率高及信息豐富等優(yōu)勢。隨著MRI新技術(shù)迅速發(fā)展,目前不僅研究腋窩淋巴結(jié)(axillary lymph node,ALN)大小、形態(tài)、皮質(zhì)厚度、淋巴門、淋巴結(jié)邊緣及周圍脂肪間隙等常規(guī)影像特征,還利用磁共振功能成像獲得相關(guān)擴散和灌注信息[6-7]。本文以MRI在ALNM的相關(guān)研究進展做一綜述。
1 常規(guī)MRI
依據(jù)Baltzer等和Scaranelo等學(xué)者的研究方法記錄觀察淋巴結(jié),通過常規(guī)MRI分析淋巴結(jié)形態(tài)學(xué)特征,包括淋巴結(jié)大?。ㄩL、短徑)的改變、淋巴結(jié)皮質(zhì)厚度增厚與否、淋巴門結(jié)構(gòu)是否存在、淋巴結(jié)邊緣輪廓光整或不規(guī)則、病灶周圍是否水腫導(dǎo)致脂肪間隙模糊/清晰等情況[8-9]。ALNM常表現(xiàn)為皮質(zhì)不均勻增厚、淋巴門消失、縱橫比變小等改變。在評估及判定ALN性質(zhì)的形態(tài)學(xué)參數(shù)中淋巴結(jié)(長、短徑)增大、淋巴結(jié)皮質(zhì)增厚均有統(tǒng)計學(xué)意義及重要價值,Scaranelo等[9]學(xué)者得出轉(zhuǎn)移組淋巴結(jié)長徑0.99~1.66 cm,短徑0.6~1.04 cm,皮質(zhì)厚度0.22~0.73 cm。阮玫等[10]在進行ROC曲線分析轉(zhuǎn)移組淋巴結(jié)時,得出長徑、短徑及皮質(zhì)厚度的最佳診斷臨界值為1.47 cm、1.13 cm及0.54 cm,其中淋巴結(jié)皮質(zhì)厚度曲線下面積(AUC)達(dá)0.848,為三組研究參數(shù)中最大,且敏感度高達(dá)0.875,提示較高的診斷價值。Baltzer等[8]使用MRI技術(shù)比較乳腺癌患者ALN影像學(xué)表現(xiàn),發(fā)現(xiàn)聯(lián)合“不對稱”和“不規(guī)則的邊緣”是診斷轉(zhuǎn)移淋巴結(jié)最準(zhǔn)確的預(yù)測因子[陽性預(yù)測值(positive predictive value,PPV):100%],而“對稱”和“均勻的皮質(zhì)”的陰性預(yù)測價值最高[陰性預(yù)測值(negative predictive value,NPV):94.3%)]。另外季娟等[11]發(fā)現(xiàn)乳腺癌病灶最大長徑、同側(cè)ALN最大皮質(zhì)厚度及細(xì)胞周期蛋白D1高表達(dá)的聯(lián)合模型,其診斷特異度達(dá)93.7%,受試者AUC為0.751,在ALN狀態(tài)的診斷上性能顯著提高。
2 彌散加權(quán)成像(DWI)及相關(guān)序列
2.1 DWI
人體內(nèi)水分子處于持續(xù)隨機運動的狀態(tài),稱之為彌散運動。DWI是一種在常規(guī)MRI序列的基礎(chǔ)上施加彌散敏感梯度而獲得的無創(chuàng)檢測生物體內(nèi)水分子微觀運動的方法,并通過計算得出表觀擴散系數(shù)(ADC)值來衡量彌散運動的快慢,擴散受限區(qū)域表現(xiàn)為DWI高信號、ADC值減低。Scaranelo等[9]和Schipper等[12]研究認(rèn)為微觀結(jié)構(gòu)改變所致細(xì)胞間水質(zhì)子運動變化,從而對應(yīng)DWI信號強度及ADC值的改變,可用于識別乳腺病變、分析淋巴結(jié)及監(jiān)測治療反應(yīng),ADC值診斷轉(zhuǎn)移淋巴結(jié)最佳臨界值分別為0.650×10-3 mm2/s和0.878×10-3 mm2/s。