摘" 要" 空間導(dǎo)航活動(dòng)時(shí)刻在我們的生活中發(fā)生, 導(dǎo)航能力在人群中表現(xiàn)出顯著的個(gè)體差異, 其衰退也是阿爾茲海默癥等認(rèn)知障礙腦疾病的重要早期行為學(xué)表現(xiàn)。以往研究考察了空間導(dǎo)航能力個(gè)體差異的認(rèn)知行為特征和相關(guān)神經(jīng)基礎(chǔ), 但關(guān)于個(gè)體差異的成因尚不明確。本研究通過綜述近10年的研究進(jìn)展, 從二因素論的視角出發(fā), 總結(jié)了空間導(dǎo)航個(gè)體差異的關(guān)鍵遺傳和環(huán)境因素及其作用機(jī)制, 初步建立了空間導(dǎo)航的遺傳/環(huán)境?大腦網(wǎng)絡(luò)?認(rèn)知和行為的通路模型, 并對(duì)未來發(fā)展方向提出展望。該通路模型的完善有助于我們理解空間導(dǎo)航的形成與發(fā)展規(guī)律, 為相關(guān)因果機(jī)制研究提供理論基礎(chǔ)和全面視角, 同時(shí)對(duì)進(jìn)一步探索空間導(dǎo)航在認(rèn)知障礙等腦疾病中的潛在臨床應(yīng)用具有重要的應(yīng)用價(jià)值。
關(guān)鍵詞" 空間導(dǎo)航, 個(gè)體差異, 遺傳基礎(chǔ), 認(rèn)知地圖, 環(huán)境因素
分類號(hào)" B842
1" 引言
空間導(dǎo)航指利用路標(biāo)、邊界等外界信息, 通過不同策略實(shí)現(xiàn)從一個(gè)位置到另一個(gè)位置的過程。作為一種高級(jí)認(rèn)知過程, 空間導(dǎo)航綜合了視覺、本體感覺、空間知覺、空間表征、空間記憶等多種基礎(chǔ)認(rèn)知加工成分(Wolbers amp; Hegarty, 2010), 并因此成為神經(jīng)生理學(xué)、學(xué)習(xí)與教育、認(rèn)知障礙和腦疾病等領(lǐng)域的重要研究主題(Hartley et al., 2003)。
在神經(jīng)科學(xué)領(lǐng)域, 認(rèn)知地圖(cognitive map)概念的提出具有里程碑意義(Tolman, 1948)。此后, 通過老鼠電生理實(shí)驗(yàn)研究, 研究者發(fā)現(xiàn)了構(gòu)成大腦空間定位系統(tǒng)的功能特異神經(jīng)元細(xì)胞, 如海馬(hippocampus)中的位置細(xì)胞(place cell)和內(nèi)嗅皮層(entorhinal cortex)中的網(wǎng)絡(luò)細(xì)胞(grid cell)等, 并由此開啟了理解人類空間導(dǎo)航神經(jīng)基礎(chǔ)的大門(Hafting et al., 2005; O'Keefe amp; Dostrovsky, 1971)。利用腦影像方法, 研究者確定了不同腦區(qū)在導(dǎo)航中的特異性功能, 如海馬旁回為場景加工相關(guān)腦區(qū), 壓后皮質(zhì)與導(dǎo)航策略的轉(zhuǎn)化有關(guān)等, 并得以在大腦結(jié)構(gòu)與空間導(dǎo)航的不同認(rèn)知成分間建立聯(lián)系(Auger et al., 2012; Ekstrom et al., 2003)。學(xué)習(xí)與教育領(lǐng)域相關(guān)研究則發(fā)現(xiàn), 青少年時(shí)期的空間能力, 是預(yù)測其將來能否在科學(xué)、技術(shù)、工程和數(shù)學(xué)等理工科領(lǐng)域(STEM)取得良好學(xué)業(yè)及職業(yè)成就的重要心理屬性(Wai et al., 2009)。此外, 空間導(dǎo)航能力被證實(shí)是一種容易受到老化影響的認(rèn)知能力(Moffat, 2009; 張家鑫 等, 2019), 方向感和空間記憶的減退是阿爾茲海默癥(Alzheimer's disease, AD)的首要癥狀, 也被認(rèn)為是預(yù)測AD易感人群及診斷輕度認(rèn)知障礙(Mild Cognitive Impairment, MCI)的重要早期指標(biāo)(Coughlan, Laczo, et al., 2018)。
過去數(shù)十年間, 空間導(dǎo)航的相關(guān)研究涵蓋了動(dòng)物模型(老鼠, 鳥和猴子等)與人(兒童、成年人、老人和相關(guān)能力受損的病人等), 借助問卷、行為、電生理、磁共振成像等研究方法, 極大地推進(jìn)了我們對(duì)人類空間導(dǎo)航認(rèn)知機(jī)制與神經(jīng)基礎(chǔ)的理解(Coughlan, Laczo, et al., 2018; Epstein et al., 2017; 王欣 等, 2018)。已有大量研究一致揭示出個(gè)體在空間導(dǎo)航能力上的顯著差異(Wolbers amp; Hegarty, 2010), 包括行為表現(xiàn)差異及其相應(yīng)的神經(jīng)基礎(chǔ)差異。然而, 這種個(gè)體差異的成因在很大程度上是未知的。個(gè)體的認(rèn)知與行為是由遺傳、環(huán)境及其交互作用共同影響的, 在此二因素論驅(qū)動(dòng)下, 過去10年, 研究者開展了大量研究探索空間導(dǎo)航能力個(gè)體差異的具體因素和影響機(jī)制。此外, 值得注意的是, 導(dǎo)航能力的個(gè)體差異在生命后期尤為突出:伴隨著老化, 部分個(gè)體不僅會(huì)出現(xiàn)神經(jīng)退行性疾病, 且往往伴隨著空間導(dǎo)航能力受損的癥狀(Lithfous et al., 2013)。因此, 探索老化帶來巨大差異的原因, 闡釋什么樣的個(gè)體容易出現(xiàn)異常老化, 也是具有極大價(jià)值的重要研究課題。
綜上, 在現(xiàn)有研究的基礎(chǔ)上, 有必要對(duì)空間導(dǎo)航個(gè)體差異的關(guān)鍵形成機(jī)制進(jìn)行深入探討。本文首先回顧了空間導(dǎo)航能力個(gè)體差異的重要證據(jù), 并在此基礎(chǔ)上, 對(duì)已發(fā)現(xiàn)的遺傳、環(huán)境和早期生活經(jīng)歷等多個(gè)方面的關(guān)鍵因素和相關(guān)作用機(jī)制進(jìn)行綜述, 試圖回答空間導(dǎo)航能力個(gè)體差異的形成機(jī)制問題。進(jìn)而, 作者提出, 未來研究應(yīng)以更宏觀與全面的視角對(duì)空間導(dǎo)航能力這種復(fù)雜認(rèn)知能力個(gè)體差異的成因進(jìn)行系統(tǒng)性研究, 借助腦影像遺傳學(xué)、環(huán)境暴露組學(xué)等最新研究手段, 建立關(guān)于空間導(dǎo)航能力的“遺傳/環(huán)境?大腦網(wǎng)絡(luò)?行為”的整體通路。
2" 空間導(dǎo)航能力個(gè)體差異的測量
研究者開發(fā)了不同實(shí)驗(yàn)范式研究空間導(dǎo)航過程, 并揭示出不同個(gè)體在空間導(dǎo)航能力上的顯著差異。鑒于空間導(dǎo)航能力的分化性與整合性(Malanchini et al., 2020; Rimfeld et al., 2017), 對(duì)其測量可以從不同視角及采用不同方式切入。測量視角主要指不同尺度, 認(rèn)為導(dǎo)航能力不僅包括宏觀的綜合空間導(dǎo)航能力、大尺度環(huán)境下的不同側(cè)面能力(如路徑整合能力、導(dǎo)航策略使用能力等)和更為基礎(chǔ)的空間能力, 也包含空間圖形、心理旋轉(zhuǎn)能力、空間工作記憶等小尺度相關(guān)能力。測量方式則需針對(duì)不同尺度的導(dǎo)航能力, 選擇相應(yīng)適宜的實(shí)驗(yàn)范式, 如自我報(bào)告式問卷測量、虛擬現(xiàn)實(shí)任務(wù)、智能手機(jī)游戲、計(jì)算機(jī)任務(wù)等(Coutrot et al., 2022; Coutrot et al., 2018; 張家鑫 等, 2019)。其中, 小尺度的空間能力往往采用傳統(tǒng)的計(jì)算機(jī)測試(Hegarty amp; Waller, 2005; Kozhevnikov et al., 2006; Pazzaglia amp; de Beni, 2006), 在此不過多介紹, 以下綜合上述兩種視角, 對(duì)非小尺度的空間導(dǎo)航能力的測量范式及其重要個(gè)體差異進(jìn)行總結(jié)(見表1)。
2.1" 基于個(gè)人長期經(jīng)驗(yàn)或真實(shí)環(huán)境學(xué)習(xí)的測量
自我報(bào)告式的問卷測量方式, 因其測量簡單、信效度高的優(yōu)點(diǎn), 在空間導(dǎo)航研究中被廣泛應(yīng)用(Kong, Huang, et al., 2017; Kong, Wang, et al., 2017)。同時(shí), 這些問卷的題目在設(shè)計(jì)上, 往往需要個(gè)體根據(jù)自己在不同場景的長期導(dǎo)航經(jīng)歷做出判斷, 因而得到的結(jié)果通??梢宰鳛榉从硞€(gè)體空間導(dǎo)航特定成分的準(zhǔn)確指標(biāo)。圣芭芭拉方向感量表(Santa Barbara Sense of Direction Scale) (Hegarty et al., 2002)作為綜合衡量性量表在研究中經(jīng)常被使用, 具有良好的信效度(Condon et al., 2015)。導(dǎo)航策略量表(Wayfinding Strategy Scale)主要將導(dǎo)航策略分為定位策略(orientation strategy)和路線策略(route strategy), 衡量個(gè)體的導(dǎo)航策略偏好(Lawton, 1994)。空間焦慮量表(Spatial Anxiety Scale)則測量個(gè)體的空間焦慮特質(zhì)(Lawton amp; Kallai, 2002)。但這種空間焦慮只關(guān)注在環(huán)境中導(dǎo)航時(shí)的焦慮特質(zhì), 結(jié)構(gòu)較為單一, Lyons等人(2018)進(jìn)一步將空間焦慮分為想象、操作和導(dǎo)航三個(gè)分量表, 分別代表內(nèi)部?靜態(tài)、內(nèi)部?動(dòng)態(tài)和外部?動(dòng)態(tài)的空間能力(Lyons et al., 2018)。這些量表在實(shí)際研究中被廣泛應(yīng)用, 如用于揭示個(gè)體在空間導(dǎo)航上的性別差異、年齡差異等(Boone et al., 2018)。
除了基于個(gè)體長期導(dǎo)航經(jīng)歷的問卷測量方式, 一些研究還采用了更為具體的導(dǎo)航情景。在真實(shí)環(huán)境進(jìn)行路線學(xué)習(xí)后, 通過各種成環(huán)境知識(shí)相關(guān)測驗(yàn), 以此來以量化空間導(dǎo)航能力的不同側(cè)面, 進(jìn)而綜合反應(yīng)空間導(dǎo)航能力(Muffato et al., 2016; Stites et al., 2020)。
2.2" 基于虛擬現(xiàn)實(shí)技術(shù)的測量
虛擬現(xiàn)實(shí)技術(shù)因其高可檢測性、高可操控性等方面的獨(dú)特優(yōu)勢(shì), 被廣泛用于空間導(dǎo)航研究中的特定測試任務(wù), 取得了重要研究成果。采用虛擬現(xiàn)實(shí)技術(shù), 在保證成本更低、安全性更高的同時(shí), 還能納入更多元的被試(如缺陷和殘疾者) (Cogné et al., 2017)。同時(shí), 虛擬現(xiàn)實(shí)結(jié)合fMRI、EEG、PET等技術(shù), 也使得探索被試在空間導(dǎo)航過程中的腦活動(dòng)成為可能, 進(jìn)一步幫助理解人類空間導(dǎo)航的神經(jīng)機(jī)制(Ekstrom et al., 2003; Tarnanas et al., 2015)。應(yīng)用虛擬現(xiàn)實(shí)技術(shù)所設(shè)計(jì)的空間導(dǎo)航任務(wù)可以歸納為如下。
