摘" 要" 光照作為最重要的授時(shí)因子, 對(duì)機(jī)體的晝夜節(jié)律與睡眠具有顯著的調(diào)節(jié)作用。已有研究發(fā)現(xiàn)日間更多的光照暴露, 特別是晨間高強(qiáng)度光照會(huì)顯著促進(jìn)個(gè)體的夜間睡眠, 但這一優(yōu)化效果會(huì)受到光照參數(shù)和個(gè)體特征等的調(diào)節(jié)。日間光照可以通過(guò)前置或延遲機(jī)體的生物節(jié)律進(jìn)而對(duì)睡眠產(chǎn)生間接影響; 而日光暴露是否會(huì)通過(guò)調(diào)節(jié)睡眠內(nèi)穩(wěn)態(tài)壓力直接影響睡眠尚不明晰。未來(lái)研究可探究日光水平與時(shí)間對(duì)睡眠的交互影響, 面向特定人群如長(zhǎng)期室內(nèi)辦公者、輪班工作人員或睡眠障礙群體構(gòu)建健康人因照明模式。
關(guān)鍵詞" 日間光照, 睡眠, 健康照明, 作用機(jī)制, 生物節(jié)律
分類號(hào)" B845
睡眠對(duì)個(gè)體的成長(zhǎng)和發(fā)展具有重要意義。但在現(xiàn)實(shí)生活中, 存在睡眠問(wèn)題如慢性睡眠限制、失眠或睡眠效率低下等的人群范圍越來(lái)越廣且有低齡化傾向。有研究分析表明, 睡眠障礙在我國(guó)十分普遍(Li et al., 2018; Lu et al., 2017), 特別是在新冠疫情期間, 睡眠問(wèn)題尤為突出(Li et al., 2021)。而不良的睡眠又與情緒障礙(Emens et al., 2020)、高血壓(Wang et al., 2020)、糖尿?。–appuccio et al., 2010)等一系列身心健康問(wèn)題密切相關(guān)。因此, 改善睡眠品質(zhì), 對(duì)于提升國(guó)民身心健康水平具有十分重要的社會(huì)價(jià)值。
光照作為人們生活中必不可少的環(huán)境因素, 無(wú)處不在。作為所有哺乳類動(dòng)物內(nèi)在生物節(jié)律最為重要的授時(shí)因子, 環(huán)境光在調(diào)節(jié)機(jī)體晝夜節(jié)律的同時(shí)也會(huì)對(duì)個(gè)體的睡眠產(chǎn)生影響(Blume et al., 2019; Prayag, Munch, et al., 2019)。研究發(fā)現(xiàn), 長(zhǎng)期處于光線不足或不合理光暴露環(huán)境下, 個(gè)體會(huì)出現(xiàn)生物節(jié)律紊亂、睡眠質(zhì)量低下以及情感障礙等健康問(wèn)題(Khaing et al., 2019; van Duijnhoven et al., 2019)。為此, 越來(lái)越多的研究者開(kāi)始探討日間光暴露與夜間睡眠的關(guān)系, 而基于這些研究成果構(gòu)建“以人為本”的室內(nèi)健康照明環(huán)境(Human Centric Lighting, HCL)可以在滿足個(gè)體視覺(jué)工作需求的同時(shí), 優(yōu)化夜間睡眠、提升心理幸福感, 不失為一種有效且重要的干預(yù)策略。因此, 本文將從光照的生物節(jié)律效應(yīng)的角度, 對(duì)日間光照對(duì)夜間睡眠的作用效果, 制約因素及潛在機(jī)理等方面進(jìn)行系統(tǒng)梳理與探討。
1" 光照的生物節(jié)律效應(yīng)
光照通過(guò)視覺(jué)神經(jīng)通路幫助我們形成視覺(jué)功能(Image forming function)的同時(shí), 也會(huì)通過(guò)哺乳動(dòng)物視網(wǎng)膜特有的第三類新型感光細(xì)胞—內(nèi)在光敏性神經(jīng)節(jié)細(xì)胞(intrinsically photosensitive retinal ganglion cells, ipRGCs)對(duì)個(gè)體心理功能產(chǎn)生顯著的激活作用, 如警覺(jué)性(Smolders et al., 2018; Souman et al., 2018)、認(rèn)知功能(Huiberts et al., 2015; Ru et al., 2021)、情緒(Bedrosian amp; Nelson, 2017; Ru, et al., 2019; 李蕓 等, 2022)等, 與此同時(shí), 也會(huì)對(duì)機(jī)體的激素分泌(Figueiro amp; Rea, 2012)、生物節(jié)律和睡眠產(chǎn)生顯著的調(diào)節(jié)作用(Cajochen, Freyburger, et al., 2019; Nie et al., 2020), 這些被統(tǒng)稱為光照的非圖像視覺(jué)功效(Non-image forming function, NIF) (汝濤濤 等, 2019)。其中, 光照對(duì)生物節(jié)律和睡眠的調(diào)節(jié)又被稱為光照的生物節(jié)律效應(yīng)。
2" 光照對(duì)生物節(jié)律的調(diào)節(jié)
人類的睡眠覺(jué)醒周期是晝夜節(jié)律行為模式的一個(gè)突出表現(xiàn)(Blume et al., 2019), 而光作為重要的授時(shí)因子, 對(duì)這一睡眠覺(jué)醒周期具有重要影響(Dautovich et al., 2019)。位于下丘腦的視交叉上核(suprachiasmatic nucleus, SCN)是人體生物節(jié)律系統(tǒng)的重要起搏器, 光照通過(guò)ipRGCs將光信號(hào)傳遞至SCN, 從而對(duì)個(gè)體的生物節(jié)律進(jìn)行調(diào)節(jié)。
基于生物節(jié)律的角度, 有研究認(rèn)為光照對(duì)人類生理節(jié)律有兩方面的影響:光照對(duì)褪黑激素的急性抑制反應(yīng)和光照對(duì)晝夜節(jié)律相位的調(diào)節(jié)(Blume et al., 2019)。研究發(fā)現(xiàn), 環(huán)境光對(duì)生物節(jié)律的重置效果依賴于光照作用的時(shí)間。一方面, 晨間光暴露可以前置個(gè)體生物節(jié)律相位(Dumont amp; Carrier, 1997; Misiunaite et al., 2020)。如早期一項(xiàng)研究發(fā)現(xiàn)在接受為期3天的晨間亮光暴露(8:30~13:30, 6000~13000 lx)后, 被試的生物節(jié)律相位提前了約1.2小時(shí)(Dumont amp; Carrier, 1997)。新近的一項(xiàng)研究發(fā)現(xiàn), 日間(8:00~18:00)辦公室采用優(yōu)化動(dòng)態(tài)光模式(早上最低為500 lx, 中午逐漸增加到最低1000 lx, 下午降低且最高不超過(guò)2500 lx)較之于傳統(tǒng)辦公照明模式顯著提前了被試的褪黑素開(kāi)始分泌時(shí)間(Benedetti et al., 2022)。另一方面, 夜間光暴露則會(huì)延遲個(gè)體生物節(jié)律相位(Dumont amp; Carrier, 1997; Hartstein et al., 2022; Khalsa et al., 2003)。如Dumont和Carrier (1997)的研究發(fā)現(xiàn), 在夜間光暴露下(18:30~23:30, 6000~13000 lx)被試的生物節(jié)律相位延遲了約1.6小時(shí)。另一項(xiàng)研究也發(fā)現(xiàn)在夜間持續(xù)6.7小時(shí)約10000 lx強(qiáng)光作用下個(gè)體褪黑素的相位反應(yīng)時(shí)間延遲了約3.6小時(shí)(Khalsa et al., 2003)。由此提示, 光照作為重要的授時(shí)因子, 可以前置或延后機(jī)體的生物節(jié)律相位, 從而間接對(duì)個(gè)體睡眠覺(jué)醒活動(dòng)模式產(chǎn)生影響。
3" 光照對(duì)睡眠的影響
在探討光照與夜間睡眠關(guān)系的研究中, 研究者通常會(huì)采用客觀和主觀兩種測(cè)量方式評(píng)估睡眠。主觀睡眠一般通過(guò)睡眠日志、睡眠量表等測(cè)量, 客觀睡眠多通過(guò)佩戴腕表, 或者通過(guò)睡眠測(cè)量的金標(biāo)準(zhǔn)——多導(dǎo)睡眠監(jiān)測(cè)儀(polysomnographic, PSG)等來(lái)監(jiān)測(cè)。主觀睡眠參數(shù)主要包括睡眠開(kāi)始時(shí)間、入睡潛伏期、睡眠效率、睡眠時(shí)長(zhǎng)和睡眠中點(diǎn)等; 而通過(guò)PSG等設(shè)備的監(jiān)測(cè)除了能獲取上述指標(biāo)外, 還能獲得不同睡眠結(jié)構(gòu)特點(diǎn)與其他睡眠活動(dòng), 如睡眠紡錘波數(shù)量、慢波睡眠(slow wave sleep, SWS)、快速眼動(dòng)睡眠(rapid eye movement sleep, REMS)的持續(xù)時(shí)間與潛伏期等更加微觀參數(shù)。此外, 與睡意和警覺(jué)度密切相關(guān)的生化指標(biāo)如褪黑素和皮質(zhì)醇濃度等也是衡量睡眠的客觀指標(biāo)之一。光照的非視覺(jué)效應(yīng)存在明顯的時(shí)間效應(yīng)(time of day)。因此, 光照與睡眠的關(guān)系研究通常分為日間與夜間兩個(gè)方面。
3.1" 夜間光照對(duì)睡眠的影響
由于人工照明技術(shù)的迅速發(fā)展, 人類“日出而作, 日落而息”的自然行為模式早已被打破, 人工白晝現(xiàn)象日益普遍, 再加上夜間各類電子顯示產(chǎn)品的廣泛使用, 對(duì)人們的睡眠健康產(chǎn)生了極大危害。總體而言, 研究結(jié)果較為一致地提示, 夜間光暴露會(huì)對(duì)睡眠產(chǎn)生負(fù)性影響, 包括延長(zhǎng)入睡潛伏期、減少深度睡眠的時(shí)長(zhǎng)、增加夜間睡眠擾動(dòng)等(Cho et al., 2018; Cho et al., 2013; Obayashi et al., 2014)。早期一項(xiàng)研究發(fā)現(xiàn)夜晚的光照水平越亮, 暴露時(shí)間越長(zhǎng), 個(gè)體進(jìn)入睡眠的準(zhǔn)備時(shí)間則越長(zhǎng)(Obayashi et al., 2014)。與之類似, 一項(xiàng)實(shí)驗(yàn)室研究采用PSG監(jiān)測(cè)被試在整晚暗光暴露下(40 lx)的睡眠情況, 結(jié)果發(fā)現(xiàn), 盡管光照強(qiáng)度很低, 但較之于接近黑暗的控制條件, 被試N1期睡眠時(shí)長(zhǎng)與清醒次數(shù)顯著增加, 慢波睡眠顯著減少(Cho et al., 2013)。此外, 個(gè)體視網(wǎng)膜上的ipRGCs的最敏感波長(zhǎng)接近藍(lán)光, 夜間短波長(zhǎng)藍(lán)光或富含藍(lán)光的復(fù)合白光暴露會(huì)睡眠產(chǎn)生更大的干擾。如最近一項(xiàng)研究考察了夜間在相同照度(160 lx)下, 睡前1小時(shí)(21:30~22:30)不同藍(lán)光含量的復(fù)合白光(2000 K vs. 6000 K)暴露對(duì)青少年睡眠的影響。結(jié)果顯示, 與低藍(lán)光環(huán)境相比, 持續(xù)10天的富含藍(lán)光環(huán)境作用下青少年的睡眠質(zhì)量顯著更低, 次日晨間主觀警覺(jué)性也顯著更低(Wen et al., 2021)。而上述這種藍(lán)光危害即使在很低強(qiáng)度的光線下也依然顯著。如睡前使用iPad閱讀兩小時(shí)(~30 lx, 峰值在~450 nm)較之于紙質(zhì)書(shū)閱讀(~3 lx, 峰值在612 nm)足以導(dǎo)致顯著更低的睡前睡意、更長(zhǎng)的入睡潛伏期、更短的REM睡眠時(shí)長(zhǎng)和次日晨間更高的困倦水平(Chang et al., 2015)。而夜間光照對(duì)睡眠的影響被認(rèn)為主要是通過(guò)延遲機(jī)體生物節(jié)律、抑制褪黑素分泌等生理過(guò)程來(lái)產(chǎn)生(Blume et al., 2019)。