部分研究發(fā)現(xiàn),ALNM組ALN及原發(fā)灶相較于非ALNM組ADC值更低,且DWI信號增高和ADC值減低具有較高的診斷效能[10,13]。另部分研究報道,ADC值及ADC比值可用于鑒別ALNM及非轉(zhuǎn)移ALN[14]。Razek等[15]經(jīng)試驗研究發(fā)現(xiàn)ADC截斷值1.3×10-3 mm2/s與ALN短軸/長軸lt;0.6合并的多變量模型,區(qū)分良性和惡性ALN的敏感度、特異度、PPV及NPV提高到100%,AUC達(dá)1.00。
2.2 體素內(nèi)不相干運動(IVIM)
DWI信號受微循環(huán)灌注及水分子擴散影響,ADC值從而被過高估計,不能純粹反映病變區(qū)域擴散受限情況,其根本原因在于單指數(shù)模型線性擬合而成的信號衰減[16]。Le等[17]基于病變組織在多b值DWI圖像上的信號強度的改變,通過雙指數(shù)擬合得出IVIM模型,糾正了上述現(xiàn)象并同時獲得相關(guān)定量參數(shù),包含受擴散和灌注影響的標(biāo)準(zhǔn)擴散系數(shù)、純擴散系數(shù)(D)、假性擴散系數(shù)(D*),以及灌注分?jǐn)?shù)(f),其中假性擴散系數(shù)也可用快速ADC分?jǐn)?shù)表示[18-19]。在反映及評估病灶微循環(huán)系統(tǒng)灌注方面,IVIM技術(shù)發(fā)展完善并運用于臨床診療[20-21]。研究顯示IVIM參數(shù)能提供比ADC更多的信息,既反映腫瘤擴散又反映灌注,但需要更多的掃描時間。與無ALN轉(zhuǎn)移的乳腺癌相比,有ALNM的乳腺癌的D*值和快速ADC分?jǐn)?shù)的比例更高,而D值的比例更低。IVIM參數(shù)和常規(guī)MRI可以預(yù)測患者的ALN轉(zhuǎn)移情況,MRI聯(lián)合IVIM參數(shù)的快速ADC分?jǐn)?shù)對乳腺癌ALN轉(zhuǎn)移的診斷效率高于MRI單獨診斷,對選擇合適的治療方法可提供幫助[3]。
2.3 擴散張量成像(DTI)
DTI作為DWI的一種更具體的變體,它可以利用額外的梯度檢測至少6個方向上的彌散程度,并提供更多關(guān)于微觀結(jié)構(gòu)的信息。各向異性分?jǐn)?shù)(FA)和各向異性體積(VA)提供了組織中各向異性水?dāng)U散的定量分析[22-23]。DTI已在有限的研究中獲得了不同的FA值,可用于鑒別乳腺病變。Ozal等[24]分別設(shè)定b值為0 s/mm2和1 000 s/mm2,通過勾畫ROI及機器計算進行相關(guān)后處理,分析浸潤性乳腺癌患者的DTI數(shù)據(jù)及相關(guān)定量參數(shù),在平均擴散率方面ALNM患者顯著低于無ALNM患者(P=0.018)。部分學(xué)者持有相同觀點,ALNM患者相對于無ALNM患者表現(xiàn)出明顯較高的FA值和較低的ADC值[25]。
3 氫質(zhì)子磁共振波譜(1H-MRS)
磁共振波譜(MRS)是一種利用化學(xué)位移和自旋耦合兩種現(xiàn)象定量測定細(xì)胞內(nèi)物質(zhì)分子成分及代謝的無創(chuàng)性成像技術(shù),MRS依據(jù)檢測體素數(shù)量分為單體素MRS和多體素MRS。1H-MRS常應(yīng)用于乳腺病灶檢查,即選擇性采集一個感興趣區(qū)的單體素的譜線,具備掃描時間短、信噪比高等優(yōu)點??偰憠A(tCho)是與腫瘤發(fā)生、進展和轉(zhuǎn)移相關(guān)的多種酶變化有關(guān)的化合物,1H-MRS可對tCho進行定量評估[26]。