虛擬水迷宮測試、記憶島任務(wù)和尋路任務(wù)等是典型的綜合導(dǎo)航能力測試范式。這類測試通常包含學(xué)習(xí)階段與測試階段:在學(xué)習(xí)階段, 需要參與者學(xué)習(xí)目標(biāo)平臺(tái)的空間位置, 并記錄相應(yīng)探索時(shí)間、探索距離等; 在測試階段, 采用其成功到達(dá)目標(biāo)位置的正確率、花費(fèi)時(shí)間、路線分布等來量化導(dǎo)航能力(He et al., 2019; Rizk-Jackson et al., 2006; Yasen et al., 2015)。也可以采用類似的學(xué)習(xí)?測試范式來衡量個(gè)體空間學(xué)習(xí)的能力(Grzeschik et al., 2019)。
空間導(dǎo)航的個(gè)體差異也反映在導(dǎo)航策略使用、路徑整合、認(rèn)知地圖建立等不同側(cè)面。測量導(dǎo)航策略的范式可總結(jié)為兩種思路。一種多為虛擬迷宮場景, 如Y型迷宮、八臂迷宮、星型迷宮等范式(Blanchette et al., 2020; Iglói et al., 2015; Rodgers et al., 2012)。這類范式往往分為學(xué)習(xí)試次和探測試次, 觀察探測試次中參與者的選擇從而區(qū)分其所用的策略是基于反應(yīng)還是基于位置, 即基于自我中心或環(huán)境中心的導(dǎo)航策略。另一種思路中, 不再人為操縱場景的變換, 而是通過創(chuàng)造多選擇條件, 觀察參與者的自然反應(yīng), 如雙解決方案范式(Dual-Solution Paradigm)、虛擬走廊任務(wù)等(Boone et al., 2018; Vukovic amp; Shtyrov, 2017)。路徑整合過程通常涉及感知自我運(yùn)動(dòng)線索, 并通過空間更新(spatial updating)形成空間表征(Wolbers amp; Hegarty, 2010)。大部分路徑整合任務(wù)關(guān)注角度的更新, 通常以第一人稱視角給被試呈現(xiàn)位置更新的過程后, 讓被試判斷某位置的相對(duì)位置或方位等, 通過指向誤差、指向延遲、指向正確率等指標(biāo)衡量路徑整合能力, 如環(huán)路終止任務(wù)、3D迷宮指向任務(wù)、三角形完成任務(wù)等(Chrastil et al., 2017; Kong, Pu, et al., 2017; Xie et al., 2017)。也有部分研究同時(shí)考察角度和距離(Chrastil et al., 2016; Chrastil et al., 2017)。相較于路徑整合這種通過自身運(yùn)動(dòng)線索進(jìn)行自我參照的表征, 個(gè)體形成認(rèn)知地圖的能力則是一種觀察者獨(dú)立、更加零活的調(diào)查表征方式(survey representations) (Wolbers amp; Hegarty, 2010), 且表現(xiàn)出顯著的個(gè)體差異(Weisberg amp; Newcombe, 2018)。如:研究者應(yīng)用Virtual Silcton范式發(fā)現(xiàn), 根據(jù)能否形成認(rèn)知地圖, 人群中大致存在三種類型—整合者(能對(duì)環(huán)境進(jìn)行綜合表征)、非整合者(只能識(shí)別走過的路線)以及不精確導(dǎo)航者(無法形成空間表征)。其中整合者能按路線分類對(duì)建筑物有良好的記憶, 從而形成對(duì)環(huán)境的分層表征, 在模型建立任務(wù)表現(xiàn)更好, 且能形成認(rèn)知地圖(Weisberg amp; Newcombe, 2016, 2018)。其他探究認(rèn)知地圖的范式與之類似, 在呈現(xiàn)虛擬環(huán)境后要求參與者對(duì)環(huán)境知識(shí)進(jìn)行回憶或構(gòu)建(He et al., 2021; Nazareth et al., 2018)。
空間導(dǎo)航也涉及到一些更為基礎(chǔ)的空間能力??臻g定向/視角轉(zhuǎn)換能力涉及個(gè)體想象自己在某個(gè)位置后, 判斷另一個(gè)位置的方位或應(yīng)走路線的序列轉(zhuǎn)彎, 是完成導(dǎo)航任務(wù)時(shí)需要的更為基礎(chǔ)的空間能力。常用的任務(wù)范式包括空間定向任務(wù)、城市行走任務(wù)、三山測試、相對(duì)方向判斷(Münzer et al., 2020; Newcombe, 2019; Tarampi et al., 2016; Vander Heyden et al., 2017)。以相對(duì)方向判斷任務(wù)(Judgment of Relative Direction)為例, 與單純的指向任務(wù)相比, 該范式需要參與者首先在心理層面進(jìn)行操縱, 想象自己的位置后再對(duì)方向進(jìn)行判斷(Kraemer et al., 2017)。而空間重定向范式(Spatial Reorientation)能反映個(gè)體進(jìn)行空間定向所使用的策略, 如同時(shí)利用幾何和地標(biāo)線索或僅使用其中一種線索(Vieites et al., 2020)。類似地, 在研究環(huán)境中線索對(duì)空間記憶的影響時(shí), 常使用虛擬環(huán)境中物體位置記憶范式, 通過記憶位置和實(shí)際位置之間的誤差衡量空間記憶能力, 且借助fMRI技術(shù), 研究者發(fā)現(xiàn)了對(duì)邊界、路標(biāo)線索起作用的腦區(qū)及海馬?紋狀體的并行加工系統(tǒng)(Doeller et al., 2008)。在導(dǎo)航過程中, 對(duì)不同線索利用的導(dǎo)航策略偏好本身即導(dǎo)航能力個(gè)體差異的一部分, 研究者可借助上述經(jīng)典范式, 進(jìn)一步對(duì)線索的不同屬性如何影響空間導(dǎo)航能力進(jìn)行研究(郝鑫 等, 2022)。
上述大部分研究都是通過引導(dǎo)參與者沿著預(yù)先計(jì)劃好的路線完成某項(xiàng)任務(wù), 通過任務(wù)表現(xiàn)衡量空間導(dǎo)航能力。近年來, 越來越多研究者開始關(guān)注對(duì)自由探索的編碼過程中表現(xiàn)出的行為模式進(jìn)行量化(Gagnon et al., 2018)。對(duì)自由探索模式的分析需要記錄個(gè)體軌跡進(jìn)而提取軌跡指標(biāo), 而虛擬現(xiàn)實(shí)環(huán)境為此提供了極大的便利。Gagnon等人(2018)通過量化個(gè)體自由探索中的軌跡, 形成重訪行為(revisit behavior)及擴(kuò)散模式(diffusion)兩個(gè)指標(biāo):前者表明探索的謹(jǐn)慎程度, 后者表示個(gè)體在一個(gè)區(qū)域內(nèi)擴(kuò)散的速率。結(jié)果發(fā)現(xiàn)自由探索模式存在明顯性別差異, 其中女性更頻繁地經(jīng)過此前去過的地方, 且在一個(gè)區(qū)域的擴(kuò)散率更低(Gagnon et al., 2018)。Brunec等人(2023)同樣量化了自由探索模式, 并提出漫游熵(roaming entropy)及軌跡整合度(experienced integration)兩個(gè)指標(biāo):前者描述了在給定時(shí)間內(nèi)個(gè)體運(yùn)動(dòng)的彌散程度, 后者描述了個(gè)體探索環(huán)境中連接性較強(qiáng)部分的程度, 在高整合路段花費(fèi)時(shí)間更長的個(gè)體具有更高的軌跡整合度。結(jié)果發(fā)現(xiàn), 軌跡整合度更高的個(gè)體能形成更準(zhǔn)確的認(rèn)知地圖(Brunec et al., 2023)。
2.3" 基于網(wǎng)絡(luò)游戲和大數(shù)據(jù)的測量
近年來, 大數(shù)據(jù)方法的興起使得大規(guī)模數(shù)據(jù)收集和分析成為可能。Sea Hero Quest (下文簡稱“SHQ游戲”)是一款手機(jī)及平板端游戲, 其將傳統(tǒng)尋路任務(wù)和路徑整合任務(wù)游戲化, 通過對(duì)游戲軌跡的分析衡量個(gè)體空間導(dǎo)航能力(如路線長度)。該游戲測得的能力與真實(shí)世界的空間導(dǎo)航能力有顯著相關(guān), 具有良好的生態(tài)效度(Coutrot et al., 2019)。研究者利用該手機(jī)游戲在世界范圍內(nèi)收集了300多萬份玩家數(shù)據(jù), 通過大規(guī)模數(shù)據(jù)分析發(fā)現(xiàn)性別、年齡以及生活環(huán)境差異等對(duì)空間導(dǎo)航能力存在影響(Coutrot et al., 2022)。另一種利用大數(shù)據(jù)方法研究空間導(dǎo)航的思路為, 利用真實(shí)環(huán)境中大規(guī)模個(gè)體的GPS數(shù)據(jù), 通過計(jì)算建模的方式分析個(gè)體空間導(dǎo)航的心理機(jī)制(Bongiorno et al., 2021)。此外, 借助真實(shí)環(huán)境中的GPS數(shù)據(jù), 研究者通過對(duì)軌跡的指標(biāo)進(jìn)行分析, 如路段相似性、軌跡熵值、總轉(zhuǎn)彎角度等, 發(fā)現(xiàn)正常人與AD患者的導(dǎo)航模式存在顯著差異, 且可借助機(jī)器學(xué)習(xí)的方法, 利用這些軌跡特征建立AD預(yù)測模型(Ghosh et al., 2022)。
總結(jié)來看, 在空間導(dǎo)航研究的漫長時(shí)期內(nèi), 研究者已開發(fā)出多樣化的研究范式, 從“是什么”的角度揭示了人類空間導(dǎo)航能力所存在的顯著個(gè)體差異。近年來, 隨著研究的深入, 越來越多研究者開始關(guān)注“為什么”的問題。作為一種復(fù)雜的認(rèn)知功能, 空間導(dǎo)航的發(fā)展和演化必然受到多種因素的共同作用:一方面, 遺傳因素決定了個(gè)體大腦的基本構(gòu)造和發(fā)育過程, 是認(rèn)知能力個(gè)體差異產(chǎn)生的關(guān)鍵根源; 另一方面, 個(gè)體所接觸的環(huán)境和所經(jīng)歷的學(xué)習(xí)訓(xùn)練具有顯著的差異性, 伴隨著個(gè)體大腦的發(fā)展, 空間導(dǎo)航能力也在朝著不同方向發(fā)展。近年來, 研究者從不同的視角考察了不同因素與個(gè)體空間導(dǎo)航能力之間的關(guān)聯(lián), 但尚未形成清晰的遺傳/環(huán)境?腦?行為通路, 即哪些關(guān)鍵遺傳和環(huán)境因素如何通過影響特定大腦的結(jié)構(gòu)和功能特征, 進(jìn)而導(dǎo)致了空間導(dǎo)航能力的顯著個(gè)體差異。因此, 目前亟需對(duì)這些影響因素和相關(guān)機(jī)制進(jìn)行梳理與整合, 將零散的觀點(diǎn)系統(tǒng)化, 將微觀的視角宏觀化, 并為未來研究方向提供參考。
3" 空間導(dǎo)航的遺傳因素
作為一種復(fù)雜的認(rèn)知能力, 空間導(dǎo)航能力如其他認(rèn)知能力一樣, 在一定程度上受到遺傳的影響(Boomsma et al., 2002)。人類遺傳學(xué)的相關(guān)研究均證實(shí)了這一觀點(diǎn)(Flowers amp; Rebeck, 2020; Nishiyama et al., 2002)。例如, Polk等人(2007)發(fā)現(xiàn), 同卵雙生子在對(duì)地點(diǎn)進(jìn)行回憶時(shí)的大腦激活模式比異卵雙生子的相似程度更高, 表明人類空間導(dǎo)航能力受到遺傳的影響(Polk et al., 2007)。家庭、雙胞胎和收養(yǎng)研究進(jìn)一步表明空間能力至少具有中等程度遺傳度(30~50%) (Bratko, 1996; DeFries et al., 1979; Tosto et al., 2014)。Rimfeld等人(2017)利用10個(gè)集成測驗(yàn)衡量小尺度的空間能力, 在大樣本雙生子數(shù)據(jù)中發(fā)現(xiàn)空間能力的遺傳度可以高達(dá)69% (Rimfeld et al., 2017); Malanchini等人(2020)通過6個(gè)集成測驗(yàn)衡量大尺度的空間定向能力, 借助大樣本雙生子研究, 發(fā)現(xiàn)其遺傳度為64% (Malanchini et al., 2020)。這些研究結(jié)果為人類空間導(dǎo)航能力的遺傳變異提供了重要支持。