3.2" 日間光照對(duì)睡眠的影響
3.2.1" 日間光暴露與夜間睡眠的相關(guān)研究
不同于夜間光照對(duì)睡眠的負(fù)面影響, 研究發(fā)現(xiàn)日間光照能夠顯著改善夜間睡眠質(zhì)量。如研究者考察了在真實(shí)生活情境中, 日間光照強(qiáng)度對(duì)絕經(jīng)后婦女情緒和睡眠的影響, 結(jié)果發(fā)現(xiàn), 日間平均光照強(qiáng)度與主客觀睡眠潛伏期、主觀入睡困難、客觀入睡后清醒次數(shù)等指標(biāo)呈負(fù)相關(guān), 同時(shí)與主觀抑郁評(píng)分呈負(fù)相關(guān)(Youngstedt et al., 2004)。另一項(xiàng)研究結(jié)果發(fā)現(xiàn), 24小時(shí)內(nèi)的平均光強(qiáng)度與有晚睡偏好的青少年客觀入睡時(shí)間及次日清醒時(shí)間呈負(fù)相關(guān); 最后暴露在gt;10 lx的時(shí)間與客觀入睡時(shí)間呈正相關(guān), 與主客觀的整體睡眠時(shí)長(zhǎng)呈負(fù)相關(guān)(Gasperetti et al., 2021)。此外, 有田野研究考查室內(nèi)辦公環(huán)境中員工日間光暴露與睡眠的關(guān)系, 結(jié)果發(fā)現(xiàn), 日光暴露總量與主觀睡眠質(zhì)量呈正相關(guān)(Hubalek et al., 2010)。而B(niǎo)oubekri等人(2014)的研究進(jìn)一步發(fā)現(xiàn), 靠窗工位辦公的員工會(huì)接觸到更多光線, 主觀報(bào)告身心更健康、睡眠質(zhì)量更高及客觀睡眠時(shí)長(zhǎng)更長(zhǎng)。Figueiro等人(2021)在疫情期間的調(diào)查研究也發(fā)現(xiàn), 白天(室內(nèi)或者室外)接觸的光照暴露量越多, 個(gè)體自我報(bào)告的睡眠越好。
此外, 部分田野研究提示光照暴露與睡眠關(guān)系存在顯著的季節(jié)(time of year)與時(shí)間(time of day)效應(yīng)(Figueiro amp; Rea, 2016; Figueiro et al., 2017; Gasperetti et al., 2021; Wams et al., 2017)。如Figueiro和Rea (2016)的田野研究比較了冬季和夏季辦公室日間(8:00~17:00)的光照水平及其與睡眠的關(guān)系, 結(jié)果發(fā)現(xiàn)夏季較之于冬季日間光照量顯著更多; 夏季的客觀睡眠質(zhì)量(入睡潛伏期、睡眠時(shí)長(zhǎng)和睡眠效率)也顯著優(yōu)于冬季。然而也有研究報(bào)告了不一致的結(jié)果, 如一項(xiàng)針對(duì)65歲以上老年人的調(diào)查研究發(fā)現(xiàn), 雖然夏季日光暴露量顯著高于冬季, 但主觀睡眠質(zhì)量在夏冬季之間并無(wú)顯著差異(Flores-Villa et al., 2020)。除季節(jié)差異外, 日間不同時(shí)間點(diǎn)光照作用對(duì)睡眠的影響也存在差異。如上述Youngstedt等人(2004)發(fā)現(xiàn)晨間(清醒后4小時(shí)內(nèi))平均光照強(qiáng)度與主客觀睡眠時(shí)間及主觀睡眠質(zhì)量呈正相關(guān); 與主客觀睡眠潛伏期、主觀入睡困難及主觀睡眠中清醒次數(shù)等呈負(fù)相關(guān)。而Figueiro等人(2017)基于真實(shí)辦公場(chǎng)景的研究發(fā)現(xiàn)員工日間接觸的晝夜節(jié)律光照(circadian light, CLA)水平越高(富含短波長(zhǎng)的亮光), 其睡眠質(zhì)量越高; 進(jìn)一步分析發(fā)現(xiàn)早上(8:00~12:00)接觸更高CLA水平的員工較之于低CLA水平的員工, 其入睡潛伏期更短, 睡眠效率更高, 且主觀睡眠質(zhì)量也顯著更高(Figueiro et al., 2017)。同樣地, Gasperetti等人(2021)也發(fā)現(xiàn)晨間(4:00~9:00)的光照暴露水平越高, 客觀入睡時(shí)間及次日清醒時(shí)間越早; 下午(14:00~19:00)光照暴露水平越高, 第二天清醒時(shí)間也越早; 而晚上(19:00~半夜)光照暴露水平越低, 主觀睡眠時(shí)間越長(zhǎng); 但并未發(fā)現(xiàn)早上9:00到下午14:00間的光照暴露水平與主客觀睡眠指標(biāo)的顯著相關(guān)。
總體而言, 上述田野研究結(jié)果較為一致地提示, 日間較高強(qiáng)度的光照或更多的光暴露量與夜間睡眠積極關(guān)聯(lián)。同時(shí), 日間光照對(duì)睡眠的影響依賴于光照作用時(shí)間, 即接觸光暴露的時(shí)間越早, 晨間高強(qiáng)度光暴露越多, 夜間的睡眠情況越好。但值得注意的是, 基于田野研究的證據(jù)凸顯了日間光照與睡眠的相關(guān)關(guān)系, 但無(wú)法揭示兩者之間是否存在因果關(guān)聯(lián)。
3.2.2" 短時(shí)程日光影響夜間睡眠的實(shí)證研究
為了探究日間光照與睡眠的因果關(guān)系, 研究者通過(guò)真實(shí)辦公場(chǎng)景或?qū)嶒?yàn)室情境下的實(shí)證研究考察了日間光照對(duì)夜間睡眠的影響(表1), 但研究結(jié)果并不十分一致。如早期一項(xiàng)研究發(fā)現(xiàn), 晨間(6:00~9:00)亮光(2000 lx)或暗光(1 lx)作用下被試的客觀入睡時(shí)間、入睡潛伏期和主觀睡眠質(zhì)量均無(wú)顯著差異, 但在晨間亮光較之于暗光暴露下被試清醒時(shí)間顯著更早(Dijk et al., 1987)、N2期睡眠時(shí)間與REM期的數(shù)量顯著更少(Dijk et al., 1989)。最近國(guó)內(nèi)一項(xiàng)對(duì)長(zhǎng)時(shí)室內(nèi)學(xué)習(xí)大學(xué)生的田野干預(yù)研究發(fā)現(xiàn), 為期5天(8:00~9:30)的晨間亮光作用(1000 lx, 6500K)較之于控制光(300 lx, 4000K)顯著提高了大學(xué)生的睡眠效率, 降低了睡眠碎片化指數(shù)(He et al., 2022)。此外, 有研究發(fā)現(xiàn), 在冬季對(duì)南極哈雷研究站的研究人員進(jìn)行為期14天的晨間亮光干預(yù)(8:30~9:30, 5300 K), 參與者的睡眠效率、入睡潛伏期和碎片化指數(shù)與對(duì)照條件相比并未顯著變化, 但其入睡清醒時(shí)間與生物節(jié)律顯著提前(Corbett et al., 2012)。而最近一項(xiàng)干預(yù)研究對(duì)比了上午(6:00~12:00)兩種不同的視黑素等效日光照度(melanopic equivalent daylight illuminance, mel EDI, 即192 mel EDI vs. 44 mel EDI)對(duì)早班工人睡眠的影響, 結(jié)果并未發(fā)現(xiàn)兩種照度下睡眠各項(xiàng)指標(biāo)的顯著差異; 但與基線光相比, 高mel EDI干預(yù)后被試的入睡潛伏期縮短, 睡眠效率提高(van de Putte et al., 2022)。
此外, 有臨床研究采用晨間亮光暴露對(duì)有睡眠障礙問(wèn)題的患者進(jìn)行干預(yù)治療(Dowling et al., 2005; Raikes et al., 2020; Turco et al., 2018; Zalta et al., 2019)。如Raikes等人(2020)采用30min的晨間(8:00~10:00)藍(lán)光暴露(~480 nm)治療腦損傷患者的睡眠障礙問(wèn)題, 結(jié)果發(fā)現(xiàn)在6周干預(yù)后, 患者白天睡意和抑郁情緒的嚴(yán)重程度較基線明顯緩解, 且睡眠潛伏期縮短, 睡眠質(zhì)量顯著提高。另一項(xiàng)采用晨間亮光干預(yù)治療原發(fā)性膽管炎患者睡眠障礙的研究發(fā)現(xiàn), 在15天的晨間亮光干預(yù)(照度10000 lx, 起床后立即暴露45 min)后, 干預(yù)組入睡和清醒時(shí)間提前, 主觀睡眠質(zhì)量顯著提高(Turco et al., 2018)。但也有研究未發(fā)現(xiàn)晨光干預(yù)的積極作用。如Dowling等人(2005)對(duì)阿爾茲海默癥患者的睡眠問(wèn)題進(jìn)行了為期10周的晨間亮光干預(yù)(gt; 2500 lx, 9:30~10:30), 然而與控制組(150~ 200 lx)相比, 并未發(fā)現(xiàn)患者整體睡眠情況有明顯提升。這些不一致的結(jié)果可能是由于患者群體之間的差異性導(dǎo)致。
3.2.3" 全天化日光影響夜間睡眠的實(shí)證研究
除了短時(shí)程日光暴露, 也有研究考察了長(zhǎng)時(shí)程人工光暴露對(duì)睡眠的影響(表1)。如Wakamura和Tokura (2000)考察個(gè)體醒后到睡前連續(xù)4天的亮光(6000 lx)和暗光(200 lx)暴露對(duì)核心體溫和睡眠的影響。結(jié)果發(fā)現(xiàn), 盡管亮光較之于暗光條件下被試的上床時(shí)間、清醒時(shí)間和床上時(shí)間無(wú)顯著差異, 但主觀睡眠體驗(yàn)更好, 睡意評(píng)分更低。與此同時(shí), Stefani等人(2021)在嚴(yán)格控制的實(shí)驗(yàn)室條件下對(duì)比了全天化(醒后至睡前)的動(dòng)態(tài)光與靜態(tài)光對(duì)日間認(rèn)知功能與夜間睡眠的影響, 其動(dòng)態(tài)光的設(shè)置為早晨醒后, 光照從1 lx, 3500 K逐漸增加, 在2.5 h后達(dá)到83 lx, 5000 K并保持不變, 持續(xù)7.5 h后逐漸降低至睡前1 lx, 2700 K; 靜態(tài)光固定在87 lx, 4000 K。結(jié)果發(fā)現(xiàn), 動(dòng)態(tài)光較之于靜態(tài)光模式下認(rèn)知加工績(jī)效無(wú)顯著改善, 但被試N1期和N2期睡眠的潛伏期顯著縮短; 同時(shí)靜態(tài)光較基線夜相比, 夜間褪黑素分泌時(shí)間顯著延遲, 而動(dòng)態(tài)光下無(wú)明顯差異(Stefani et al., 2021)。新近, 國(guó)內(nèi)學(xué)者Ru等人的一項(xiàng)實(shí)驗(yàn)室研究發(fā)現(xiàn), 較之于全天(9:00~18:00)靜態(tài)的辦公照明環(huán)境(4000K, 500 lx), 分別在晨間(9:00~10:30)和下午早間(14:00~ 15:30)施加高照度富藍(lán)白光(6500K, 1650 lx), 午間(12:00~14:00)采用低照度暖白光(300 lx, 3000 K)組合的動(dòng)態(tài)辦公光環(huán)境能顯著提升個(gè)體夜間的睡眠質(zhì)量及日間部分時(shí)段的認(rèn)知績(jī)效(Ru et al., 2022)。