先前研究表明,通常惡性乳腺癌變細(xì)胞生長及代謝率較高,膽堿含量增加,波譜曲線3.2 ppm附近出現(xiàn)Cho峰,而復(fù)合Cho峰在正常乳腺組織中不存在,可診斷多參數(shù)乳腺MRI可疑惡性病變和淋巴結(jié)狀態(tài),以盡可能避免對良性病變進行病理活檢[26-27]。通過7T 1H-MRS檢測飽和、單不飽和及多不飽和脂肪酸的脂質(zhì)共振率,發(fā)現(xiàn)不飽和脂肪酸在ALNM的含量低于非ALNM,可用于檢測ALNM[28]。部分研究認(rèn)為一些良性病變由于短時間內(nèi)快速生長,也可在1H-MRS測得Cho峰,在另一些惡性病灶中,由于Cho含量太低而無法被測定[29]。1H-MRS在實際測量中易受自身或外界干擾,如病灶體積過小、病灶內(nèi)過多水或脂肪、磁場不均勻及運動干擾等,均可導(dǎo)致譜線生成失敗[30]。目前隨著磁場和線圈性能的不斷提高,使1H-MRS在惡性腫瘤及淋巴結(jié)轉(zhuǎn)移診斷方面的價值及可行性大大提高。
4 動態(tài)對比增強磁共振成像(DCE-MRI)
DCE-MRI是一種功能性成像方法,按照一定速率靜脈注射對比劑后,采集圖像來評價組織和腫瘤血供特性[31]。DCE-MRI是診斷乳腺癌和評估治療效果的重要方法[32]。DCE-MRI可通過定性、定量及半定量分析及評估乳腺癌患者ALN狀態(tài)。DCE-MRI半定量參數(shù)包括時間-信號曲線(TIC)、最大密度投影(MIP)血管重建。TIC分為3型,Ⅰ型為流入型,多見于良性病變;Ⅱ型為平臺型,在良惡性病變中均可顯現(xiàn);Ⅲ型為流出型,多見于惡性病變[10]。張鑫等[33]研究發(fā)現(xiàn)MIP血管重建后乳腺惡性腫瘤對比良性病變,雙側(cè)血管分布不對稱。應(yīng)用最常用的藥代動力學(xué)模型(Tofts雙室模型)對TIC進行分析計算,得出定量參數(shù)包括血管外細(xì)胞外間隙容積分?jǐn)?shù)(Ve)、對比劑容積轉(zhuǎn)移常量(Ktrans)及速率常數(shù)(Kep,Kep=Ktrans/Ve)。Bahri等[34]研究發(fā)現(xiàn)血管生成較高的浸潤性乳腺癌更容易出現(xiàn)ALNM,ALNM組較非ALNM組的Ktrans值及Kep值均更高。轉(zhuǎn)移性淋巴結(jié)與乳腺病灶在DCE-MRI上的強化特點相仿,TIC曲線通常表現(xiàn)為Ⅱ或Ⅲ型[35-36]。也有文獻(xiàn)報道,術(shù)前DCE-MRI不能準(zhǔn)確預(yù)測乳腺癌ALNM[37]。現(xiàn)研究結(jié)果尚不統(tǒng)一,仍需改進研究方法進一步探討并驗證DCE-MRI預(yù)測ALNM的價值。
綜上所述,乳腺癌ALNM是乳腺癌患者預(yù)后的關(guān)鍵因素,同時影響臨床治療方案。MRI多參數(shù)、多方位成像在預(yù)測ALNM中的研究,除MRI常規(guī)掃描獲取ALNM形態(tài)學(xué)影像特征外,DWI、DCE-MRI及1H-MRS應(yīng)用也為鑒別淋巴結(jié)轉(zhuǎn)移提供有效支持。但目前需要確立統(tǒng)一標(biāo)準(zhǔn)、建立相對穩(wěn)定的預(yù)測模型,在未來仍需進行多中心、多參數(shù)及大樣本量的進一步研究。
參考文獻(xiàn)
[1] SIEGEL R L,MILLER K D,F(xiàn)UCHS H E,et al.Cancer statistics,2021[J].CA Cancer J Clin,2021,71(1):7-33.