迄今為止, 通過各種手段, 研究者已經(jīng)發(fā)現(xiàn)多個(gè)可能影響空間導(dǎo)航的基因, 如BCL-2, S100B, APOE等。
3.1" BCL-2
BCL-2是中樞神經(jīng)系統(tǒng)中參與調(diào)節(jié)神經(jīng)元死亡的抗凋亡基因, 該基因過表達(dá)會(huì)減緩海馬細(xì)胞凋亡 (Kuhn et al., 2005)。通過在正常小鼠中過量表達(dá)人類BCL-2基因, 研究者發(fā)現(xiàn)其在水迷宮中的空間導(dǎo)航能力有所下降。具體而言, 在隨機(jī)起點(diǎn)訓(xùn)練任務(wù)中, Hu-bcl-2轉(zhuǎn)基因小鼠找到平臺(tái)的時(shí)間顯著更長, 表明在更多依賴環(huán)境參照導(dǎo)航策略的任務(wù)中, 這些小鼠不能有效形成正確的空間表征, 或者是不能正確使用空間表征; 而在固定起點(diǎn)訓(xùn)練任務(wù)中(可同時(shí)使用自我中心參照框架和非自我中心參照框架), Hu-bcl-2轉(zhuǎn)基因小鼠的空間導(dǎo)航能力并未損傷。從功能上看, 過表達(dá)人類BCL-2基因的Hu-bcl-2轉(zhuǎn)基因小鼠在海馬CA1區(qū)的長時(shí)程增強(qiáng)機(jī)制(Long-term potentiation, LTP)被大大削弱, 從而導(dǎo)致CA1不能形成精確的位置域, 進(jìn)而影響空間表征的正常形成或使用; 從神經(jīng)元數(shù)量上看, Hu-bcl-2轉(zhuǎn)基因小鼠的齒狀回體積更大, 神經(jīng)元更多(Rondi-Reig et al., 2001)。此外, 破壞正常小鼠的學(xué)習(xí)和記憶能力會(huì)導(dǎo)致其海馬中BCL-2基因表達(dá)的顯著降低(Hu et al., 2011; Wang amp; Han, 2009), 且CA1區(qū)、CA3區(qū)等出現(xiàn)明顯神經(jīng)元損失(Wang et al., 2017), 這種現(xiàn)象也出現(xiàn)在導(dǎo)航能力受損的蝙蝠中(Hsiao et al., 2016)。在已經(jīng)記憶受損的大鼠中(如因患血管性癡呆、患阿爾茲海默癥、藥物注射等), 通過不同刺激顯著改善其在水迷宮測試中的空間導(dǎo)航表現(xiàn)后, 在海馬CA1區(qū)、CA3區(qū)、錐體細(xì)胞層、齒狀回等可以看到BCL-2基因的蛋白表達(dá)和mRNA表達(dá)明顯增多, 細(xì)胞凋亡減少, 表明在海馬已經(jīng)表現(xiàn)出嚴(yán)重?fù)p傷大鼠中, 通過過量表達(dá)BCL-2基因能夠起到對(duì)抗細(xì)胞凋亡保護(hù)神經(jīng)的作用, 從而促進(jìn)海馬相關(guān)的記憶及空間導(dǎo)航能力的提升(Long et al., 2020; Nakamura et al., 1999; Wang et al., 2009; Wang et al., 2011; Wu et al., 2020; Yuliani et al., 2021)。這意味著, BCL-2基因的表達(dá)需維持在合理水平才能最大化海馬相關(guān)的認(rèn)知能力, 過量或過少表達(dá)均會(huì)帶來記憶等認(rèn)知能力的損傷。
3.2" S100B
S100B是另一個(gè)可能影響空間導(dǎo)航的基因。S100B蛋白主要存在于中樞神經(jīng)系統(tǒng)的星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞中, 是一種神經(jīng)系統(tǒng)的特異性蛋白。作為一種鈣結(jié)合蛋白, 納米摩爾濃度的S100B能刺激神經(jīng)突生長, 促進(jìn)神經(jīng)元存活; 而更高的微摩爾濃度則會(huì)起到相反效果, 甚至可誘導(dǎo)神經(jīng)元凋亡, 加速神經(jīng)系統(tǒng)產(chǎn)生炎癥。因此, S100B在腦脊液或血清中的濃度被認(rèn)為是神經(jīng)退行性疾病診斷或預(yù)后評(píng)估的一種重要指標(biāo)(Steiner et al., 2011)。研究表明, 攜帶大量人類S100B基因的轉(zhuǎn)基因小鼠在水迷宮測試中表現(xiàn)更差(如:訓(xùn)練階段花費(fèi)的時(shí)間更長, 探測階段在隱藏平臺(tái)停留的時(shí)間更少)。其可能的分子機(jī)制為, 過量的S100B影響了鈣依賴的突觸過程, 進(jìn)而導(dǎo)致LTP的減弱及與海馬相關(guān)功能受損(Gerlai amp; Roder, 1996)。相反, 在敲除該基因后, 小鼠在完成水迷宮任務(wù)時(shí)表現(xiàn)更好(Nishiyama et al., 2002)。此外, 研究發(fā)現(xiàn), 對(duì)實(shí)驗(yàn)性腦損傷后的小鼠腦室內(nèi)注入低濃度的S100B, 可以誘導(dǎo)海馬內(nèi)的神經(jīng)發(fā)生, 且與腦損傷后認(rèn)知功能的增強(qiáng)有關(guān)(Kleindienst et al., 2005)。
S100B與人類的空間導(dǎo)航能力也存在潛在關(guān)聯(lián)。空間導(dǎo)航能力障礙是AD患者的早期癥狀, 并且與AD相關(guān)的大腦異常腦區(qū)與空間導(dǎo)航腦網(wǎng)絡(luò)存在顯著重疊(Fu et al., 2017), 而針對(duì)AD患者的大腦解剖研究發(fā)現(xiàn), 大腦中S100B mRNA和蛋白濃度增高(尤其在海馬與顳葉區(qū)域) (Marshak et al., 1992), S100B陽性星形膠質(zhì)細(xì)胞密度增高(Simpson et al., 2010); 腦脊液研究也發(fā)現(xiàn), 相比較正常人, AD患者腦脊液中更高的S100B濃度(Peskind et al., 2001), 且從輕度到中度AD病程中, S100B濃度也逐漸提升。血清S100B濃度在AD患者中是否更高則仍存在較大爭議 (Steiner et al., 2011)。從機(jī)制上看, 過高濃度的S100B 能引起以星形膠質(zhì)細(xì)胞增多和小膠質(zhì)細(xì)胞增多為特征的腦部炎癥(Mori et al., 2010), 從而引起Aβ的生成、沉積和斑塊。而這些病理現(xiàn)象被認(rèn)為是AD的主要診斷標(biāo)準(zhǔn)(Zhang et al., 2022)。此外, 在對(duì)正常人大腦解剖后發(fā)現(xiàn), S100B基因表達(dá)的空間模式與大腦的空間導(dǎo)航激活模式相關(guān), 尤其是導(dǎo)航相關(guān)場景加工激活模式(Kong, Song, et al., 2017)。
除基于蛋白濃度和基因表達(dá)的證據(jù)外, 也有研究初步建立了S100B基因相關(guān)的單核苷酸多態(tài)性(single nucleotide polymorphisins, SNPs)與人類空間導(dǎo)航之間的關(guān)聯(lián)。Lambert等(2007)發(fā)現(xiàn)位點(diǎn)rs2300403與更低的認(rèn)知表現(xiàn)有關(guān), 且能夠增加阿爾茲海默癥的患病風(fēng)險(xiǎn)(Lambert et al., 2007); Wang等(2021)發(fā)現(xiàn)rs9722多態(tài)性可能通過改變miRNA結(jié)合能力上調(diào)S100B的表達(dá), 從而增加患AD的風(fēng)險(xiǎn)(Wang et al., 2021)。Kong, Song等人(2017)融合基因型、基因表達(dá)、腦影像和行為數(shù)據(jù), 發(fā)現(xiàn)了S100B基因多態(tài)性與壓后皮質(zhì)(retrosplenial cortex, RSC)和海馬旁區(qū)域(parahippocampal place area, PPA)場景加工腦活動(dòng)之間的關(guān)聯(lián), 其中攜帶rs11542311不同基因分型的個(gè)體在右側(cè)RSC后部的功能激活存在顯著差異, rs3788266則與右側(cè)RSC和左側(cè)PPA顯著相關(guān)。并且S100B血清水平顯著中介了rs3788266與右側(cè)RSC功能激活之間的關(guān)聯(lián)(Kong, Song, et al., 2017)。
3.3" APOE
APOE基因被認(rèn)為是AD最重要的風(fēng)險(xiǎn)基因(Belloy et al., 2019, Genin et al., 2011)。導(dǎo)航能力的衰退是AD等認(rèn)知障礙腦疾病的重要早期行為學(xué)表現(xiàn), 伴隨早期AD產(chǎn)生的內(nèi)側(cè)顳葉、頂葉和額葉等大腦區(qū)域的神經(jīng)性退行也與空間導(dǎo)航能力的下降息息相關(guān)(Coughlan, Coutrot, et al., 2018)。這表明APOE基因可能對(duì)空間導(dǎo)航等認(rèn)知能力產(chǎn)生影響。APOE基因存在于19號(hào)常染色體上(19q13.2), 共存在4種可能的等位基因。其中APOE 1在世界范圍內(nèi)僅發(fā)現(xiàn)4例; APOE 3在人群中最常見; 而APOE 2和APOE 4則具有不同的功能, APOE 2被認(rèn)為在對(duì)抗AD具有保護(hù)性作用, 更多的APOE 2會(huì)降低AD的發(fā)病風(fēng)險(xiǎn), 延后可能發(fā)病年齡; 而APOE4則是AD的風(fēng)險(xiǎn)基因, 隨著APOE4等位基因的數(shù)量增加, AD發(fā)病風(fēng)險(xiǎn)增加, 發(fā)病年齡降低。具體而言, 相比較不攜帶APOE4的個(gè)體, APOE3/4雜合子攜帶者會(huì)增加2~4倍的AD風(fēng)險(xiǎn), APOE4/4純合子攜帶者則能增加8~12倍的患病風(fēng)險(xiǎn)(Belloy et al., 2019)。這可能與APOE基因的表達(dá)物APOE載脂蛋白濃度有關(guān)。動(dòng)物模型及人類研究均發(fā)現(xiàn), APOE2基因?qū)Φ鞍诐舛扔写龠M(jìn)作用, 而AOPE4則表現(xiàn)出更低的蛋白濃度, 該結(jié)論在前額皮層、海馬、腦脊液中均已得到證實(shí)(Castellano et al., 2011; Cruchaga et al., 2012; Riddell et al., 2008)。而APOE蛋白濃度影響淀粉樣蛋白的清除, 因此APOE4基因會(huì)導(dǎo)致更多Aβ的產(chǎn)生和沉積(Wang et al., 2018), 這也被認(rèn)為是AD的重要病理原因。