除了上述的實(shí)驗(yàn)室研究外, 另一些研究在真實(shí)辦公場(chǎng)景中操縱了人工或自然采光水平并考察其對(duì)員工心理幸福感與睡眠的影響, 盡管研究結(jié)果也不一致(表1), 但為我們更加客觀地評(píng)估日光與睡眠的關(guān)系提供了生態(tài)化視角。如Figueiro等人(2020)在辦公室場(chǎng)景下分別在上午(6:00~12:00)進(jìn)行藍(lán)光(眼位50 lx, 455nm)暴露, 中午(12:00~13:30)亮白光(200 lx, 6500 K)暴露, 下午(13:30~17:00)紅光(眼位50 lx, 634 nm)暴露, 結(jié)果發(fā)現(xiàn), 光照干預(yù)后被試睡眠的起止時(shí)間較基線均顯著提前。此外, 還有研究設(shè)計(jì)了兩種室內(nèi)動(dòng)態(tài)照明方案來(lái)考察動(dòng)態(tài)家居照明對(duì)老年人睡眠的影響。兩種方案的照度水平相同(早上6:00~8:00為300 lx, 8:00~12:00為500 lx, 之后逐漸降低至晚上20:00為100 lx), 但方案一的色溫保持2700 K恒定, 而方案二的色溫在6500 K到2700 K之間變化(6:00~8:00為4500 K, 8:00~12:00為6500 K, 12:00~16:00為4500 K, 16:00~18:00為3500 K, 18:00~20:00為3000 K, 20:00之后為2700 K)。結(jié)果發(fā)現(xiàn)方案二下老年人的客觀睡眠時(shí)長(zhǎng)更長(zhǎng), 睡眠效率更高, 入睡潛伏期更短, 且主觀報(bào)告的睡眠問(wèn)題更少, 睡眠質(zhì)量更高(Shishegar et al., 2021)。然而其他一些田野干預(yù)研究卻報(bào)告了不一致的結(jié)果。如Peeters等人(2021)分別在冬季和春季, 對(duì)真實(shí)辦公場(chǎng)景在上午(8:30~12:30)或下午(13:00~17:00)進(jìn)行高照度(垂直: 318 lx, 3676 K, 190 lx mel EDI)或低照度(垂直: 42 lx, 3264 K, 22 lx mel EDI)的動(dòng)態(tài)光干預(yù), 結(jié)果并沒(méi)有發(fā)現(xiàn)動(dòng)態(tài)光對(duì)夜間睡眠的顯著作用, 甚至出現(xiàn)相反的結(jié)果, 如在冬季, 上午高照度較之于下午高照度的動(dòng)態(tài)光模式導(dǎo)致睡眠時(shí)長(zhǎng)顯著縮短, 睡眠時(shí)間顯著推遲。最近一項(xiàng)田野研究設(shè)計(jì)了兩種相反的動(dòng)態(tài)光照模式, 其中一種光照模式(Skeleton)在早上7:00~10:15和下午15:45~19:00之間是亮光暴露(垂直:502 lx, 4689 K, 367 lx mel EDI), 在11:15~ 14:45之間是基線光暴露(垂直:333 lx, 5105 K, 264 lx mel EDI); 另一種光照模式(Noon)正好相反。結(jié)果發(fā)現(xiàn)主觀睡意在Noon模式下更低, 但睡眠參數(shù)(如入睡時(shí)間, 睡眠時(shí)長(zhǎng), 睡眠效率等)并未發(fā)現(xiàn)顯著差異(Kompier et al., 2022)。
綜合以上, 雖然部分研究發(fā)現(xiàn)了日間光照對(duì)夜間睡眠的優(yōu)化效果, 但不同研究發(fā)現(xiàn)的日間光照暴露對(duì)睡眠影響的結(jié)果并不十分一致。除了研究場(chǎng)景與采用睡眠測(cè)試指標(biāo)的差異, 動(dòng)態(tài)光模式、參數(shù)水平及與被試群體特征等可能是潛在的調(diào)節(jié)因素。此外, 對(duì)全天動(dòng)態(tài)光照影響夜間睡眠的實(shí)驗(yàn)室研究較少, 何種動(dòng)態(tài)光模式可以更好的優(yōu)化夜間睡眠仍需進(jìn)一步探討。
4" 日間光照改善夜間睡眠效果的影響因素
4.1" 光照量
個(gè)體在日間接觸到的光照暴露量不同, 對(duì)睡眠的影響也不同。一項(xiàng)田野研究發(fā)現(xiàn)日間接觸的光照暴露總量越高, 主觀睡眠質(zhì)量越好(Hubalek et al., 2010)。而在地理緯度(Adamsson et al., 2016)、季節(jié)(Flores-Villa et al., 2020; Lee et al., 2020)以及工作場(chǎng)所(Daugaard et al., 2019)等的差異下, 個(gè)體每日接觸到的光照量存在顯著差異。如針對(duì)辦公室職員的田野研究發(fā)現(xiàn)夏季的日間光照顯著高于冬季, 客觀睡眠質(zhì)量也顯著高于冬季(Figueiro amp; Rea, 2016)。值得注意的是, 個(gè)體在日間接觸到的光照暴露量也與日間的光照水平和暴露時(shí)長(zhǎng)有關(guān)。與此同時(shí), 盡管目前少數(shù)研究提示晨間光照對(duì)優(yōu)化夜間睡眠的積極作用, 但不同時(shí)段光照暴露量是否會(huì)對(duì)睡眠產(chǎn)生差異化影響尚未可知。
4.2" 光照水平
日間光照的水平也會(huì)影響其對(duì)睡眠的作用效果。照度和色溫是環(huán)境光照的重要屬性之一, 照度越高, 光照越強(qiáng); 色溫越高, 復(fù)合白光中短波長(zhǎng)藍(lán)光光譜的含量越高, 其產(chǎn)生的非視覺(jué)功效就越明顯(de Kort amp; Smolders, 2010; 汝濤濤 等, 2019)。已有實(shí)驗(yàn)研究提示, 日間亮光暴露對(duì)夜間睡眠有積極影響。如在高照度較之于低照度的晨間光暴露下(gt; 1000 lx vs. lt; 7 lx), 被試夜間睡眠的清醒次數(shù)減少(Kohsaka et al., 2000), 清醒時(shí)間提前, 主觀睡眠質(zhì)量提高(Zalta et al., 2019), 主觀睡眠感受提高(Kohsaka et al., 1999)。田野調(diào)查也發(fā)現(xiàn), 日間接觸到的光照強(qiáng)度與睡眠質(zhì)量和睡眠時(shí)長(zhǎng)呈正相關(guān)(Figueiro et al., 2017; Youngstedt et al., 2004), 而與入睡時(shí)間、睡眠潛伏期、入睡困難、睡眠中清醒次數(shù)等呈負(fù)相關(guān)(Gasperetti et al., 2021; Youngstedt et al., 2004)。直接比較不同色溫的日間光照對(duì)夜間睡眠影響的研究較少, 但是有研究發(fā)現(xiàn)日間辦公室情境下暴露在富藍(lán)白光(310 lx, 17000 K)較之于標(biāo)準(zhǔn)白光(421 lx, 4000 K)顯著降低了主觀睡意, 提高了睡眠質(zhì)量(Viola et al., 2008)。值得注意的是, 無(wú)論是照度或相關(guān)色溫操縱, 都可以以等效視黑素照度的強(qiáng)度來(lái)量化, 因此, 揭示等效視黑素照度與睡眠間的關(guān)系, 可以為改善睡眠的室內(nèi)健康光環(huán)境構(gòu)建提供參數(shù)設(shè)計(jì)依據(jù)。
4.3" 光照時(shí)間
首先, 光照的時(shí)間點(diǎn)會(huì)影響光照對(duì)夜間睡眠的影響。相比其他時(shí)間點(diǎn)(下午或晚上), 晨間的亮光暴露對(duì)睡眠有積極的影響(Carrier amp; Dumont, 1995)。而在上述提到的田野研究中, 也發(fā)現(xiàn)了晨間光照量與夜間睡眠之間的正相關(guān)(Figueiro et al., 2017; Gasperetti et al., 2021)。此外, 日間光照暴露時(shí)長(zhǎng)也會(huì)影響個(gè)體接觸到的光照暴露量, 如有調(diào)查研究發(fā)現(xiàn)室內(nèi)辦公職員平均每天暴露在較高光照水平(如gt;1000 lx)下的時(shí)長(zhǎng)較短(Hubalek et al., 2010; van Duijnhoven et al., 2021), 這使得他們?nèi)臻g接觸到的光照暴露量較少, 由此可能導(dǎo)致睡眠質(zhì)量下降。此外, 日間光暴露對(duì)睡眠的改善效果并非一蹴而就, 而存在明顯的時(shí)間累積效應(yīng)。如有研究在干預(yù)第四天才發(fā)現(xiàn)晨間亮光干預(yù)對(duì)老年人夜間睡眠的積極影響(Kohsaka et al., 1999), 另一項(xiàng)對(duì)重度抑郁癥患者的室內(nèi)動(dòng)態(tài)光照干預(yù)研究發(fā)現(xiàn)在干預(yù)兩周后患者的入睡時(shí)間才顯著提前(Canazei et al., 2022)。由此提示, 日間光照暴露的時(shí)間點(diǎn)、暴露時(shí)長(zhǎng)以及持續(xù)時(shí)間等時(shí)間因素也是日光與睡眠關(guān)系模型中重要的影響變量。
4.4" 光照模式
當(dāng)前絕大多數(shù)人居空間的照明方式為全天恒定的靜態(tài)光照。新近, 國(guó)際照明委員會(huì)提出了一種新的照明理念, 即“以人為本”的動(dòng)態(tài)照明方式(CIE, 2018), 即在一天的不同時(shí)間點(diǎn), 光照的照度或色溫隨著某種預(yù)設(shè)的模式進(jìn)行實(shí)時(shí)地調(diào)整與變化, 以期為個(gè)體的身心功能產(chǎn)生更大的福祉(Kompier et al., 2020)。動(dòng)態(tài)光照模式主要包括人工動(dòng)態(tài)光、間歇性光照、黎明模擬光和模擬暮光(汝濤濤 等, 2019)。相比靜態(tài)光照, 照度或色溫動(dòng)態(tài)變化的光照模式能夠誘發(fā)更好的非視覺(jué)功效(de Kort amp; Smolders, 2010)。因此探究室內(nèi)動(dòng)態(tài)光照模式對(duì)夜間睡眠的影響成為工程心理學(xué)與建筑設(shè)計(jì)學(xué)日漸關(guān)注的話題。