[2] SUNG H,F(xiàn)ERLAY J,SIEGEL R L,et al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
[3] ZHAO M,WU Q,GUO L,et al.Magnetic resonance imaging features for predicting axillary lymph node metastasis in patients with breast cancer[J].European Journal of Radiology,2020,129:109093.
[4] MAESEELE N,F(xiàn)AES J,VAN DE PUTTE T,et al.Axillary lymph node dissection on the run?[J].Facts Views Vis Obgyn,2017,9(1):45-49.
[5] CHOI E J,YOUK J H,CHOI H,et al.Dynamic contrast-enhanced and diffusion-weighted MRI of invasive breast cancer for the prediction of sentinel lymph node status[J].Journal of Magnetic Resonance Imaging,2020, 51(2):615-626.
[6] YA G,WEN F,XING R L,et al.Difference of DCE-MRI parameters at different time points and their predictive value for axillary lymph node metastasis of breast cancer[J].Academic Radiology,2022,29:S79-S86.
[7] LIU Y,LUO H,WANG C,et al.Diagnostic performance of T2-weighted imaging and intravoxel incoherent motion diffusion-weighted MRI for predicting metastatic axillary lymph nodes in T1 and T2 stage breast cancer[J].Acta Radiologica,2022,63(4):447-457.
[8] BALTZER P A T,DIETZEL M,BURMEISTER H P,et al.Application of MR mammography beyond local staging: is there a potential to accurately assess axillary lymph nodes? evaluation of an extended protocol in an initial prospective study[J].American Journal of Roentgenology,2011,196(5):W641-W647.
[9] SCARANELO A M,EIADA R,JACKS L M,et al.Accuracy of unenhanced MR imaging in the detection of axillary lymph node metastasis: study of reproducibility and reliability[J].Radiology,2012,262(2):425-434.
[10]阮玫,汪登斌,陳文輝,等.MRI鑒別診斷乳腺癌腋窩淋巴結(jié)轉(zhuǎn)移[J].中國介入影像與治療學(xué),2017,14(8):484-488.
[11]季娟,盛美紅,湯衛(wèi)霞,等.多參數(shù)MRI與細(xì)胞周期蛋白D1在乳腺癌腋窩淋巴結(jié)轉(zhuǎn)移預(yù)測中的應(yīng)用[J].磁共振成像,2021,12(10):1-5,11.
[12] SCHIPPER R J,PAIMAN M L,BEETS-TAN R G H,et al.Diagnostic performance of dedicated axillary T2-and diffusion-weighted MR imaging for nodal staging in breast cancer[J].Radiology,2015,275(2):345-355.
[13] KIM J Y,SEO H B,PARK S,et al.Early-stage invasive ductal carcinoma: association of tumor apparent diffusion coefficient values with axillary lymph node metastasis[J].European Journal of Radiology,2015,84(11):2137-2143.
[14] LUO N,SU D,JIN G,et al.Apparent diffusion coefficient ratio between axillary lymph node with primary tumor to detect nodal metastasis in breast cancer patients: ADC ratio and axillary lymph nodes metastasis[J].Journal of Magnetic Resonance Imaging,2013,38(4):824-828.
[15] RAZEK A A K A,LATTIF M A,DENEWER A,et al.Assessment of axillary lymph nodes in patients with breast cancer with diffusion-weighted MR imaging in combination with routine and dynamic contrast MR imaging[J].Breast Cancer,2016,23(3):525-532.
[16] LIU C,WANG K,CHAN Q,et al.Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging[J].European Radiology,2016,26(11): 3888-3898.
[17] LE BIHAN D,BRETON E,LALLEMAND D,et al.MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J].Radiology,1986,161(2):401-407.
[18] MAO X,ZOU X,YU N,et al.Quantitative evaluation of intravoxel incoherent motion diffusion-weighted imaging (IVIM) for differential diagnosis and grading prediction of benign and malignant breast lesions[J/OL].Medicine,2018,97(26):e11109.https://pubmed.ncbi.nlm.nih.gov/29952951/.
[19] SUO S,CHENG F,CAO M,et al.Multiparametric diffusion-weighted imaging in breast lesions: association with pathologic diagnosis and prognostic factors[J].Journal of Magnetic Resonance Imaging,2017,46(3):740-750.