并不是所有APOE4基因攜帶者最終都會(huì)發(fā)展為AD患者, 但APOE4基因?qū)φJ(rèn)知能力的影響可能貫穿一生(Flowers amp; Rebeck, 2020; Weissberger et al., 2018)。在輕度認(rèn)知障礙階段和臨床前階段, 可以觀察到空間導(dǎo)航能力的損傷, 且同樣表現(xiàn)出對(duì)APOE4等位基因的數(shù)量敏感性。例如, 在計(jì)算機(jī)模擬的虛擬水迷宮測試中, 患有遺忘型輕度認(rèn)知障礙(amnestic mild cognitive impairment, aMCI)的個(gè)體比正常人的空間導(dǎo)航準(zhǔn)確性更差(尤其在自我參照任務(wù)), 其中APOE4純合子個(gè)體又比雜合子個(gè)體的表現(xiàn)更差, 其可能的神經(jīng)機(jī)制為右側(cè)海馬的萎縮(Laczó et al., 2014), 這種APOE4等位基因數(shù)量的影響同樣體現(xiàn)在真實(shí)環(huán)境的水迷宮任務(wù)中(Laczó et al., 2011)。通過令健康老年人完成記憶島任務(wù), 研究者發(fā)現(xiàn)APOE4基因攜帶者在探測試次中, 在目標(biāo)所在象限花費(fèi)的時(shí)間顯著更短, 表現(xiàn)出空間記憶能力的損傷(Berteau-Pavy et al., 2007); 而在SHQ游戲中, 其在尋路任務(wù)中也需要經(jīng)過更長路徑(Coughlan et al., 2019)。同樣, 在健康的成年人中, APOE4攜帶者就已經(jīng)表現(xiàn)出空間導(dǎo)航相關(guān)的基礎(chǔ)認(rèn)知能力的降低, 如視覺空間注意的重定向、位置記憶的保留和目標(biāo)位置記憶的注意調(diào)制。具體而言, 在空間線索字幕辨別任務(wù)中, APOE 4等位基因攜帶數(shù)量越多, 對(duì)無效提示線索的空間注意重定向速度越慢; 在空間工作記憶任務(wù)中, 記憶負(fù)荷越大, APOE4基因的數(shù)量效應(yīng)更加顯著, APOE4純合子的個(gè)體保留位置記憶的能力明顯下降; 而在同時(shí)需要這兩種認(rèn)知能力的任務(wù)中, APOE4純合子的個(gè)體表現(xiàn)出更低的正確率和更高的反應(yīng)時(shí)(Greenwood et al., 2005)。值得注意的是, 在不同年齡階段, APOE4基因?qū)φJ(rèn)知能力的影響可能表現(xiàn)出不同的特征。例如, 在青少年期, APOE基因?qū)τ谡J(rèn)知能力的影響結(jié)果較為不一致, 如在情景記憶、執(zhí)行功能等方面, APOE4基因攜帶者反而表現(xiàn)更好(Mondadori et al., 2007; Rusted et al., 2013), 但在空間導(dǎo)航能力上, APOE4攜帶者則并未在記憶島任務(wù)中表現(xiàn)出對(duì)目標(biāo)象限的偏好(Acevedo et al., 2010)。
從神經(jīng)機(jī)制上看, 攜帶APOE4基因的健康個(gè)體在大腦某些區(qū)域受損的同時(shí), 在另一些區(qū)域則可能出現(xiàn)某種功能的增強(qiáng)。APOE4風(fēng)險(xiǎn)基因攜帶者的小部分海馬區(qū)域受到明顯影響(Flowers amp; Rebeck, 2020), 且健康個(gè)體內(nèi)嗅皮層中網(wǎng)格細(xì)胞受損, 無法形成穩(wěn)定的網(wǎng)格樣細(xì)胞表征, 導(dǎo)致空間記憶表現(xiàn)變差; 但同時(shí)又表現(xiàn)出一種補(bǔ)償機(jī)制, 如海馬活動(dòng)的增強(qiáng), 以及邊界細(xì)胞對(duì)誤差角度的糾正作用(Hardcastle et al., 2015; Kunz et al., 2015)。這種海馬激活的加強(qiáng)同樣可以在年輕攜帶者的靜息態(tài)和編碼記憶任務(wù)過程中發(fā)現(xiàn)(Filippini et al., 2009)。這意味著在尚未受損的大腦中, APOE4與增強(qiáng)的內(nèi)側(cè)顳葉區(qū)域的活動(dòng)有關(guān)(Flowers amp; Rebeck, 2020)。類似地, 攜帶有APOE4基因的健康中年人群在純路徑整合任務(wù)中表現(xiàn)更差, 但當(dāng)存在路標(biāo)或邊界時(shí), 他們對(duì)空間中的線索具有更強(qiáng)的依賴性; 且青年群體更能夠利用路標(biāo)和邊界進(jìn)行路徑整合, 體現(xiàn)了RSC以及邊界細(xì)胞對(duì)路徑整合能力的補(bǔ)償作用(Bierbrauer et al., 2020)。這也解釋了為什么APOE4基因攜帶者在SHQ游戲的尋路軌跡距離邊界更近(Coughlan et al., 2019)。
3.4" 其他候選基因
除上述主要基因外(見表2總結(jié)), 最新研究也發(fā)現(xiàn)了一些其他可能與空間導(dǎo)航有關(guān)的候選基因。海馬被認(rèn)為是空間導(dǎo)航腦網(wǎng)絡(luò)的核心腦結(jié)構(gòu), 而海馬體積具有高的遺傳度(約70%) (den Braber et al., 2013; Rentería et al., 2014), 已有研究發(fā)現(xiàn)了多個(gè)可能影響海馬體積的基因。其中, MYT1L基因(Myelin Transcription Factor 1 Like)存在于哺乳動(dòng)物的神經(jīng)元中, 控制著中樞神經(jīng)系統(tǒng)的形成和發(fā)育, 其表達(dá)物是大腦特異性轉(zhuǎn)錄因子(Vierbuchen et al., 2010)。Kepa等人(2017)發(fā)現(xiàn), 海馬中MYT1L基因表達(dá)的減少會(huì)導(dǎo)致LTP及突觸傳遞相關(guān)基因的表達(dá)減少; 此外, 神經(jīng)影像學(xué)的證據(jù)表明, MYT1L基因表達(dá)與海馬體積正相關(guān), 這些與記憶相關(guān)的神經(jīng)生理機(jī)制暗示了MYT1L基因在空間導(dǎo)航能力中的可能作用(Kepa et al., 2017)。同樣影響海馬體積的基因還有ANKRD37 (ankyrin repeat domain 37), 其rs1053218基因突變會(huì)導(dǎo)致ANKRD37基因表達(dá)的過度激活, 進(jìn)而導(dǎo)致海馬體積的減少。不僅如此, 這種關(guān)系在AD患者中更加顯著(Xu et al., 2022), 海馬體積減少的遺傳變異往往和AD患病風(fēng)險(xiǎn)的增加有關(guān)(Hibar et al., 2017), 因此, 該基因的變異可能是造成空間導(dǎo)航能力個(gè)體差異的重要遺傳基礎(chǔ)。近來, SHARPIN (SHANK associated RH domain interactor) 基因被發(fā)現(xiàn)與AD具有重要關(guān)聯(lián), 在日本群體中, 該基因最小等位基因頻率約為0.0002的超罕見變異能夠?qū)D患病風(fēng)險(xiǎn)增加近6倍(Asanomi et al., 2019), 而rs34173062的突變則被發(fā)現(xiàn)在西方群體中導(dǎo)致AD患病風(fēng)險(xiǎn)以及腦退化的增加(Soheili‐Nezhad et al., 2020)。此外, 一項(xiàng)全基因組關(guān)聯(lián)分析的研究發(fā)現(xiàn)了與海馬體積顯著關(guān)聯(lián)的位點(diǎn)及其所在基因(如ASTN2、DPP4、MAST4)等, 但其遺傳機(jī)制及通路有待進(jìn)一步研究(Hibar et al., 2017)。這些基因?yàn)榭臻g導(dǎo)航遺傳基礎(chǔ)研究提供了重要候選基因。
總結(jié)來看, 近年來空間導(dǎo)航遺傳學(xué)研究采用的技術(shù)手段和得到的研究結(jié)果不斷豐富, 但相關(guān)研究仍比較初步, 目前僅有少數(shù)幾個(gè)基因與空間導(dǎo)航建立聯(lián)系, 且其可重復(fù)性需要進(jìn)一步驗(yàn)證, 具體影響機(jī)制也有待深入挖掘。尤其缺失整合基因、腦影像與行為學(xué)數(shù)據(jù)的通路研究成果。此外, 環(huán)境和后天學(xué)習(xí)訓(xùn)練等暴露因素可能在該通路中發(fā)揮關(guān)鍵作用, 因此, 為了更好地理解空間導(dǎo)航的遺傳?腦?行為通路, 有必要從環(huán)境暴露組學(xué)的視角(Maitre et al., 2022), 對(duì)現(xiàn)有的環(huán)境暴露因素如何塑造空間導(dǎo)航能力進(jìn)行厘清總結(jié)。
4" 性別、年齡和環(huán)境暴露因素
4.1" 性別差異
空間導(dǎo)航的性別差異在行為表現(xiàn)及神經(jīng)機(jī)制上均得到大量研究驗(yàn)證。行為上, 總體表現(xiàn)出導(dǎo)航能力的顯著男性優(yōu)勢(shì), 該差異在一項(xiàng)涵蓋全世界57個(gè)國家和地區(qū)的基于手機(jī)游戲的空間導(dǎo)航能力測評(píng)研究中得到證實(shí)(Coutrot et al., 2018), 在中國人群的大樣本數(shù)據(jù)也顯示, 男性在11~40歲的年齡范圍內(nèi)總體表現(xiàn)出更強(qiáng)的空間認(rèn)知能力(Xu et al., 2023)。研究發(fā)現(xiàn), 無論在有地標(biāo)或是限制地標(biāo)的環(huán)境中, 男性的空間導(dǎo)航能力要優(yōu)于女性(Astur et al., 1998); 在策略使用上, 男性往往同時(shí)使用路標(biāo)和幾何線索, 而女性主要依靠路標(biāo)線索(Sandstrom et al., 1998); 而在導(dǎo)航相關(guān)的場景加工中, 男性表現(xiàn)出更強(qiáng)的雙側(cè)PPA腦功能激活(Kong, Huang, et al., 2017); 在導(dǎo)航過程中進(jìn)行空間表征時(shí), 男性往往依賴基于調(diào)查的導(dǎo)航策略(survey strategy), 在獨(dú)立于觀察者的參考框架中形成空間布局的信息, 因此導(dǎo)航表現(xiàn)更加靈活, 在必要時(shí)能夠抄近路; 女性更加依賴基于路線的導(dǎo)航(route strategy), 能夠記住在何時(shí)何地做出特定的轉(zhuǎn)彎, 但在某些情況下缺少一定靈活性(Boone et al., 2018; Lawton, 1994)。這可能與其導(dǎo)航過程中不同腦區(qū)激活有關(guān):男性在左側(cè)海馬有明顯激活, 而女性則持續(xù)使用右側(cè)頂葉和右側(cè)前額葉皮層(Gr?n et al., 2000)。值得注意的是, 女性在空間能力上的劣勢(shì)并非始終存在。研究發(fā)現(xiàn), 在記憶客體位置時(shí), 女性表現(xiàn)出更大的優(yōu)勢(shì)(Voyer et al., 2007); 且空間能力受生理因素影響,在雌性激素水平較低時(shí), 女性在空間導(dǎo)航任務(wù)的表現(xiàn)和男性一樣好(Chabanne et al., 2004), 而男性的優(yōu)勢(shì)則與血液中更高的睪酮水平有關(guān)(Driscoll et al., 2005)。從進(jìn)化的角度來講, 范圍大小假說(the range size hypothesis)認(rèn)為, 為繁殖后代并最大限度的提高繁殖成功率, 男性必須覆蓋更大的活動(dòng)區(qū)域, 因此在進(jìn)化中表現(xiàn)出更強(qiáng)的空間能力(Jones et al., 2003), 而這一假設(shè)在自由探索的空間任務(wù)中也得到了驗(yàn)證(Gagnon et al., 2018)。Coutrot等人(2018)通過SHQ游戲發(fā)現(xiàn), 不同國家存在不同程度的空間導(dǎo)航能力及其性別特異性差異, 其中國家GDP與空間導(dǎo)航能力呈現(xiàn)正相關(guān), 并且表示性別平等程度的性別差距指數(shù)Gender Gap Index (GGI)可以顯著解釋導(dǎo)航能力的性別差異, 表明認(rèn)知能力上的性別效應(yīng)可能與不同國家女性的社會(huì)地位相關(guān)(Coutrot et al., 2018)。