上文所提到的動(dòng)態(tài)光照模式研究結(jié)果并不一致。如Shishegar等人(2021)的室內(nèi)動(dòng)態(tài)照明研究結(jié)果發(fā)現(xiàn), 色溫動(dòng)態(tài)變化的光照模式較之于色溫恒定的光照模式對(duì)老年人的主客觀睡眠指標(biāo)均有顯著改善。但也有研究并未發(fā)現(xiàn)動(dòng)態(tài)光照模式對(duì)夜間睡眠的優(yōu)化效果(Benedetti et al., 2022; Kompier et al., 2022)。此外, 這些研究所采用的動(dòng)態(tài)光照模式并不一致, 如Kompier等人(2022)采用的是基于人體生物節(jié)律變化的動(dòng)態(tài)光照模式, 而Shishegar等人(2021)則考慮日間高照度高藍(lán)光, 夜間低照度低藍(lán)光的光照模式。因此哪種動(dòng)態(tài)光照模式可以更好地優(yōu)化個(gè)體夜間的睡眠仍需進(jìn)一步探討。
4.5" 個(gè)體特征
不同年齡階段的群體對(duì)光照的感受敏感性不同, 導(dǎo)致光照對(duì)睡眠的影響存在年齡差異。相比起老年人, 年輕人對(duì)短波長(zhǎng)的光更加敏感。有研究發(fā)現(xiàn)在短波長(zhǎng)光的照射下老年人的褪黑素抑制水平相較于年輕人減弱(Herljevic et al., 2005), 且REM的潛伏期增加(Münch et al., 2011)。性別也會(huì)影響到不同光照對(duì)睡眠的影響。如有研究發(fā)現(xiàn)暴露在高色溫的光環(huán)境下(40 lx, 6500 K), 雖然在褪黑素抑制方面無(wú)性別差異, 但在男性睡眠中額葉的慢波活動(dòng)有所增加(Chellappa et al., 2017)。此外, 基因類型也是影響個(gè)體光敏感性的因素之一。生物鐘基因(如PER2, 酪蛋白激酶casein kinase 1 epsilon)的變化與人類的睡眠和晝夜節(jié)律紊亂障礙相關(guān)(Ebisawa, 2007; Toh et al., 2001)。有研究發(fā)現(xiàn)PER2單倍體純合子導(dǎo)致個(gè)體對(duì)光的敏感度降低(Akiyama et al., 2017)。此外, PER3也與對(duì)睡眠覺(jué)醒系統(tǒng)的調(diào)節(jié)有關(guān)(Dijk amp; Archer, 2010)。研究發(fā)現(xiàn)PER3的多態(tài)性會(huì)影響光照對(duì)褪黑素的抑制反應(yīng), 即6500 K較之于2500 K光照對(duì)PER35/5個(gè)體的內(nèi)源性褪黑激素水平有明顯的抑制作用, 而對(duì)PER34/4個(gè)體的內(nèi)源性褪黑激素水平無(wú)顯著影響(Chellappa et al., 2012)。
綜上所述, 日間光照改善夜間睡眠的作用效果大小可以通過(guò)構(gòu)建耦合光照劑量、光照水平、作用時(shí)間、持續(xù)時(shí)長(zhǎng)等變量的數(shù)學(xué)方程來(lái)計(jì)算, 而“以人為本”健康照明方式的構(gòu)建也應(yīng)充分結(jié)合用戶個(gè)體特征。與此同時(shí), 通過(guò)對(duì)上述調(diào)節(jié)變量的探究, 也可以為人們認(rèn)識(shí)日間光照改善夜間睡眠的內(nèi)在作用機(jī)制提供新思路。
5" 日間光照影響優(yōu)化夜間睡眠的作用機(jī)制
5.1" 日間光照影響睡眠的生理機(jī)制
睡眠調(diào)節(jié)的雙過(guò)程模型(two-process model)認(rèn)為, 機(jī)體的睡眠覺(jué)醒模式是由睡眠內(nèi)穩(wěn)態(tài)過(guò)程(Process S)和晝夜節(jié)律過(guò)程(Process C)相互作用決定的(Borbély et al., 2016)。其中, 睡眠內(nèi)穩(wěn)態(tài)過(guò)程反映了睡眠債, 其主要依賴于睡眠和覺(jué)醒時(shí)間, 在清醒狀態(tài)下上升, 睡眠狀態(tài)下減少; 而晝夜節(jié)律過(guò)程是由外部光刺激誘發(fā)機(jī)體產(chǎn)生的身心機(jī)能的內(nèi)在節(jié)律性, 如日間保持高度警覺(jué), 夜間進(jìn)入無(wú)意識(shí)睡眠的低警覺(jué)狀態(tài)等。如上文所述, 光照可以通過(guò)重置機(jī)體的內(nèi)在生物節(jié)律繼而間接調(diào)節(jié)個(gè)體的夜間睡眠(Carrier amp; Dumont, 1995; Prayag, Munch, et al., 2019), 而另一項(xiàng)研究發(fā)現(xiàn)動(dòng)態(tài)光照模式也可以促進(jìn)晝夜節(jié)律適應(yīng)睡眠覺(jué)醒相位的移動(dòng)(Rahman et al., 2022)。核心體溫和褪黑素是晝夜節(jié)律過(guò)程的生化標(biāo)記物(Borbély et al., 2016)。其中, 褪黑素是由松果體產(chǎn)生的一種神經(jīng)激素(Mannino et al., 2021), 又被稱為“睡眠荷爾蒙”。褪黑素在夜間(黑暗中)開(kāi)始分泌和累積, 它在調(diào)節(jié)晝夜節(jié)律和睡眠覺(jué)醒周期中起著關(guān)鍵作用(Kennaway, 2022)。很多研究采用褪黑素治療方法(Melatonin treatment)來(lái)改善患者的睡眠障礙問(wèn)題(Burgess amp; Emens, 2020; Hadi et al., 2022)。而褪黑素對(duì)光照的反應(yīng)十分敏感, 夜間即使是很低照度的光照亦能夠顯著抑制褪黑素的分泌與合成(Prayag, Najjar, amp; Gronfier, 2019)。因此, 光照可以通過(guò)激活SCN中的受體細(xì)胞并隨后抑制褪黑素分泌作為調(diào)節(jié)個(gè)體生物節(jié)律, 進(jìn)而控制個(gè)體睡眠覺(jué)醒行為的線索(Pandi-Perumal et al., 2022)。
光照除了可以通過(guò)影響個(gè)體的生理節(jié)律間接調(diào)節(jié)睡眠覺(jué)醒活動(dòng)外(LeGates et al., 2014), 還可以通過(guò)ipRGCs表達(dá)的黑視蛋白直接影響個(gè)體的睡眠(Lupi et al., 2008), 即光照可以通過(guò)ipRGCs表達(dá)的黑視蛋白直接將神經(jīng)光信號(hào)投射至負(fù)責(zé)調(diào)節(jié)睡眠覺(jué)醒活動(dòng)的腦區(qū), 如腹外側(cè)視前核 (ventrolateral preoptic nuclei, VLPO)、下丘腦室旁核下區(qū)(subparaventricular nucleus zone, SPZ)、上丘?頂蓋前區(qū)(superior colliculus-pretectum, SC-PT), 以及外側(cè)下丘(lateral hypothalamus, LH)等(Hattar et al., 2006; Lupi et al., 2008; Schmidt et al., 2011)繼而直接調(diào)節(jié)機(jī)體睡眠。因此, Hubbard等人(2013)提出了一個(gè)睡眠調(diào)節(jié)三過(guò)程模型(three-process model)。該模型認(rèn)為光照對(duì)睡眠的直接調(diào)節(jié), 與晝夜節(jié)律過(guò)程和內(nèi)穩(wěn)態(tài)過(guò)程相互作用, 從而決定了機(jī)體的睡眠時(shí)間和品質(zhì)。正如作者所言, 該模型需要更多的哺乳動(dòng)物模型加以檢查和修正以增加模型的適用性(Hubbard et al., 2013)。
盡管上述兩種理論模型可以解釋光照與睡眠的關(guān)聯(lián)機(jī)理, 但基于當(dāng)前研究結(jié)果, 日間光照特性如光照水平、光照劑量和光照作用時(shí)間等對(duì)睡眠的作用關(guān)系顯得更為復(fù)雜, 特別是日間光照對(duì)睡眠與生物節(jié)律的影響是否存在同步性或獨(dú)立性仍有待探究。
5.2" 日間光照影響睡眠的心理機(jī)制
光照的警覺(jué)性效應(yīng)是光照非視覺(jué)效應(yīng)的重要表現(xiàn)之一(Lok et al., 2018; Souman et al., 2018; 汝濤濤 等, 2019), 如有研究者采用黎明模擬光照或晨間自然光暴露等方式來(lái)對(duì)抗早晨覺(jué)醒后的睡意, 以提高機(jī)體的警覺(jué)性和認(rèn)知功能水平(Dong amp; Zhang, 2021; Gabel et al., 2015), 部分晨間光照干預(yù)研究也發(fā)現(xiàn)在晨間亮光或藍(lán)光干預(yù)后被試日間的主觀睡意會(huì)更低(Raikes et al., 2020; Turco et al., 2018)。而個(gè)體生理警覺(jué)性水平與晝夜節(jié)律和睡眠又密切相關(guān)(Axelsson et al., 2020)。如日間動(dòng)態(tài)光照的研究發(fā)現(xiàn), 在接受全天化動(dòng)態(tài)光作用后, 個(gè)體睡前1小時(shí)的警覺(jué)程度要低于靜態(tài)光模式(Stefani et al., 2021), 而另一項(xiàng)研究也發(fā)現(xiàn), 控制光條件下(100 lx, 4000 K)與警覺(jué)性相關(guān)的睡眠腦電頻譜密度較之于基線顯著增加(Cajochen, Freyburger, et al., 2019)。此外, 最近一項(xiàng)采用強(qiáng)迫去同步范式的研究發(fā)現(xiàn), 在強(qiáng)迫清醒階段, 亮光暴露較之于暗光顯著增加了個(gè)體的主觀睡意(Lok, Woelders, van Koningsveld, et al., 2022), 同時(shí)顯著增加了NREM期的delta波(0.5~4 Hz)能量(Lok, Woelders, Gordijn, et al., 2022), 表明清醒階段的亮光暴露減少了微覺(jué)醒的發(fā)生, 增加了睡眠內(nèi)穩(wěn)態(tài)壓力。由此提示, 日間光照可能會(huì)通過(guò)影響個(gè)體日間或睡前的警覺(jué)性進(jìn)而對(duì)睡眠產(chǎn)生影響。