[20] WANG Q,GUO Y,ZHANG J,et al.Contribution of IVIM to conventional dynamic contrast-enhanced and diffusion-weighted MRI in differentiating benign from malignant breast masses[J].Breast Care,2016,11(4):254-258.
[21] KIM Y,KIM S H,LEE H W,et al.Intravoxel incoherent motion diffusion-weighted MRI for predicting response to neoadjuvant chemotherapy in breast cancer[J].Magnetic Resonance Imaging,2018,48:27-33.
[22] PARTRIDGE S C,ZIADLOO A,MURTHY R,et al.Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors[J].Journal of Magnetic Resonance Imaging,2010,31(2):339-347.
[23] ROBERTS T P L,SCHWARTZ E S.Principles and implementation of diffusion-weighted and diffusion tensor imaging[J].Pediatric Radiology,2007,37(8):739-748.
[24] OZAL S T,INCI E,GEMICI A A,et al.Can 3.0 Tesla diffusion tensor imaging parameters be prognostic indicators in breast cancer?[J].Clinical Imaging,2018,51:240-247.
[25] KURT N,BINBOGA KURT B,GULSARAN U,et al.Diffusion tensor imaging and diffusion-weighted imaging on axillary lymph node status in breast cancer patients[J].Diagnostic and Interventional Radiology,2022,28(4):329-336.
[26] GLUNDE K,PENET M F,JIANG L,et al.Choline metabolism-based molecular diagnosis of cancer: an update[J].Expert Review of Molecular Diagnostics,2015,15(6):735-747.
[27] JAGANNATHAN N R,KUMAR M,SEENU V,et al.Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer[J].British Journal of Cancer,2001,84(8):1016-1022.
[28] KORTEWEG M A,VELDHUIS W B,MALI W P Th M,et al.Investigation of lipid composition of dissected sentinel lymph nodes of breast cancer patients by 7T proton MR spectroscopy[J].Journal of Magnetic Resonance Imaging,2012,35(2):387-392.
[29]朱曉玲,范曉黎,吳曉莉,等.磁共振聯(lián)合多種功能成像對乳腺癌的診斷價值[J].安徽醫(yī)藥,2017,21(10):1833-1836.
[30] ZHAI G,KIM H,SARVER D,et al.Early therapy assessment of combined anti-DR5 antibody and carboplatin in triple-negative breast cancer xenografts in mice using diffusion-weighted imaging and 1H MR spectroscopy[J].Journal of Magnetic Resonance Imaging,2014,39(6):1588-1594.
[31]滿育平,馬隆佰.多模態(tài)磁共振技術(shù)在頸部淋巴結(jié)定性診斷中的臨床應(yīng)用研究[J].實用醫(yī)學(xué)影像雜志,2019,20(1):53-55.
[32] PICKLES M D,LOWRY M,MANTON D J,et al.Prognostic value of DCE-MRI in breast cancer patients undergoing neoadjuvant chemotherapy: a comparison with traditional survival indicators[J].European Radiology,2015,25(4):1097-1106.
[33]張鑫,閔智乾,雷曉燕,等.MR動態(tài)增MIP技術(shù)在乳腺疾病良惡性鑒別中的應(yīng)用[J].實用放射學(xué)雜志,2018,34(1):35-38.
[34] BAHRI S,CHEN J H,YU H J,et al.Can dynamic contrast-enhanced MRI (DCE-MRI) predict tumor recurrence and lymph node status in patients with breast cancer?[J].Annals of Oncology,2008,19(4):822-824.
[35] YUN S J,SOHN Y M,SEO M.Differentiation of benign and metastatic axillary lymph nodes in breast cancer: additive value of MRI computer-aided evaluation[J/OL].Clinical Radiology,2016,71(4):e1-e7.https://pubmed.ncbi.nlm.nih.gov/26875621/.
[36] KUIJS V J L,MOOSSDORFF M,SCHIPPER R J,et al.The role of MRI in axillary lymph node imaging in breast cancer patients: a systematic review[J].Insights into Imaging,2015,6(2):203-215.
[37]羅紅兵,王閩,周鵬,等.乳腺癌DCE-MRI量化參數(shù)與組織病理相關(guān)性分析[J].臨床放射學(xué)雜志,2017, 36(7):952-957.