4.2" 發(fā)展與老化
不同年齡階段也表現(xiàn)出不同的空間導(dǎo)航能力。從發(fā)展軌跡上看, 個(gè)體小尺度的空間認(rèn)知能力從幼兒時(shí)期到青少年和成人早期迅速上升, 在21~35歲達(dá)到頂峰后表現(xiàn)出平穩(wěn)下降的趨勢(shì)(Xu et al., 2023)。從具體能力上看, 利用空間重定向范式, 研究者發(fā)現(xiàn)5.5歲以下的兒童主要依靠環(huán)境的幾何屬性對(duì)物體位置進(jìn)行表征; 而成人同時(shí)采用幾何和非幾何線索進(jìn)行定位(Hermer, 1997); 此外, 老年人在路線學(xué)習(xí)、路標(biāo)排序、位置學(xué)習(xí)、路徑整合上的表現(xiàn)相比年輕成年人都要更差(Stangl et al., 2020), 表明人類的空間記憶能力隨年齡增加受損。而年齡相關(guān)的導(dǎo)航記憶缺陷可能是由于后梭狀回、海馬旁回和頂葉功能的路徑編碼效率較低以及海馬的萎縮所致(Jack et al., 1997; Moffat, 2009)。從策略上來講, 無論是在固定起點(diǎn)終點(diǎn)的尋路任務(wù)中(依靠自我中心的導(dǎo)航策略), 還是在虛擬莫斯里水迷宮測驗(yàn)中(依靠非自我中心的導(dǎo)航策略), 老年被試的表現(xiàn)都更差, 表明他們的兩種導(dǎo)航策略隨年齡增長都有削弱(Driscoll et al., 2005; Moffat amp; Resnick, 2002)。電生理的結(jié)果表明, 隨年齡增加海馬的LTP誘導(dǎo)和維持缺陷, 以及長時(shí)程增強(qiáng)和長時(shí)程抑制閾值降低, 導(dǎo)致空間記憶減弱(Han et al., 2006)。其中, 與非自我中心的導(dǎo)航策略有關(guān)的任務(wù)表現(xiàn)降低主要與海馬、海馬旁回的激活較弱有關(guān)(Antonova et al., 2009); 而自我中心導(dǎo)航降低主要與頂葉皮層和楔前葉的功能減弱有關(guān)(Coughlan, Laczo, et al., 2018)。除此之外, 隨著年齡增加, 個(gè)體偏好的導(dǎo)航策略也有所轉(zhuǎn)變。相較于年輕人, 老年人自我報(bào)告其更多采用自我為中心的導(dǎo)航策略(Driscoll et al., 2005), 無法對(duì)外部環(huán)境形成良好的空間表征; 且從線索使用上, 年輕人偏好使用邊界線索, 老年人則偏好路標(biāo)線索(Schuck et al., 2015), 研究表明, 使用邊界線索有助于在空間導(dǎo)航任務(wù)中的反應(yīng)誤差更?。˙ullens et al., 2010), 這也部分解釋了老年人導(dǎo)航能力整體更差的原因。然而, 并非所有老年人都表現(xiàn)出差的空間導(dǎo)航能力, 在群體內(nèi)部同樣存在較大的個(gè)體差異。表現(xiàn)良好的老年人在存在多種感官信息或多種可用線索的環(huán)境中, 由于多種信息的整合依然能表現(xiàn)出較高水平的路徑整合能力(Bates amp; Wolbers, 2014; Ramkhalawansingh et al., 2017), 這可能是由于神經(jīng)系統(tǒng)的補(bǔ)償機(jī)制, 隨年齡增長, 海馬的功能降低; 但海馬外區(qū)域, 如PPA與枕葉功能連接的增強(qiáng)(Ramano?l et al., 2019)、前額區(qū)域激活加強(qiáng)(Reynolds et al., 2019)等活動(dòng)一定程度上保證了部分老年人在老年階段也有良好的空間導(dǎo)航能力, 具有重要的生存意義。
4.3" 環(huán)境與可塑性
除上述兩種主要的差異外, 個(gè)體在一生中所接觸到的環(huán)境差異一定程度上能造成更廣泛的個(gè)體差異(Vermeulen et al., 2020), 其中包括文化背景、語言習(xí)慣、居住環(huán)境等社會(huì)水平的一般外部維度和后天訓(xùn)練、健康習(xí)慣等個(gè)體水平的特定外部維度(Liu et al., 2023)。
文化背景" 文化背景構(gòu)成了一個(gè)人生活的基礎(chǔ), 空間導(dǎo)航能力會(huì)受到文化背景的影響。例如, 狩獵文化下的民族擁有開闊的空間環(huán)境, 且涉及在相似、單一的環(huán)境下進(jìn)行狩獵并返回住處, 因此這類民族表現(xiàn)出更強(qiáng)的空間導(dǎo)航能力(Berry, 1971)。受部落文化的影響, 西班牙Barcelona族通過大海與大山確定主方向, 這種獨(dú)特的方向感體系也直接導(dǎo)致了空間導(dǎo)航的群體差異(許琴 等, 2010)。不同的文化往往也涉及不同的語言體系, 而語言差異構(gòu)成了思維與認(rèn)知差異(Vygotsky, 2012)??缥幕难芯勘砻?, 不同文化背景下的語言體系塑造了不同的空間認(rèn)知。個(gè)體所用的語言與空間記憶和推理發(fā)揮最佳水平的參照框架一致, 即所用于描述空間關(guān)系的語言體系不同, 個(gè)體所偏好的空間表征方式不同。使用自我中心參照體系(egocentric)的語言往往以自我為中心表征客體之間的關(guān)系(如以自身視角看, 表述貓?jiān)诠返淖筮叄?而地心參照體系(geocentric cognitive systems)的語言則更容易形成非自我中心的空間表征(用東西南北表述空間關(guān)系) (Goeke et al., 2015; Hao et al., 2017), 擁有更好的空間能力(Haun et al., 2011), 這是由于語言所造成的編碼策略不同所導(dǎo)致的(Lovett amp; Forbus, 2011)。從神經(jīng)機(jī)制上看, Vukovic和Shtyrov (2017)首次通過EEG發(fā)現(xiàn), 語言理解和空間表征的任務(wù)涉及共變的大腦網(wǎng)絡(luò)活動(dòng), 證明了語言體系對(duì)空間認(rèn)知的塑造作用(Vukovic amp; Shtyrov, 2017)。
居住環(huán)境" 已知在靈長類物種中, 空間技能上的差異與營養(yǎng)豐富或貧乏環(huán)境下的不同進(jìn)化壓力有關(guān)(Newcombe, 2018)。人類群體同樣表現(xiàn)出居住環(huán)境的“豐富”與否對(duì)空間導(dǎo)航能力的影響。Coutrot等人(2020)通過SHQ游戲在世界范圍內(nèi)收集了來自38個(gè)國家和地區(qū)的數(shù)據(jù), 分析發(fā)現(xiàn), 在城市長大的個(gè)體比城市外長大的個(gè)體表現(xiàn)出更差的空間導(dǎo)航能力, 但在不同國家這種差異的大小不同, 比如, 美國環(huán)境差異要比羅馬尼亞大6倍以上(Coutrot et al., 2020)。居住地周邊街道網(wǎng)絡(luò)的不規(guī)則程度可以在很大程度上解釋上述差異, 即復(fù)雜和不規(guī)則的街道網(wǎng)絡(luò)可能對(duì)生活在其中的個(gè)體提出更高的導(dǎo)航需求, 在一定程度上鍛煉了個(gè)體的空間導(dǎo)航能力(Coutrot et al., 2022)。除了生活環(huán)境本身差異的影響外, 個(gè)體對(duì)周圍環(huán)境的不同探索模式也會(huì)導(dǎo)致導(dǎo)航行為的個(gè)體差異。例如, 童年時(shí)期男孩往往被允許探索范圍更大、更復(fù)雜的外部環(huán)境, 這些經(jīng)歷可能與男性在執(zhí)行尋路任務(wù)時(shí)相對(duì)于女性的優(yōu)勢(shì)有關(guān), 可能有助于理解在尋路策略偏好的性別差異(Lawton amp; Kallai, 2002)。
訓(xùn)練和可塑性" 空間技能具有高度的可塑性, 空間思維訓(xùn)練是有效的、持久的且可轉(zhuǎn)移的(Uttal et al., 2013)。因此, 后天的有效訓(xùn)練可以一定程度增強(qiáng)空間導(dǎo)航能力。Xu等人(2023)通過游戲化的心理旋轉(zhuǎn)測試, 發(fā)現(xiàn)個(gè)體小尺度空間認(rèn)知能力的可塑性在兒童期到成年早期迅速增加, 在16~20歲間達(dá)到峰值并在之后的35歲前仍保持較高可塑性(Xu et al., 2023)。就具體能力而言, 在兒童期, 父母對(duì)孩子進(jìn)行空間圖形的教育經(jīng)歷, 有利于幫助他們理解并形成空間圖形表征(Szechter amp; Liben, 2004); 而父母對(duì)兒童空間語言的輸入則能影響兒童空間語言的形成, 且表現(xiàn)出更多空間語言的孩子在以后的空間問題解決任務(wù)中有更好的表現(xiàn)(Pruden et al., 2011)。此外, 早期的地圖訓(xùn)練能夠促進(jìn)兒童的空間認(rèn)知, 有助于認(rèn)知地圖的形成(Uttal, 2000)。北歐國家在空間導(dǎo)航上的普遍卓越表現(xiàn)也可能與其獨(dú)特的地圖訓(xùn)練(“定向越野”運(yùn)動(dòng))有關(guān)(Coutrot et al., 2018)。除早期訓(xùn)練, 成人期的地圖訓(xùn)練也能夠促進(jìn)空間導(dǎo)航能力, 例如, 職業(yè)倫敦出租車司機(jī)需要基于地圖對(duì)整個(gè)倫敦市區(qū)的點(diǎn)和路、重要路標(biāo)、道路名稱、街道網(wǎng)絡(luò)等進(jìn)行深入的層級(jí)學(xué)習(xí)(Griesbauer et al., 2022), 表現(xiàn)出極強(qiáng)的導(dǎo)航能力, 且在學(xué)習(xí)新路線方面也比非出租車司機(jī)表現(xiàn)得更好(Woollett amp; Maguire, 2009)。腦影像結(jié)果表明, 相比于普通人和公交車司機(jī), 出租車司機(jī)都表現(xiàn)出海馬后側(cè)灰質(zhì)密度增加, 海馬前側(cè)灰質(zhì)密度降低(Maguire et al., 2006), 且在學(xué)習(xí)過程中, 后海馬灰質(zhì)體積隨著經(jīng)驗(yàn)的增長而增加(Woollett amp; Maguire, 2011)。除此之外, 單純駕駛經(jīng)驗(yàn)本身也會(huì)比被動(dòng)接受空間知識(shí)更加能塑造導(dǎo)航能力(Sandamas amp; Foreman, 2015)。而一般性的學(xué)業(yè)教育水平也與導(dǎo)航能力呈現(xiàn)正相關(guān)(Coutrot et al., 2018)。
導(dǎo)航輔助設(shè)備使用" 隨著科技的發(fā)展, GPS導(dǎo)航設(shè)備或軟件被廣泛使用。但對(duì)外界輔助設(shè)備的依賴似乎在一定程度上阻礙了個(gè)體主動(dòng)的導(dǎo)航思考與訓(xùn)練(McKinlay, 2016)。研究表明, 過渡依賴GPS損害了個(gè)體對(duì)空間知識(shí)的學(xué)習(xí)和獲取能力(Hejtmánek et al., 2018; Ruginski et al., 2019)、空間記憶能力(Gardony et al., 2013), 并且與習(xí)慣性進(jìn)行路線學(xué)習(xí)有關(guān)(Dahmani amp; Bohbot, 2020)。這種導(dǎo)航能力的退化可能會(huì)對(duì)個(gè)體的獨(dú)立性、自主性和生活質(zhì)量產(chǎn)生進(jìn)一步影響。然而, 這并非科技發(fā)展進(jìn)步的初衷, 因此, 一些研究試圖進(jìn)一步探索如何改進(jìn)導(dǎo)航系統(tǒng)從而解除對(duì)導(dǎo)航能力的消極影響。例如, Wunderlich和Gramann (2019)發(fā)現(xiàn), 在聽覺導(dǎo)航指令中增加地標(biāo)知識(shí)能克服空間能力的降低(Wunderlich amp; Gramann, 2019), 帶來空間知識(shí)獲取能力的提高(Wunderlich et al., 2020); 且當(dāng)?shù)貥?biāo)知識(shí)與個(gè)人相關(guān)時(shí), 同樣能帶來空間學(xué)習(xí)和記憶的提升(Gramann et al., 2017)。