此外, 情緒體驗(yàn)可能也是介導(dǎo)日間光照影響睡眠的心理路徑之一。已有研究提示, 日間不同強(qiáng)度或色溫的光環(huán)境作用能夠?qū)€(gè)體的主客觀情緒產(chǎn)生即時(shí)性影響, 而異常光照模式會(huì)誘發(fā)不良情緒體驗(yàn)(LeGates et al., 2014; 李蕓 等, 2022)。個(gè)體的情緒狀態(tài)與睡眠之間存在交互影響(Parsons et al., 2022), 如個(gè)體的積極情緒狀態(tài)可以顯著預(yù)測(cè)睡眠質(zhì)量(Uchino et al., 2017), 而睡眠障礙、失眠等睡眠問(wèn)題則會(huì)誘發(fā)個(gè)體不良情緒甚至焦慮癥、抑郁等情緒障礙(Nicholson amp; Pfeiffer, 2021; Palagini et al., 2019)。Figueiro等人(2021)近期在疫情期間的一項(xiàng)調(diào)查研究發(fā)現(xiàn), 白天(室內(nèi)或者室外)接觸的光照量越多, 個(gè)體自我報(bào)告的睡眠效果越好, 體驗(yàn)到的壓力、焦慮、抑郁等負(fù)性情緒越少, 而積極情緒則越高。未來(lái)的研究可以通過(guò)考察日間光暴露、情緒與睡眠三者間的動(dòng)態(tài)因果關(guān)系來(lái)驗(yàn)證上述猜想。
6" 未來(lái)研究展望
6.1" 基于生物節(jié)律和睡眠優(yōu)化的全天化人因動(dòng)態(tài)照明設(shè)計(jì)
日班工作人群幾乎三分之一的時(shí)間都是在室內(nèi)建筑中度過(guò)(Kompier et al., 2022), 室內(nèi)光環(huán)境水平會(huì)直接影響員工的情緒、工作效率以及睡眠健康(van Duijnhoven et al., 2019)。辦公室員工日間接觸高強(qiáng)度光照的機(jī)會(huì)較少。有調(diào)查研究發(fā)現(xiàn)室內(nèi)辦公人員平均每天暴露在 gt; 1000 lx光照下的時(shí)長(zhǎng)約為72 min (van Duijnhoven et al., 2021), 而在室內(nèi)時(shí)間僅16 min左右(Hubalek et al., 2010)。長(zhǎng)期接觸較低的光線水平會(huì)對(duì)個(gè)體的身心健康和睡眠健康產(chǎn)生負(fù)面影響(van Duijnhoven et al., 2019)。如何構(gòu)建健康的人因照明環(huán)境, 使其能夠?qū)€(gè)體日間心理功能與夜間睡眠產(chǎn)生最優(yōu)的作用效果是目前研究的熱點(diǎn)與難點(diǎn)問(wèn)題。據(jù)前文所述, 日間光暴露對(duì)睡眠的影響存在時(shí)間效應(yīng), 而個(gè)體日間的身心機(jī)能水平也呈現(xiàn)出節(jié)律性的動(dòng)態(tài)變化(Coles et al., 2015; Schnupp et al., 2017)。因此, 構(gòu)建基于生物節(jié)律時(shí)間動(dòng)態(tài)調(diào)整照度或色溫的室內(nèi)人工光環(huán)境不失為一種可能的研究思路。
6.2" 日間光照影響夜間睡眠的作用機(jī)理探討
睡眠調(diào)節(jié)的雙過(guò)程模型認(rèn)為睡眠是由睡眠內(nèi)穩(wěn)態(tài)過(guò)程(Process S)和晝夜節(jié)律過(guò)程(Process C)相互作用決定的(Borbély et al., 2016)。光照對(duì)生物節(jié)律與睡眠的調(diào)節(jié)作用已經(jīng)得到了大量文獻(xiàn)研究的支持, 但值得注意的是, 光照是否會(huì)對(duì)睡眠的內(nèi)穩(wěn)態(tài)過(guò)程產(chǎn)生影響目前還不清楚。有研究發(fā)現(xiàn)晨間的亮光暴露提前了晝夜節(jié)律和清醒時(shí)間, 但是對(duì)NREM期的慢波活動(dòng)沒(méi)有影響(Dijk et al., 1989)。但是另一項(xiàng)研究發(fā)現(xiàn)在經(jīng)歷40h的睡眠限制后, 日間的亮光暴露(250 lx)較之于暗光(lt; 8 lx)增加了NREM期的慢波活動(dòng)(Cajochen, Reichert, et al., 2019)。而NERM期的慢波活動(dòng)被認(rèn)為是睡眠內(nèi)穩(wěn)態(tài)的重要生理指標(biāo), 那么, 日間光照是否會(huì)通過(guò)調(diào)節(jié)睡眠內(nèi)穩(wěn)態(tài)繼而影響睡眠尚未可知。而Hubbard等人(2013)提出的三過(guò)程模型認(rèn)為對(duì)睡眠的直接光照調(diào)節(jié), 與晝夜節(jié)律過(guò)程和內(nèi)穩(wěn)態(tài)過(guò)程相互作用共同決定了個(gè)體的睡眠品質(zhì)。但此模型也需要更多神經(jīng)生物學(xué)證據(jù)驗(yàn)證。因此, 未來(lái)研究需要在現(xiàn)有基礎(chǔ)上進(jìn)一步探討日間光照對(duì)夜間睡眠的作用機(jī)制。
6.3" 基于特殊人群的光照優(yōu)化睡眠的效果及方法研究
在地理緯度、職業(yè)等的差異下, 個(gè)體每日接觸到的光照量存在顯著差異(Hubalek et al., 2010)。比如光照強(qiáng)度, 無(wú)論是照射到地球表面的光量還是白天的長(zhǎng)度, 都會(huì)隨著緯度的增加而減弱(Pearce amp; Dunbar, 2012)。有研究顯示在冬季, 北極附近(如瑞典)工作的工人接觸到的自然光暴露量較少, 從而會(huì)引發(fā)如睡眠不足等睡眠問(wèn)題(Lubas et al., 2019)。而一些特殊職業(yè)人群, 如輪班制員工(Nie et al., 2020)、地下作業(yè)場(chǎng)所(如地鐵、隧道、礦井等)工作者(Dong et al., 2021; Yang et al., 2022)、空間站宇航員(Brainard et al., 2016)等接觸到的日間光照暴露也存在很大差異, 而日光暴露不足會(huì)對(duì)從事這些職業(yè)人群的情緒、睡眠等身心健康問(wèn)題產(chǎn)生負(fù)面影響(Carvalho amp; Cruz, 2017; Khaing et al., 2019)。因此, 未來(lái)研究也可以針對(duì)不同人群、作業(yè)場(chǎng)所的特殊性和差異性, 構(gòu)建健康舒適的光照環(huán)境, 考察其對(duì)視覺(jué)與非視覺(jué)作用績(jī)效的影響, 以及借助人工光照維護(hù)生物節(jié)律, 改善睡眠, 提升身心健康品質(zhì)。
6.4" 構(gòu)建夜間睡眠對(duì)日間光照水平的劑量反應(yīng)曲線模型
雖然田野研究設(shè)計(jì)在光照領(lǐng)域至關(guān)重要, 但是如何將真實(shí)場(chǎng)景下復(fù)雜的光照條件精確量化是一項(xiàng)挑戰(zhàn)(de Kort, 2021; Houser amp; Esposito, 2021)。有研究提前設(shè)定好一個(gè)閾值(如1000 lx), 通過(guò)計(jì)算暴露在超過(guò)給定閾值的光照條件下的時(shí)間來(lái)確定光照暴露量(Hubalek et al., 2010), 這種算法實(shí)際上整合了光照強(qiáng)度和持續(xù)時(shí)間。后續(xù)也有研究基于此種方法探究光照與警覺(jué)性和執(zhí)行控制功能之間的劑量效應(yīng)(Smolders et al., 2018)。但是目前精確的日間光照影響夜間睡眠的閾限水平尚未建立。因此有研究并未設(shè)置特定的光照閾限, 而是選取多個(gè)閾限水平進(jìn)行敏感性探索分析(Peeters et al., 2022)。通過(guò)在一定的閾值范圍內(nèi)使用靈敏度分析, 可以探索在特定的測(cè)量結(jié)果中, 哪些特定閾值對(duì)光誘導(dǎo)生物效應(yīng)的時(shí)間依賴性更加敏感, 從而預(yù)測(cè)田野研究中光照的強(qiáng)度、持續(xù)時(shí)間和暴露時(shí)間點(diǎn)(Peeters et al., 2022)。因此, 這一方法為量化不同光環(huán)境下的光照參數(shù)提供了可能。目前已有研究嘗試探討了日間光照與個(gè)體警覺(jué)性狀態(tài)的劑量效應(yīng)曲線(Smolders et al., 2018), 以及夜間光照對(duì)褪黑素分泌抑制的預(yù)測(cè)模型(Giménez et al., 2022), 未來(lái)研究可以基于上述算法嘗試探討構(gòu)建日間光照對(duì)睡眠影響的劑量反應(yīng)曲線(dose-response curve), 為個(gè)性化的照明設(shè)計(jì)提供科學(xué)參考與依據(jù)。
7" 小結(jié)
光照作為重要的授時(shí)因子, 會(huì)對(duì)機(jī)體的生物節(jié)律與睡眠產(chǎn)生顯著的調(diào)節(jié)??傮w而言, 日間更高的光照水平或光照量可以正向預(yù)測(cè)夜間睡眠質(zhì)量, 但由于研究中日間光照參數(shù)(如光照水平、作用時(shí)間點(diǎn)、暴露時(shí)長(zhǎng)、持續(xù)時(shí)間等)的差異, 使得其對(duì)夜間睡眠的影響效果并不十分一致。而在對(duì)光照影響睡眠的作用機(jī)制探討上仍需進(jìn)一步探究。光照可以通過(guò)調(diào)節(jié)生物節(jié)律相位或激活與睡眠覺(jué)醒活動(dòng)相關(guān)的腦區(qū)對(duì)睡眠產(chǎn)生間接或直接的影響。但是光照是否會(huì)影響個(gè)體的睡眠內(nèi)穩(wěn)態(tài)過(guò)程對(duì)睡眠產(chǎn)生影響尚未可知。此外, 日間光照還可能通過(guò)影響個(gè)體的警覺(jué)性和情緒狀態(tài)等心理過(guò)程繼而對(duì)睡眠產(chǎn)生影響。在實(shí)際生活中, 自然界的光暗周期與個(gè)體的生理節(jié)律之間的去同步化愈加顯著, 所造成的晝夜節(jié)律紊亂以及相關(guān)睡眠障礙問(wèn)題也越發(fā)普遍。在人工照明技術(shù)日益發(fā)達(dá)的當(dāng)下, 如何去構(gòu)建基于不同人群和應(yīng)用場(chǎng)景的健康人因照明方式仍是重要議題, 研究成果對(duì)提高人們的工作效率、優(yōu)化睡眠以及提升身心健康水平具有重要的社會(huì)價(jià)值。
參考文獻(xiàn)
李蕓, 汝濤濤, 李絲雨, 陳涵宇, 謝舒雅, 周國(guó)富. (2022). 環(huán)境光照對(duì)情緒的影響及其作用機(jī)制. 心理科學(xué)進(jìn)展, 30(2), 389?405.
汝濤濤, 李蕓, 錢柳, 陳慶偉, 鐘羅金, 李靜華, 周國(guó)富. (2019). 環(huán)境光照的認(rèn)知功效及其調(diào)節(jié)因素與作用機(jī)理. 心理科學(xué)進(jìn)展, 27(10), 1687?1702.
Adamsson, M., Laike, T., amp; Morita, T. (2016). Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length. Journal of Physiological Anthropology, 36, 6.
Akiyama, T., Katsumura, T., Nakagome, S., Lee, S. I., Joh, K., Soejima, H., ... Oota, H. (2017). An ancestral haplotype of the human PERIOD2 gene associates with reduced sensitivity to light-induced melatonin suppression. Plos One, 12(6), e0178373.