生活風(fēng)格和健康狀態(tài)" 飲食習(xí)慣(Jacka et al., 2015)、睡眠(Marshall amp; Born, 2007)、運(yùn)動(dòng)(Firth et al., 2018)、抽煙和酒精使用(Dobric et al., 2022; Gomez et al., 2015)等均能影響海馬體積。而海馬是形成空間記憶、認(rèn)知地圖等的重要大腦區(qū)域, 因此, 不良的健康狀態(tài)可能會(huì)削弱個(gè)體的空間導(dǎo)航能力。從功能上講, 積極自主的運(yùn)動(dòng)能增加海馬進(jìn)行空間位置編碼的信息量, 提高編碼質(zhì)量和穩(wěn)定性(Rechavi et al., 2022)。此外, 一些精神或身體疾病, 如病理性焦慮、抑郁、自閉癥、創(chuàng)傷后應(yīng)激障礙等, 也可能對(duì)導(dǎo)航能力產(chǎn)生影響, 這與海馬的功能改變和海馬體積減少有關(guān)(Bremner et al., 2007; Herrero et al., 2006; Sheline et al., 2002; Smith, 2015)。
總結(jié)來看, 現(xiàn)有研究已從較為多樣化的視角考察了與空間導(dǎo)航能力相關(guān)的宏觀環(huán)境因素, 在一定程度上揭示了隨時(shí)間和空間變化的環(huán)境暴露對(duì)個(gè)體空間導(dǎo)航能力的影響和塑造(表3)。除性別和年齡的影響外, 對(duì)環(huán)境與可塑性的相關(guān)研究大多從表層揭示了其與空間導(dǎo)航能力的相關(guān)關(guān)系, 尚缺乏對(duì)其在空間導(dǎo)航的遺傳?腦?行為通路中作用機(jī)制的深入研究。
5" 總結(jié)和展望
綜上, 空間導(dǎo)航涉及多種認(rèn)知過程, 不同認(rèn)知成分表現(xiàn)出空間導(dǎo)航能力不同側(cè)面的顯著個(gè)體差異性。本文綜述了關(guān)于空間導(dǎo)航個(gè)體差異影響因素的最新研究, 對(duì)導(dǎo)航能力個(gè)體差異的多層次形成機(jī)制形成總結(jié)。
我們發(fā)現(xiàn), 現(xiàn)有研究從多個(gè)層面揭示了一些可能影響空間導(dǎo)航能力的關(guān)鍵遺傳和環(huán)境因素和相關(guān)作用機(jī)制。但仍存在一些亟待解決的問題。首先, 目前已發(fā)現(xiàn)的少數(shù)幾個(gè)基因不可能支撐和維持復(fù)雜的空間導(dǎo)航功能, 在未來研究中需要進(jìn)一步挖掘和探索; 其次, 近年來研究者開始探索基因、腦和空間導(dǎo)航之間的重要關(guān)聯(lián), 現(xiàn)有研究仍非常初步, 尚未建立空間導(dǎo)航的基因?腦?行為通路; 空間導(dǎo)航能力容易受到地理和人文環(huán)境因素影響, 具有極大的可塑性, 目前有關(guān)環(huán)境因素作用機(jī)制的研究仍顯單薄, 更缺乏有關(guān)環(huán)境因素在空間導(dǎo)航的基因?腦?行為通路中的作用的研究。
基于分子心理學(xué)(Molecular Psychology)前沿研究思路和方法(Canli, 2015), 本文提出了關(guān)于空間導(dǎo)航個(gè)體差異的遺傳/環(huán)境?腦網(wǎng)絡(luò)?行為通路研究框架(圖1), 即通過整合分析不同個(gè)體的遺傳、早期生活經(jīng)歷和環(huán)境因素、大腦結(jié)構(gòu)和功能、認(rèn)知與行為等多方面的數(shù)據(jù), 考察不同關(guān)鍵遺傳和環(huán)境因素如何影響空間導(dǎo)航腦功能網(wǎng)絡(luò)的發(fā)展和老化, 而導(dǎo)航腦網(wǎng)絡(luò)的功能完整性又是如何影響個(gè)體在不同導(dǎo)航活動(dòng)中的行為表現(xiàn)的。如:S100B基因如何通過調(diào)控空間導(dǎo)航腦網(wǎng)絡(luò)的核心節(jié)點(diǎn)腦區(qū)壓后皮層的神經(jīng)活動(dòng), 導(dǎo)致個(gè)體在導(dǎo)航行為上的個(gè)體差異?APOE基因如何通過改變海馬的結(jié)構(gòu)和功能, 影響了個(gè)體在認(rèn)知地圖相關(guān)任務(wù)中的行為表現(xiàn)?住所周邊街道的復(fù)雜程度如何調(diào)節(jié)了海馬的發(fā)育, 進(jìn)而導(dǎo)致了個(gè)體在導(dǎo)航策略和導(dǎo)航能力上的不同?通過多個(gè)層次的分析, 一方面, 可以進(jìn)一步驗(yàn)證這些關(guān)鍵遺傳和環(huán)境因素對(duì)空間導(dǎo)航個(gè)體差異的影響, 并闡明相關(guān)作用機(jī)制; 更重要的是, 可以挖掘出更多的空間導(dǎo)航能力的影響因素, 更全面地厘清導(dǎo)航個(gè)體差異的多層次形成機(jī)制。基于此, 我們對(duì)未來方向做以下三點(diǎn)展望。
第一, 全基因組關(guān)聯(lián)分析(Genome-wide association study, GWAS)全面揭示影響空間導(dǎo)航的關(guān)鍵遺傳變異?,F(xiàn)有的影響空間導(dǎo)航的遺傳因素往往從動(dòng)物模型研究中發(fā)現(xiàn), 進(jìn)而在人類當(dāng)中進(jìn)行驗(yàn)證并發(fā)展, 且目前僅有少數(shù)幾個(gè)基因與空間導(dǎo)航建立了穩(wěn)定關(guān)聯(lián)。然而, 如果沒有其他大量基因的參與, 這些基因本身不可能創(chuàng)建和維護(hù)復(fù)雜的空間導(dǎo)航腦網(wǎng)絡(luò)。隨著遺傳學(xué)方法和心理測量技術(shù)的發(fā)展, 未來研究可以通過構(gòu)建空間導(dǎo)航遺傳學(xué)大樣本數(shù)據(jù)庫, 結(jié)合GWAS方法, 在人類基因組中尋找更多與空間導(dǎo)航表型相關(guān)的顯著遺傳變異。在此基礎(chǔ)上, 可以采用多基因分?jǐn)?shù)(polygenic score或polygenic risk score)、遺傳相關(guān)(genetic correlation)、富集分析(enrichment analysis)等生物信息學(xué)方法(Wray et al., 2021), 進(jìn)一步探究遺傳因素調(diào)控空間導(dǎo)航能力的關(guān)鍵通路和與AD等相關(guān)腦疾病之間的遺傳重疊(genetic overlap)。
第二, 基因與環(huán)境交互(gene-environment interaction)研究揭示遺傳、環(huán)境、認(rèn)知與行為三者之間的復(fù)雜通路。遺傳與環(huán)境共同塑造個(gè)體, 因此, 在通過大量研究單獨(dú)探索出可能的影響因素后, 進(jìn)一步探索遺傳和環(huán)境的交互作用尤為重要。近年來, 對(duì)APOE基因的研究便體現(xiàn)了這種整合的思路。研究發(fā)現(xiàn), APOE4基因在不同種族、性別、年齡、飲食習(xí)慣、地理位置等方面表現(xiàn)出患AD風(fēng)險(xiǎn)的差異性(Coughlan, Coutrot, et al., 2018; Neu et al., 2017; Zhang et al., 2022)。因此, 就空間導(dǎo)航能力而言, 未來研究可以通過同時(shí)獲取大量個(gè)體的遺傳、環(huán)境及空間導(dǎo)航數(shù)據(jù), 進(jìn)一步分析基因在不同環(huán)境下對(duì)導(dǎo)航能力的影響。盡管大規(guī)模獲取導(dǎo)航能力的數(shù)據(jù)較為困難, 且缺乏統(tǒng)一的測量方式, 但SHQ游戲和GPS軌跡為我們提供了新的思路, 其中SHQ在應(yīng)用商店上架, 使得收集世界范圍內(nèi)的用戶數(shù)據(jù)成為可能, 且個(gè)體在游戲中的表現(xiàn)能反映其真實(shí)的空間導(dǎo)航能力(Coutrot et al., 2019); GPS軌跡則能夠反映真實(shí)環(huán)境下個(gè)體的行為和認(rèn)知表現(xiàn), 通過對(duì)軌跡指標(biāo)的提取, 可以探究人們?cè)趯?dǎo)航過程中的心理模型, 進(jìn)而反映出導(dǎo)航能力在不同側(cè)面及整體上的個(gè)體差異(Bongiorno et al., 2021)。通過這種方式, 也可以進(jìn)一步幫助我們了解空間導(dǎo)航能力在AD早期的關(guān)鍵特征, 以及潛在的環(huán)境因素如何影響個(gè)體空間能力, 不僅有助于制定新的認(rèn)知改善策略, 還為未來AD的早期診斷和預(yù)防提供重要數(shù)據(jù)。
第三, 腦影像遺傳學(xué)(Brain Imaging Genetics, BIG)探索空間導(dǎo)航個(gè)體差異的神經(jīng)遺傳機(jī)制。目前關(guān)于空間導(dǎo)航的遺傳?腦?行為通路的研究非常有限, 腦影像遺傳學(xué)將遺傳、腦影像、認(rèn)知與行為關(guān)聯(lián)起來, 有助于幫助我們深入理解空間導(dǎo)航個(gè)體差異的形成機(jī)制??臻g導(dǎo)航是一個(gè)復(fù)雜的認(rèn)知過程, 認(rèn)知神經(jīng)科學(xué)研究建立了空間導(dǎo)航與海馬、內(nèi)嗅皮層、旁海馬回、壓后皮層、內(nèi)側(cè)前額葉等多個(gè)腦區(qū)的密切關(guān)聯(lián)(Baumann amp; Mattingley, 2021; Peer et al., 2021), 并試圖從多個(gè)腦區(qū)交互的角度, 建立空間導(dǎo)航的腦網(wǎng)絡(luò)基礎(chǔ)(Kong, Wang, et al., 2017; 孔祥禎 等, 2023; Weisberg amp; Ekstrom, 2021)。在未來的研究中, 一方面, 建立不同模態(tài)腦影像指標(biāo)與空間導(dǎo)航能力之間的穩(wěn)定關(guān)聯(lián), 為大規(guī)模空間導(dǎo)航腦影像遺傳學(xué)研究奠定指標(biāo)基礎(chǔ)(Ekstrom et al., 2017; Kong, Wang, et al., 2017); 同時(shí), 通過國際多中心合作(如ENIGMA)并結(jié)合隊(duì)列數(shù)據(jù)庫(如UK Biobank), 將空間導(dǎo)航相關(guān)影像指標(biāo)與全基因組、基因表達(dá)等多模態(tài)遺傳信息進(jìn)行關(guān)聯(lián)分析(Kong et al., 2020), 全面揭示影響空間導(dǎo)航腦網(wǎng)絡(luò)的關(guān)鍵基因和遺傳機(jī)制。在此基礎(chǔ)上, 進(jìn)一步確定基因、環(huán)境及其相互作用對(duì)空間導(dǎo)航腦網(wǎng)絡(luò)和相關(guān)行為的影響, 不僅有助于理解導(dǎo)航功能發(fā)展的生物學(xué)機(jī)制, 而且有助于制定新的認(rèn)知改善策略以及預(yù)防和治療相關(guān)神經(jīng)性疾病。
參考文獻(xiàn)
郝鑫, 袁忠萍, 林淑婷, 沈婷. (2022). 邊界促進(jìn)空間導(dǎo)航的認(rèn)知神經(jīng)機(jī)制. 心理科學(xué)進(jìn)展, 30(7), 1496?1510.
孔祥禎, 張鳳翔, 蒲藝. (2023). 空間導(dǎo)航的腦網(wǎng)絡(luò)基礎(chǔ)和調(diào)控機(jī)制. 心理科學(xué)進(jìn)展, 31(3), 330?337.
王欣, 武文博, 李竹, 王濤, 張鑫, 青釗, 張冰. (2018). 網(wǎng)格細(xì)胞的電生理及腦功能成像研究進(jìn)展. 磁共振成像, 9(5), 381?385.
許琴, 羅宇, 劉嘉. (2010). 方向感的加工機(jī)制及影響因素. 心理科學(xué)進(jìn)展, 18(8), 1208?1221.
張家鑫, 海拉干, 李會(huì)杰. (2019). 空間導(dǎo)航的測量及其在認(rèn)知老化中的應(yīng)用. 心理科學(xué)進(jìn)展, 27(12), 2019?2033.
Acevedo, S. F., Piper, B. J., Craytor, M. J., Benice, T. S., amp; Raber, J. (2010). Apolipoprotein E4 and sex affect neurobehavioral performance in primary school children. Pediatric Research, 67(3), 293?299.
Antonova, E., Parslow, D., Brammer, M., Dawson, G., Jackson, S., amp; Morris, R. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125?143.
Asanomi, Y., Shigemizu, D., Miyashita, A., Mitsumori, R., Mori, T., Hara, N., … Ozaki, K. (2019). A rare functional variant of SHARPIN attenuates the inflammatory response and associates with increased risk of late-onset Alzheimer’s disease. Molecular Medicine, 25(1), 1?9.
Astur, R. S., Ortiz, M. L., amp; Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioural Brain Research, 93(1-2), 185?190.
Auger, S. D., Mullally, S. L., amp; Maguire, E. A. (2012). Retrosplenial cortex codes for permanent landmarks. Plos One, 7(8), e43620.
Bates, S. L., amp; Wolbers, T. (2014). How cognitive aging affects multisensory integration of navigational cues. Neurobiology of Aging, 35(12), 2761?2769.
Baumann, O., amp; Mattingley, J. B. (2021). Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus, 31(7), 640?657.
Barrash, J. (1994). Age‐related decline in route learning ability. Developmental Neuropsychology, 10(3), 189?201.
Belloy, M. E., Napolioni, V., amp; Greicius, M. D. (2019). A quarter century of APOE and Alzheimer’s disease: Progress to date and the path forward. Neuron, 101(5), 820?838.
Berry, J. W. (1971). Ecological and cultural factors in spatial perceptual development. Canadian Journal of Behavioural Science/Revue Canadienne Des Sciences du Comportement, 3(4), 324?336.
Berteau-Pavy, F., Park, B., amp; Raber, J. (2007). Effects of sex and APOE ε4 on object recognition and spatial navigation in the elderly. Neuroscience, 147(1), 6?17.
Bierbrauer, A., Kunz, L., Gomes, C. A., Luhmann, M., Deuker, L., Getzmann, S., ... Fernandez-Alvarez, M. (2020). Unmasking selective path integration deficits in Alzheimer’s disease risk carriers. Science Advances, 6(35), eaba1394.
Blanchette, C. -A., Kurdi, V., Fouquet, C., Schachar, R., Boivin, M., Hastings, P., ... Bohbot, V. D. (2020). Opposing effects of cortisol on learning and memory in children using spatial versus response-dependent navigation strategies. Neurobiology of Learning and Memory, 169, 107172.
Bongiorno, C., Zhou, Y., Kryven, M., Theurel, D., Rizzo, A., Santi, P., Tenenbaum, J., amp; Ratti, C. (2021). Vector-based pedestrian navigation in cities. Nature Computational Science, 1(10), 678?685.
Boomsma, D., Busjahn, A., amp; Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3(11), 872?882.
Boone, A. P., Gong, X., amp; Hegarty, M. (2018). Sex differences in navigation strategy and efficiency. Memory amp; Cognition, 46(6), 909?922.
Bratko, D. (1996). Twin study of verbal and spatial abilities. Personality and Individual Differences, 21(4), 621?624.
Bremner, J. D., Elzinga, B., Schmahl, C., amp; Vermetten, E. (2007). Structural and functional plasticity of the human brain in posttraumatic stress disorder. Progress in Brain Research, 167, 171?186.
Brunec, I. K., Nantais, M. M., Sutton, J. E., Epstein, R. A., amp; Newcombe, N. S. (2023). Exploration patterns shape cognitive map learning. Cognition, 233, 105360.
Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., amp; Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Developmental Science, 13(1), 170?180.
Canli, T. (2015). The Oxford handbook of molecular psychology. New York, Oxford University Press.
Castellano, J. M., Kim, J., Stewart, F. R., Jiang, H., DeMattos, R. B., Patterson, B. W., ... Cruchaga, C. (2011). Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Science Translational Medicine, 3(89), 89ra57?89ra57.
Chabanne, V., Peruch, P., amp; Thinus-Blanc, C. (2004). Sex differences and women's hormonal cycle effects on spatial performance in a virtual environment navigation task. Cahiers De Psychologie Cognitive-Current Psychology of Cognition, 22(3), 351?375.
Chrastil, E. R., Sherrill, K. R., Aselcioglu, I., Hasselmo, M. E., amp; Stern, C. E. (2017). Individual differences in human path integration abilities correlate with gray matter volume in retrosplenial cortex, hippocampus, and medial prefrontal cortex. Eneuro, 4(2). https://doi.org/10.1523/ ENEURO.0346-16.2017
Chrastil, E. R., Sherrill, K. R., Hasselmo, M. E., amp; Stern, C. E. (2016). Which way and how far? Tracking of translation and rotation information for human path integration. Human Brain Mapping, 37(10), 3636?3655.
Cogné, M., Taillade, M., N’Kaoua, B., Tarruella, A., Klinger, E., Larrue, F., … Sorita, E. (2017). The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Annals of physical and rehabilitation medicine, 60(3), 164?176.
Condon, D. M., Wilt, J., Cohen, C. A., Revelle, W., Hegarty, M., amp; Uttal, D. H. (2015). Sense of direction: General factor saturation and associations with the Big-Five traits. Personality and Individual Differences, 86, 38?43.
Coughlan, G., Coutrot, A., Khondoker, M., Minihane, A., Spiers, H., amp; Hornberger, M. (2018). Impact of sex and APOE status on spatial navigation in pre-symptomatic Alzheimer’s disease. Biorxiv, 287722.
Coughlan, G., Coutrot, A., Khondoker, M., Minihane, A. -M., Spiers, H., amp; Hornberger, M. (2019). Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proceedings of the National Academy of Sciences, 116(19), 9285?9292.
Coughlan, G., Laczó, J., Hort, J., Minihane, A. M., amp; Hornberger, M. (2018). Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496?506. https://doi.org/10.1038/s41582-018-0031-x
Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D., … Spiers, H. J. (2022). Entropy of city street networks linked to future spatial navigation ability. Nature, 604(7904), 104?110. https://doi. org/10.1038/s41586-022-04486-7
Coutrot, A., Manley, E., Yesiltepe, D., Dalton, R., Wiener, J., H?lscher, C., Hornberger, M., amp; Spiers, H. (2020). Cities have a negative impact on navigation ability: Evidence from 38 countries. Biorxiv.
Coutrot, A., Schmidt, S., Coutrot, L., Pittman, J., Hong, L., Wiener, J. M., … Spiers, H. J. (2019). Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PloS One, 14(3), e0213272.
Coutrot, A., Silva, R., Manley, E., de Cothi, W., Sami, S., Bohbot, V. D., … Hornberger, M. (2018). Global determinants of navigation ability. Current Biology, 28(17), 2861?2866. e2864.
Cruchaga, C., Kauwe, J. S., Nowotny, P., Bales, K., Pickering, E. H., Mayo, K., … Fagan, A. M. (2012). Cerebrospinal fluid APOE levels: An endophenotype for genetic studies for Alzheimer's disease. Human Molecular Genetics, 21(20), 4558?4571.
Dahmani, L., amp; Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10(1), 1?14.
DeFries, J. C., Johnson, R. C., Kuse, A., McClearn, G., Polovina, J., Vandenberg, S., amp; Wilson, J. (1979). Familial resemblance for specific cognitive abilities. Behavior Genetics, 9(1), 23?43.
den Braber, A., Bohlken, M. M., Brouwer, R. M., van't Ent, D., Kanai, R., Kahn, R. S., … Boomsma, D. I. (2013). Heritability of subcortical brain measures: A perspective for future genome-wide association studies. Neuroimage, 83, 98?102.
Dobric, A., de Luca, S. N., Seow, H. J., Wang, H., Brassington, K., Chan, S. M., ... Selemidis, S. (2022). Cigarette smoke exposure induces neurocognitive impairments and neuropathological changes in the hippocampus. Frontiers in Molecular Neuroscience, 15, 893083.
Doeller, C. F., King, J. A., amp; Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences, 105(15), 5915?5920.
Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., amp; Sutherland, R. J. (2005). Virtual navigation in humans: The impact of age, sex, and hormones on place learning. Hormones and Behavior, 47(3), 326?335.
Ekstrom, A. D., Huffman, D. J., amp; Starrett, M. (2017). Interacting networks of brain regions underlie human spatial navigation: A review and novel synthesis of the literature. Journal of Neurophysiology, 118(6), 3328? 3344.
Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., amp; Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184?188.
Epstein, R. A., Patai, E. Z., Julian, J. B., amp; Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504?1513.
Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., … Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proceedings of the National Academy of Sciences, 106(17), 7209?7214.
Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., amp; Ward, P. B. (2018). Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage, 166, 230?238.
Flowers, S. A., amp; Rebeck, G. W. (2020). APOE in the normal brain. Neurobiology of Disease, 136, 104724.
Fu, H., Rodriguez, G. A., Herman, M., Emrani, S., Nahmani, E., Barrett, G., ... Duff, K. E. (2017). Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron, 93(3), 533?541.e535.
Iaria, G., Petrides, M., Dagher, A., Pike, B., amp; Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. Journal of Neuroscience, 23(13), 5945?5952.
Gagnon, K. T., Thomas, B. J., Munion, A., Creem-Regehr, S. H., Cashdan, E. A., amp; Stefanucci, J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108?117.
Gardony, A. L., Brunyé, T. T., Mahoney, C. R., amp; Taylor, H. A. (2013). How navigational aids impair spatial memory: Evidence for divided attention. Spatial Cognition amp; Computation, 13(4), 319?350.
Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., ... Berr, C. (2011). APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Molecular Psychiatry, 16(9), 903?907.
Gerlai, R., amp; Roder, J. (1996). Spatial and nonspatial learning in mice: Effects of S100β overexpression and age. Neurobiology of Learning and Memory, 66(2), 143?154.
Ghosh, A., Puthusseryppady, V., Chan, D., Mascolo, C., amp; Hornberger, M. (2022). Machine learning detects altered spatial navigation features in outdoor behaviour of Alzheimer’s disease patients. Scientific Reports, 12(1), 1?13.
Goeke, C., Kornpetpanee, S., K?ster, M., Fernández- Revelles, A. B., Gramann, K., amp; K?nig, P. (2015). Cultural background shapes spatial reference frame proclivity. Scientific Reports, 5(1), 1?13.
Gomez, R., Schneider Jr, R., Quinteros, D., Santos, C. F., Bandiera, S., Thiesen, F. V., … Wieczorek, M. G. (2015). Effect of alcohol and tobacco smoke on long-term memory and cell proliferation in the hippocampus of rats. Nicotine amp; Tobacco Research, 17(12), 1442?1448.
Gramann, K., Hoepner, P., amp; Karrer-Gauss, K. (2017). Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. Frontiers in Psychology, 8, 193.
Greenwood, P., Lambert, C., Sunderland, T., amp; Parasuraman, R. (2005). Effects of apolipoprotein E genotype on spatial attention, working memory, and their interaction in healthy, middle-aged adults: Results from the National Institute of Mental Health's BIOCARD study. Neuropsychology, 19(2), 199?211.
Griesbauer, E. M., Manley, E., Wiener, J. M., amp; Spiers, H. J. (2022). London taxi drivers: A review of neurocognitive studies and an exploration of how they build their cognitive map of London. Hippocampus, 32(1), 3?20.
Gr?n, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., amp; Riepe, M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404?408.
Grzeschik, R., Conroy-Dalton, R., Innes, A., Shanker, S., amp; Wiener, J. M. (2019). The contribution of visual attention and declining verbal memory abilities to age-related route learning deficits. Cognition, 187, 50?61.
Hafting, T., Fyhn, M., Molden, S., Moser, M. -B., amp; Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801?806.