Axelsson, J., Ingre, M., Kecklund, G., Lekander, M., Wright, K. P., amp; Sundelin, T. (2020). Sleepiness as motivation: A potential mechanism for how sleep deprivation affects behavior. Sleep, 43(6), zsz291.
Bedrosian, T. A., amp; Nelson, R. J. (2017). Timing of light exposure affects mood and brain circuits. Transl Psychiatry, 7(1), e1017.
Benedetti, M., Maierova, L., Cajochen, C., Scartezzini, J.-L., amp; Münch, M. (2022). Optimized office lighting advances melatonin phase and peripheral heat loss prior bedtime. Scientific Reports, 12(1), 4267.
Blume, C., Garbazza, C., amp; Spitschan, M. (2019). Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl), 23(3), 147?156.
Borbély, A. A., Daan, S., Wirz-Justice, A., amp; Deboer, T. (2016). The two-process model of sleep regulation: A reappraisal. Journal of Sleep Research, 25(2), 131?143.
Boubekri, M., Cheung, I. N., Reid, K. J., Wang, C.-H., amp; Zee, P. C. (2014). Impact of windows and daylight exposure on overall health and sleep quality of office workers: A case-control pilot study. Journal of Clinical Sleep Medicine, 10(6), 603?611.
Brainard, G. C., Barger, L. K., Soler, R. R., amp; Hanifin, J. P. (2016). The development of lighting countermeasures for sleep disruption and circadian misalignment during spaceflight. Current Opinion in Pulmonary Medicine, 22(6), 535?544.
Burgess, H. J., amp; Emens, J. S. (2020). Drugs used in circadian sleep-wake rhythm disturbances. Sleep Medicine Clinics, 15(2), 301?310.
Cajochen, C., Freyburger, M., Basishvili, T., Garbazza, C., Rudzik, F., Renz, C., ... Weibel, J. (2019). Effect of daylight LED on visual comfort, melatonin, mood, waking performance and sleep. Lighting Research amp; Technology, 51(7), 1044?1062.
Cajochen, C., Reichert, C., Maire, M., Schlangen, L. J. M., Schmidt, C., Viola, A. U., amp; Gabel, V. (2019). Evidence that homeostatic sleep regulation depends on ambient lighting conditions during wakefulness. Clocks amp; Sleep, 1(4), 517?531.
Canazei, M., Weninger, J., Pohl, W., Marksteiner, J., amp; Weiss, E. M. (2022). Effects of dynamic bedroom lighting on measures of sleep and circadian rest-activity rhythm in inpatients with major depressive disorder. Scientific Reports, 12(1), 6137.
Cappuccio, F. P., D'Elia, L., Strazzullo, P., amp; Miller, M. A. (2010). Quantity and quality of sleep and incidence of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care, 33(2), 414?420.
Carrier, J., amp; Dumont, M. (1995). Sleep propensity and sleep architecture after bright light exposure at three different times of day. Journal of Sleep Research, 4(4), 202?211.
Carvalho, A., amp; Cruz, M. M. E. (2017). Reduced light exposure negatively impacts sleep quality and alertness in underground-operating subway workers. Sleep, 40, A253?A254.
Chang, A.-M., Aeschbach, D., Duffy, J. F., amp; Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1232?1237.
Chellappa, S. L., Steiner, R., Oelhafen, P., amp; Cajochen, C. (2017). Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans. Scientific Reports, 7, 14215.
Chellappa, S. L., Viola, A. U., Schmidt, C., Bachmann, V., Gabel, V., Maire, M., ... Cajochen, C. (2012). Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3. Journal Of Clinical Endocrinology amp; Metabolism, 97(3), E433?437.
Cho, C.-H., Yoon, H.-K., Kang, S.-G., Kim, L., Lee, E.-I., amp; Lee, H.-J. (2018). Impact of exposure to dim light at night on sleep in female and comparison with male subjects. Psychiatry Investigation, 15(5), 520?530.
Cho, J. R., Joo, E. Y., Koo, D. L., amp; Hong, S. B. (2013). Let there be no light: The effect of bedside light on sleep quality and background electroencephalographic rhythms. Sleep Medicine, 14(12), 1422?1425.
CIE. (2018). CIE S 026/E:2018 CIE system for metrology of optical radiation for ipRGC-influenced responses to light. Vienna.
Coles, M. E., Schubert, J. R., amp; Nota, J. A. (2015). Sleep, circadian rhythms, and anxious traits. Current Psychiatry Reports, 17(9), 73.
Corbett, R. W., Middleton, B., amp; Arendt, J. (2012). An hour of bright white light in the early morning improves performance and advances sleep and circadian phase during the Antarctic winter. Neuroscience Letters, 525(2), 146?151.
Daugaard, S., Markvart, J., Bonde, J. P., Christoffersen, J., Garde, A. H., Hansen, ?. M., ... Kolstad, H. A. (2019). Light exposure during days with night, outdoor, and indoor work. Annals of Work Exposures and Health, 63(6), 651?665.
Dautovich, N. D., Schreiber, D. R., Imel, J. L., Tighe, C. A., Shoji, K. D., Cyrus, J., ... Dzierzewski, J. M. (2019). A systematic review of the amount and timing of light in association with objective and subjective sleep outcomes in community-dwelling adults. Sleep Health, 5(1), 31?48.
de Kort, Y. (2021). Opinion: On becoming smart. Lighting Research amp; Technology, 53(1), 4.
de Kort, Y. A. W., amp; Smolders, K. (2010). Effects of dynamic lighting on office workers: First results of a field study with monthly alternating settings. Lighting Research amp; Technology, 42(3), 345?360.
Dijk, D.-J., amp; Archer, S. N. (2010). PERIOD3, circadian phenotypes, and sleep homeostasis. Sleep Medicine Reviews, 14(3), 151?160.
Dijk, D. J., Beersma, D. G. M., Daan, S., amp; Lewy, A. J. (1989). Bright morning light advances the human circadian system without affecting NREM sleep homeostasis. American Journal of Physiology, 256(2), R106?R111.
Dijk, D. J., Visscher, C. A., Bloem, G. M., Beersma, D. G. M., amp; Daan, S. (1987). Reduction of human sleep duration after bright light exposure in the morning. Neuroscience Letters, 73(2), 181?186.
Dong, X., Wu, Y. Y., Chen, X. D., Li, H., Cao, B., Zhang, X., ... Li, X. T. (2021). Effect of thermal, acoustic, and lighting environment in underground space on human comfort and work efficiency: A review. Science of the Total Environment, 786, 147537.
Dong, Y., amp; Zhang, X. (2021). Study on the effect of awakening daylight in dormitories on morning alertness, mood, fatigue and sleep quality of college students. Building and Environment, 203, 108060.
Dowling, G. A., Hubbard, E. M., Mastick, J., Luxenberg, J. S., Burr, R. L., amp; van Someren, E. J. W. (2005). Effect of morning bright light treatment for rest-activity disruption in institutionalized patients with severe Alzheimer's disease. International Psychogeriatrics, 17(2), 221?236.
Dumont, M., amp; Carrier, J. (1997). Daytime sleep propensity after moderate circadian phase shifts induced with bright light exposure. Sleep, 20(1), 11?17.
Ebisawa, T. (2007). Circadian rhythms in the CNS and peripheral clock disorders: Human sleep disorders and clock genes. Journal of Pharmacological Sciences, 103(2), 150?154.
Emens, J. S., Berman, A. M., Thosar, S. S., Butler, M. P., Roberts, S. A., Clemons, N. A., ... Shea, S. A. (2020). Circadian rhythm in negative affect: Implications for mood disorders. Psychiatry Research, 293, 113337.
Figueiro, M. G., Jarboe, C., amp; Sahin, L. (2021). The sleep maths: A strong correlation between more daytime light and better night-time sleep. Lighting Research amp; Technology, 53(5), 423?435.
Figueiro, M. G., amp; Rea, M. S. (2012). Short-wavelength light enhances cortisol awakening response in sleep-restricted adolescents. International Journal of Endocrinology, 2012, 301935.
Figueiro, M. G., amp; Rea, M. S. (2016). Office lighting and personal light exposures in two seasons: Impact on sleep and mood. Lighting Research amp; Technology, 48(3), 352?364.
Figueiro, M. G., Steverson, B., Heerwagen, J., Kampschroer, K., Hunter, C. M., Gonzales, K., ... Rea, M. S. (2017). The impact of daytime light exposures on sleep and mood in office workers. Sleep Health, 3(3), 204?215.
Figueiro, M. G., Steverson, B., Heerwagen, J., Yucel, R., Roohan, C., Sahin, L., ... Rea, M. S. (2020). Light, entrainment and alertness: A case study in offices. Lighting Research amp; Technology, 52(6), 736?750.
Flores-Villa, L., Unwin, J., amp; Raynham, P. (2020). Assessing the impact of daylight exposure on sleep quality of people over 65 years old. Building Services Engineering Research amp; Technology, 41(2), 183?192.
Gabel, V., Maire, M., Reichert, C. F., Chellappa, S. L., Schmidt, C., Hommes, V., ... Viola, A. U. (2015). Dawn simulation light impacts on different cognitive domains under sleep restriction. Behavioural Brain Research, 281, 258?266.
Gasperetti, C. E., Dolsen, E. A., amp; Harvey, A. G. (2021). The influence of intensity and timing of daily light exposure on subjective and objective sleep in adolescents with an evening circadian preference. Sleep Medicine, 79, 166?174.
Giménez, M. C., Stefani, O., Cajochen, C., Lang, D., Deuring, G., amp; Schlangen, L. J. M. (2022). Predicting melatonin suppression by light in humans: Unifying photoreceptor-based equivalent daylight illuminances, spectral composition, timing and duration of light exposure. Journal of Pineal Research, 72(2), e12786.
Hadi, F., Agah, E., Tavanbakhsh, S., Mirsepassi, Z., Mousavi, S. V., Talachi, N., ... Aghamollaii, V. (2022). Safety and efficacy of melatonin, clonazepam, and trazodone in patients with Parkinson's disease and sleep disorders: A randomized, double-blind trial. Neurological Sciences, 43(10), 6141?6148.
Hartstein, L. E., Diniz Behn, C., Wright, K. P., Jr., Akacem, L. D., Stowe, S. R., amp; LeBourgeois, M. K. (2022). Evening light intensity and phase delay of the circadian clock in early childhood. Journal of Biological Rhythms, 38(1), 77?86.
Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K.-W., amp; Berson, D. M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. Journal of Comparative Neurology, 497(3), 326?349.
He, M. H., Ru, T. T., Li, S. Y., Li, Y., amp; Zhou, G. F. (2022). Shine light on sleep: Morning bright light improves nocturnal sleep and next morning alertness among college students. Journal of Sleep Research, 32(2), e13724.
Herljevic, M., Middleton, B., Thapan, K., amp; Skene, D. J. (2005). Light-induced melatonin suppression: Age-related reduction in response to short wavelength light. Experimental Gerontology, 40(3), 237?242.
Houser, K. W., amp; Esposito, T. (2021). Human-centric lighting: Foundational considerations and a five-step design process. Frontiers in Neurology, 12, 630553.
Hubalek, S., Brink, M., amp; Schierz, C. (2010). Office workers' daily exposure to light and its influence on sleep quality and mood. Lighting Research amp; Technology, 42(1), 33?50.
Hubbard, J., Ruppert, E., Gropp, C.-M., amp; Bourgin, P. (2013). Non-circadian direct effects of light on sleep and alertness: Lessons from transgenic mouse models. Sleep Medicine Reviews, 17(6), 445?452.
Huiberts, L. M., Smolders, K. C. H. J., amp; de Kort, Y. A. W. (2015). Shining light on memory: Effects of bright light on working memory performance. Behavioural Brain Research, 294, 234?245.
Kennaway, D. J. (2022). What do we really know about the safety and efficacy of melatonin for sleep disorders? Current Medical Research and Opinion, 38(2), 211?227.
Khaing, N. E. E., Abuduxike, G., Posadzki, P., Divakar, U., Visvalingam, N., Nazeha, N., ... Car, J. (2019). Review of the potential health effects of light and environmental exposures in underground workplaces. Tunnelling and Underground Space Technology, 84, 201?209.
Khalsa, S. B. S., Jewett, M. E., Cajochen, C., amp; Czeisler, C. A. (2003). A phase response curve to single bright light pulses in human subjects. Journal of Physiology-London, 549(3), 945?952.
Kohsaka, M., Fukuda, N., Honma, H., Kobayashi, R., Sakakibara, S., Koyama, E., ... Matsubara, H. (1999). Effects of moderately bright light on subjective evaluations in healthy elderly women. Psychiatry and Clinical Neurosciences, 53(2), 239?241.
Kohsaka, M., Fukuda, N., Kobayashi, R., Honma, H., Sakakibara, S., Koyama, E., ... Matsubara, H. (2000). Effect of short duration morning bright light in elderly men: Sleep structure. Psychiatry and Clinical Neurosciences, 54(3), 367?368.
Kompier, M. E., Smolders, K. C. H. J., amp; de Kort, Y. A. W. (2020). A systematic literature review on the rationale for and effects of dynamic light scenarios. Building and Environment, 186, 107326.
Kompier, M. E., Smolders, K. C. H. J., Kramer, R. P., van Marken Lichtenbelt, W. D., amp; de Kort, Y. A. W. (2022). Contrasting dynamic light scenarios in an operational office: Effects on visual experience, alertness, cognitive performance, and sleep. Building and Environment, 212, 108844.
Lee, E. E., Amritwar, A., Hong, L. E., Mohyuddin, I., Brown, T., amp; Postolache, T. T. (2020). Daily and seasonal variation in light exposure among the old order amish. International Journal of Environmental Research and Public Health, 17(12), 4460.
LeGates, T. A., Fernandez, D. C., amp; Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nature Reviews Neuroscience, 15(7), 443?454.
Li, L., Wang, Y. Y., Wang, S. B., Zhang, L., Li, L., Xu, D. D., ... Xiang, Y. T. (2018). Prevalence of sleep disturbances in Chinese university students: A comprehensive meta-analysis. Journal of Sleep Research, 27(3), e12648.
Li, Y., Zhou, Y., Ru, T. T., Niu, J. X., He, M. H., amp; Zhou, G. F. (2021). How does the COVID-19 affect mental health and sleep among Chinese adolescents: A longitudinal follow-up study. Sleep Medicine, 85, 246?258.
Lok, R., Smolders, K., Beersma, D. G. M., amp; de Kort, Y. A. W. (2018). Light, alertness, and alerting effects of white light: A literature overview. Journal of Biological Rhythms, 33(6), 589?601.
Lok, R., Woelders, T., Gordijn, M. C. M., van Koningsveld, M. J., Oberman, K., Fuhler, S. G., ... Hut, R. A. (2022). Bright light during wakefulness improves sleep quality in healthy men: A forced desynchrony study under dim and bright light (III). Journal of Biological Rhythms, 37(4), 429?441.
Lok, R., Woelders, T., van Koningsveld, M. J., Oberman, K., Fuhler, S. G., Beersma, D. G. M., amp; Hut, R. A. (2022). Bright light increases alertness and not cortisol in healthy men: A forced desynchrony study under dim and bright light (I). Journal of Biological Rhythms, 37(4), 403?416.
Lu, L., Wang, S.-B., Rao, W.-W., Ungvari, G. S., Ng, C. H., Chiu, H. F. K., ... Xiang, Y.-T. (2017). Sleep duration and patterns in chinese older adults: A comprehensive meta-analysis. International Journal of Biological Sciences, 13(6), 682?689.
Lubas, M. M., Maduro, R. S., amp; Szklo-Coxe, M. (2019). An exploratory study examining the associations between sunlight exposure, sleep behaviours and sleep outcomes during an arctic summer. International Journal of Circumpolar Health, 78(1), 1574698.
Lupi, D., Oster, H., Thompson, S., amp; Foster, R. G. (2008). The acute light-induction of sleep is mediated by OPN4-based photoreception. Nature Neuroscience, 11(9), 1068?1073.
Mannino, G., Pernici, C., Serio, G., Gentile, C., amp; Bertea, C. M. (2021). Melatonin and phytomelatonin: Chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals—An overview. International Journal of Molecular Sciences, 22(18), 9996.
Misiunaite, I., Eastman, C. I., amp; Crowley, S. J. (2020). Circadian phase advances in response to weekend morning light in adolescents with short sleep and late bedtimes on school nights. Frontiers in Neuroscience, 14, 99.
Münch, M., Scheuermaier, K. D., Zhang, R., Dunne, S. P., Guzik, A. M., Silva, E. J., ... Duffy, J. F. (2011). Effects on subjective and objective alertness and sleep in response to evening light exposure in older subjects. Behavioural Brain Research, 224(2), 272?278.
Nicholson, W. C., amp; Pfeiffer, K. (2021). Sleep disorders and mood, anxiety, and post-traumatic stress disorders: Overview of clinical treatments in the context of sleep disturbances. Nursing Clinics of North America, 56(2), 229-247.
Nie, J. X., Zhou, T. H., Chen, Z. Z., Dang, W. M., Jiao, F., Zhan, J. L., ... Shen, B. (2020). Investigation on entraining and enhancing human circadian rhythm in closed environments using daylight -like LED mixed lighting. Science of the Total Environment, 732, 139334.
Obayashi, K., Saeki, K., amp; Kurumatani, N. (2014). Association between light exposure at night and insomnia in the general elderly population: The HEIJO-KYO cohort. Chronobiology International, 31(9), 976?982.
Palagini, L., Bastien, C. H., Marazziti, D., Ellis, J. G., amp; Riemann, D. (2019). The key role of insomnia and sleep loss in the dysregulation of multiple systems involved in mood disorders: A proposed model. Journal of Sleep Research, 28(6), e12841.
Pandi-Perumal, S. R., Cardinali, D. P., Zaki, N. F. W., Karthikeyan, R., Spence, D. W., Reiter, R. J., amp; Brown, G. M. (2022). Timing is everything: Circadian rhythms and their role in the control of sleep. Frontiers in Neuroendocrinology, 66, 100978.
Parsons, C. E., Schofield, B., Batziou, S. E., Ward, C., amp; Young, K. S. (2022). Sleep quality is associated with emotion experience and adaptive regulation of positive emotion: An experience sampling study. Journal of Sleep Research, 31(4), e13533.
Pearce, E., amp; Dunbar, R. (2012). Latitudinal variation in light levels drives human visual system size. Biology Letters, 8(1), 90?93.
Peeters, S. T., Smolders, K. C. H. J., Kompier, M. E., amp; de Kort, Y. A. W. (2022). Let me count the light. Accounting for intensity, duration and timing of light when predicting sleep and subjective alertness in field studies. Leukos, 18(4), 417?437.
Peeters, S. T., Smolders, K. C. H. J., Vogels, I. M. L. C., amp; de Kort, Y. A. W. (2021). Less is more? Effects of more vs. less electric light on alertness, mood, sleep and appraisals of light in an operational office. Journal of Environmental Psychology, 74, 101583.
Prayag, A. S., Munch, M., Aeschbach, D., Chellappa, S. L., amp; Gronfier, C. (2019). Light modulation of human clocks, wake, and sleep. Clocks amp; Sleep, 1(1), 193?208.
Prayag, A. S., Najjar, R. P., amp; Gronfier, C. (2019). Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. Journal of Pineal Research, 66(4), e12562.
Rahman, S. A., St Hilaire, M. A., Grant, L. K., Barger, L. K., Brainard, G. C., Czeisler, C. A., ... Lockley, S. W. (2022). Dynamic lighting schedules to facilitate circadian adaptation to shifted timing of sleep and wake. Journal of Pineal Research, 73(1), e12805.
Raikes, A. C., Dailey, N. S., Shane, B. R., Forbeck, B., Alkozei, A., amp; Killgore, W. D. S. (2020). Daily morning blue light therapy improves daytime sleepiness, sleep quality, and quality of life following a mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 35(5), E405?E421.
Ru, T., de Kort, Y. A. W., Smolders, K. C. H. J., Chen, Q., amp; Zhou, G. (2019). Non-image forming effects of illuminance and correlated color temperature of office light on alertness, mood, and performance across cognitive domains. Building and Environment, 149, 253?263.
Ru, T., Kompier, M. E., Chen, Q., Zhou, G., amp; Smolders, K. C. H. J. (2022). Temporal tuning of illuminance and spectrum: Effect of a full-day dynamic lighting pattern on well-being, performance and sleep in simulated office environment. Building and Environment, 228, 109842.
Ru, T., Smolders, K., Chen, Q., Zhou, G., amp; de Kort, Y. A. W. (2021). Diurnal effects of illuminance on performance: Exploring the moderating role of cognitive domain and task difficulty. Lighting Research amp; Technology, 53(8), 727?747.
Schmidt, T. M., Chen, S.-K., amp; Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions. Trends in Neurosciences, 34(11), 572?580.
Schnupp, T., Heinze, C., amp; Golz, M. (2017). Circadian rhythmicity of cognitive performance. Current Directions in Biomedical Engineering, 3(2), 569?572.
Shishegar, N., Boubekri, M., Stine-Morrow, E. A. L., amp; Rogers, W. A. (2021). Tuning environmental lighting improves objective and subjective sleep quality in older adults. Building and Environment, 204, 108096.
Smolders, K. C. H. J., Peeters, S. T., Vogels, I. M. L. C., amp; de Kort, Y. A. W. (2018). Investigation of dose-response relationships for effects of white light exposure on correlates of alertness and executive control during regular daytime working hours. Journal of Biological Rhythms, 33(6), 649?661.
Souman, J. L., Tinga, A. M., te Pas, S. F., van Ee, R., amp; Vlaskamp, B. N. S. (2018). Acute alerting effects of light: A systematic literature review. Behavioural Brain Research, 337, 228?239.
Stefani, O., Freyburger, M., Veitz, S., Basishvili, T., Meyer, M., Weibel, J., ... Cajochen, C. (2021). Changing color and intensity of LED lighting across the day impacts on circadian melatonin rhythms and sleep in healthy men. Journal of Pineal Research, 70(3), e12714.
Toh, K. L., Jones, C. R., He, Y., Eide, E. J., Hinz, W. A., Virshup, D. M., ... Fu, Y. H. (2001). An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science, 291(5506), 1040?1043.
Turco, M., Cazzagon, N., Franceschet, I., Formentin, C., Frighetto, G., Giordani, F., ... Montagnese, S. (2018). Morning bright light treatment for sleep-wake disturbances in primary biliary cholangitis: A pilot study. Frontiers in Physiology, 9, 1530.
Uchino, B. N., Cribbet, M., de Grey, R. G. K., Cronan, S., Trettevik, R., amp; Smith, T. W. (2017). Dispositional optimism and sleep quality: A test of mediating pathways. Journal of Behavioral Medicine, 40(2), 360?365.
van de Putte, E., Kindt, S., Bracke, P., Stevens, M., Vansteenkiste, M., Vandevivere, L., amp; Ryckaert, W. R. (2022). The influence of integrative lighting on sleep and cognitive functioning of shift workers during the morning shift in an assembly plant. Applied Ergonmics, 99, 103618.
van Duijnhoven, J., Aarts, M. P. J., Aries, M. B. C., Rosemann, A. L. P., amp; Kort, H. S. M. (2019). Systematic review on the interaction between office light conditions and occupational health: Elucidating gaps and methodological issues. Indoor and Built Environment, 28(2), 152?174.
van Duijnhoven, J., Aarts, M. P. J., amp; Kort, H. S. M. (2021). Personal lighting conditions of office workers: An exploratory field study. Lighting Research amp; Technology, 53(4), 285?310.
Viola, A. U., James, L. M., Schlangen, L. J. M., amp; Dijk, D.-J. (2008). Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scandinavian Journal of Work Environment amp; Health, 34(4), 297?306.
Wakamura, T., amp; Tokura, H. (2000). The influence of bright light during the daytime upon circadian rhythm of core temperature and its implications for nocturnal sleep. Nursing and Health Sciences, 2(1), 41?49.
Wams, E. J., Woelders, T., Marring, I., van Rosmalen, L., Beersma, D. G. M., Gordijn, M. C. M., amp; Hut, R. A. (2017). Linking light exposure and subsequent sleep: A field polysomnography study in humans. Sleep, 40(12), zsx165.
Wang, Y. X., Hou, W. Y., Siddiqi, S. M., Sun, C. H., Han, T. S., amp; Yang, J. J. (2020). Association of sleep trajectory in adulthood with risk of hypertension and its related risk factors: The China Health and Nutrition Survey. Journal of Clinical Sleep Medicine, 16(4), 515?521.
Wen, P. J., Tan, F. Y., Wu, M., Cai, Q. J., Xu, R. P., Zhang, X. W., ... Hu, X. D. (2021). The effects of different bedroom light environments in the evening on adolescents. Building and Environment, 206, 108321.
Yang, B., Yao, H. C., amp; Wang, F. M. (2022). A review of ventilation and environmental control of underground spaces. Energies, 15(2), 409.
Youngstedt, S. D., Leung, A., Kripke, D. F., amp; Langer, R. D. (2004). Association of morning illumination and window covering with mood and sleep among post-menopausal women. Sleep and Biological Rhythms, 2(3), 174?183.
Zalta, A. K., Bravo, K., Valdespino-Hayden, Z., Pollack, M. H., amp; Burgess, H. J. (2019). A placebo-controlled pilot study of a wearable morning bright light treatment for probable PTSD. Depression and Anxiety, 36(7), 617?624.
Abstract: As a dominant Zeitgeber, ambient light can regulate sleep-wake patterns in humans. Exposure to higher light levels or more light exposure during the daytime, especially during the morning, positively predict nighttime sleep quality, but this effect is mediated by the light parameters (e.g., light level or spectrum), timing factors (e.g., time of day and duration), and light pattern. On the one hand, light can indirectly influence the sleep-wake cycle by regulating individuals’ circadian rhythms through the suprachiasmatic nucleus (SCN). On the other hand, light can directly affect sleep through the projection of melanopsin expressed by intrinsically photosensitive retinal ganglion cells (ipRGCs) to sleep- and wakefulness-related brain regions. However, there is still no clear consensus on whether light can affect sleep via regulation of sleep homeostatic process, which was another process driven the sleep-wake cycle. Future research should pay more attention on how to create “Human centric lighting” for those who work in the absence of daylight or need personal light to support their mental and physical requirement.
Keywords: daytime light, sleep, healthy lighting, mechanism, circadian rhythm