Han, M., Schottler, F., Lei, D., Dong, E. Y., Bryan, A., amp; Bao, J. (2006). Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus. Molecular Neurodegeneration, 1(1), 1?9.
Hao, X., Huang, Y., Song, Y., Kong, X., amp; Liu, J. (2017). Experience with the cardinal coordinate system contributes to the precision of cognitive maps. Frontiers in Psychology, 8, 1166.
Hardcastle, K., Ganguli, S., amp; Giocomo, L. M. (2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron, 86(3), 827?839.
Hartley, T., Maguire, E. A., Spiers, H. J., amp; Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877?888.
Haun, D. B., Rapold, C. J., Janzen, G., amp; Levinson, S. C. (2011). Plasticity of human spatial cognition: Spatial language and cognition covary across cultures. Cognition, 119(1), 70?80.
He, Q., Han, A. T., Churaman, T. A., amp; Brown, T. I. (2021). The role of working memory capacity in spatial learning depends on spatial information integration difficulty in the environment. Journal of Experimental Psychology: General, 150(4), 666?685.
He, Q., McNamara, T. P., amp; Brown, T. I. (2019). Manipulating the visibility of barriers to improve spatial navigation efficiency and cognitive mapping. Scientific Reports, 9(1), 1?12.
Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., amp; Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425?447.
Hegarty, M., amp; Waller, D. A. (2005). Individual differences in spatial abilities. Cambridge, Cambridge University Press.
Hejtmánek, L., Oravcová, I., Motyl, J., Horá?ek, J., amp; Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of Human-Computer Studies, 116, 15?24.
Hermer, L. (1997). Internally coherent spatial memories in a mammal. Neuroreport, 8(7), 1743?1747.
Hermer, L., amp; Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370(6484), 57?59.
Herrero, A. I., Sandi, C., amp; Venero, C. (2006). Individual differences in anxiety trait are related to spatial learning abilities and hippocampal expression of mineralocorticoid receptors. Neurobiology of Learning and Memory, 86(2), 150?159.
Hibar, D. P., Adams, H. H., Jahanshad, N., Chauhan, G., Stein, J. L., Hofer, E., … Ikram, M. K. (2017). Novel genetic loci associated with hippocampal volume. Nature Communications, 8(1), 1?12.
Hsiao, C. -J., Lin, C. -L., Lin, T. -Y., Wang, S. -E., amp; Wu, C. -H. (2016). Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. Neuroreport, 27(6), 462?468.
Hu, R., Zheng, L., Zhang, T., Gao, G., Cui, Y., Cheng, Z., … Hong, F. (2011). Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. Journal of Hazardous Materials, 191(1-3), 32?40.
Iglói, K., Doeller, C. F., Berthoz, A., Rondi-Reig, L., amp; Burgess, N. (2010). Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proceedings of the National Academy of Sciences, 107(32), 14466?14471.
Iglói, K., Doeller, C. F., Paradis, A. -L., Benchenane, K., Berthoz, A., Burgess, N., amp; Rondi-Reig, L. (2015). Interaction between hippocampus and cerebellum crus I in sequence-based but not place-based navigation. Cerebral Cortex, 25(11), 4146?4154.
Jack, C. R., Petersen, R. C., Xu, Y. C., Waring, S. C., O'Brien, P. C., Tangalos, E. G., … Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology, 49(3), 786?794.
Jacka, F. N., Cherbuin, N., Anstey, K. J., Sachdev, P., amp; Butterworth, P. (2015). Western diet is associated with a smaller hippocampus: A longitudinal investigation. BMC Medicine, 13(1), 1?8.
Jones, C. M., Braithwaite, V. A., amp; Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117(3), 403?411.
Kepa, A., Martinez Medina, L., Erk, S., Srivastava, D. P., Fernandes, A., Toro, R., … Degenhardt, F. (2017). Associations of the intellectual disability gene MYT1L with helix-loop-helix gene expression, hippocampus volume and hippocampus activation during memory retrieval. Neuropsychopharmacology, 42(13), 2516?2526.
Kleindienst, A., McGinn, M. J., Harvey, H. B., Colello, R. J., Hamm, R. J., amp; Bullock, M. R. (2005). Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury. Journal of Neurotrauma, 22(6), 645?655.
Kong, X. -Z., Huang, Y., Hao, X., Hu, S., amp; Liu, J. (2017). Sex-linked association between cortical scene selectivity and navigational ability. Neuroimage, 158, 397?405.
Kong, X. -Z., Pu, Y., Wang, X., Xu, S., Hao, X., Zhen, Z., amp; Liu, J. (2017). Intrinsic hippocampal-caudate interaction correlates with human navigation. Biorxiv, 116129.
Kong, X. -Z., Song, Y., Zhen, Z., amp; Liu, J. (2017). Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese. Cerebral Cortex, 27(2), 1326? 1336.
Kong, X. -Z., Tzourio-Mazoyer, N., Joliot, M., Fedorenko, E., Liu, J., Fisher, S. E., amp; Francks, C. (2020). Gene expression correlates of the cortical network underlying sentence processing. Neurobiology of Language, 1(1), 77?103.
Kong, X. Z., Wang, X., Pu, Y., Huang, L. J., Hao, X., Zhen, Z. L., amp; Liu, J. (2017). Human navigation network: The intrinsic functional organization and behavioral relevance. Brain Structure amp; Function, 222(2), 749?764. https://doi.org/10.1007/s00429-016-1243-8
Kozhevnikov, M., Motes, M. A., Rasch, B., amp; Blajenkova, O. (2006). Perspective-taking vs. mental rotation transformations and how they predict spatial navigation performance. Applied Cognitive Psychology, 20(3), 397? 417.
Kraemer, D. J., Schinazi, V. R., Cawkwell, P. B., Tekriwal, A., Epstein, R. A., amp; Thompson-Schill, S. L. (2017). Verbalizing, visualizing, and navigating: The effect of strategies on encoding a large-scale virtual environment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 611?621.
Kuhn, H. G., Biebl, M., Wilhelm, D., Li, M., Friedlander, R. M., amp; Winkler, J. (2005). Increased generation of granule cells in adult Bcl-2-overexpressing mice: A role for cell death during continued hippocampal neurogenesis. European Journal of Neuroscience, 22(8), 1907?1915.
Kunz, L., Schr?der, T. N., Lee, H., Montag, C., Lachmann, B., Sariyska, R., … Messing-Floeter, P. C. (2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science, 350(6259), 430?433.
Laczó, J., Andel, R., Vl?ek, K., Maco?ka, V., Vyhnálek, M., Tolar, M., Bojar, M., amp; Hort, J. (2011). Spatial navigation and APOE in amnestic mild cognitive impairment. Neurodegenerative diseases, 8(4), 169?177.
Laczó, J., Andel, R., Vyhnalek, M., Vlcek, K., Nedelska, Z., Matoska, V., … Hort, J. (2014). APOE and spatial navigation in amnestic MCI: Results from a computer- based test. Neuropsychology, 28(5), 676?684.
Lambert, J., Ferreira, S., Gussekloo, J., Christiansen, L., Brysbaert, G., Slagboom, E., … DeKosky, S. (2007). Evidence for the association of the S100β gene with low cognitive performance and dementia in the elderly. Molecular Psychiatry, 12(9), 870?880.
Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11), 765?779.
Lawton, C. A., amp; Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47(9), 389?401.
Lawton, C. A., amp; Morrin, K. A. (1999). Gender differences in pointing accuracy in computer-simulated 3D mazes. Sex Roles, 40(1), 73?92.
Lithfous, S., Dufour, A., amp; Després, O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer's disease: Insights from imaging and behavioral studies. Ageing Research Reviews, 12(1), 201?213.
Liu, F., Xu, J., Guo, L., Qin, W., Liang, M., Schumann, G., amp; Yu, C. (2023). Environmental neuroscience linking exposome to brain structure and function underlying cognition and behavior. Molecular Psychiatry, 28(1), 17?27.
Long, J. -Y., Chen, J. -M., Liao, Y. -J., Zhou, Y. -J., Liang, B. -Y., amp; Zhou, Y. (2020). Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behavioral and Brain Functions, 16(1), 1?13.
Lovett, A., amp; Forbus, K. (2011). Cultural commonalities and differences in spatial problem-solving: A computational analysis. Cognition, 121(2), 281?287.
Lyons, I. M., Ramirez, G., Maloney, E. A., Rendina, D. N., Levine, S. C., amp; Beilock, S. L. (2018). Spatial Anxiety: A novel questionnaire with subscales for measuring three aspects of spatial anxiety. Journal of Numerical Cognition, 4(3), 526?553.
Maguire, E. A., Woollett, K., amp; Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091? 1101.
Maitre, L., Bustamante, M., Hernández-Ferrer, C., Thiel, D., Lau, C. -H. E., Siskos, A. P., … Robinson, O. (2022). Multi-omics signatures of the human early life exposome. Nature Communications, 13(1), 1?18.
Malanchini, M., Rimfeld, K., Shakeshaft, N. G., McMillan, A., Schofield, K. L., Rodic, M., … Tucker-Drob, E. M. (2020). Evidence for a unitary structure of spatial cognition beyond general intelligence. NPJ Science of Learning, 5(1), 1?13.
Marchette, S. A., Bakker, A., amp; Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. Journal of Neuroscience, 31(43), 15264?15268.
Marshak, D. R., Pesce, S. A., Stanley, L. C., amp; Griffin, W. S. T. (1992). Increased S100β neurotrophic activity in Alzheimer's disease temporal lobe. Neurobiology of Aging, 13(1), 1?7.
Marshall, L., amp; Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11(10), 442?450.
McKinlay, R. (2016). Technology: Use or lose our navigation skills. Nature, 531(7596), 573?575.
Moffat, S. D. (2009). Aging and spatial navigation: What do we know and where do we go? Neuropsychology Review, 19(4), 478?489.
Moffat, S. D., amp; Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116(5), 851?859.
Mondadori, C. R., de Quervain, D. J. -F., Buchmann, A., Mustovic, H., Wollmer, M. A., Schmidt, C. F., ... Papassotiropoulos, A. (2007). Better memory and neural efficiency in young apolipoprotein E ε4 carriers. Cerebral Cortex, 17(8), 1934?1947.
Mori, T., Koyama, N., Arendash, G. W., Horikoshi-Sakuraba, Y., Tan, J., amp; Town, T. (2010). Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer's disease. Glia, 58(3), 300?314.
Muffato, V., Meneghetti, C., amp; de Beni, R. (2016). Not all is lost in older adults' route learning? The role of visuo-spatial abilities and type of task. Journal of Environmental Psychology, 47, 230?241.
Münzer, S., L?rch, L., amp; Frankenstein, J. (2020). Wayfinding and acquisition of spatial knowledge with navigation assistance. Journal of Experimental Psychology: Applied, 26(1), 73?88.
Nakamura, M., Raghupathi, R., Merry, D. E., Scherbel, U., Saatman, K. E., amp; Mcintosh, T. K. (1999). Overexpression of Bcl-2 is neuroprotective after experimental brain injury in transgenic mice. Journal of Comparative Neurology, 412(4), 681?692.
Nazareth, A., Weisberg, S. M., Margulis, K., amp; Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 170, 86?106.
Neu, S. C., Pa, J., Kukull, W., Beekly, D., Kuzma, A., Gangadharan, P., … Toga, A. W. (2017). Apolipoprotein E genotype and sex risk factors for Alzheimer disease: A meta-analysis. JAMA Neurology, 74(10), 1178?1189.
Newcombe, N. S. (2018). Individual variation in human navigation. Current Biology, 28(17), R1004?R1008.
Newcombe, N. S. (2019). Navigation and the developing brain. Journal of Experimental Biology, 222(Suppl_1), jeb186460.
Nishiyama, H., Kn?pfel, T., Endo, S., amp; Itohara, S. (2002). Glial protein S100B modulates long-term neuronal synaptic plasticity. Proceedings of the National Academy of Sciences, 99(6), 4037?4042.
O'Keefe, J., amp; Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171?175.
Pazzaglia, F., amp; de Beni, R. (2006). Are people with high and low mental rotation abilities differently susceptible to the alignment effect? Perception, 35(3), 369?383.
Peer, M., Brunec, I. K., Newcombe, N. S., amp; Epstein, R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1), 37?54.
Peskind, E. R., Griffin, W. S. T., Akama, K. T., Raskind, M. A., amp; van Eldik, L. J. (2001). Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer's disease. Neurochemistry International, 39(5-6), 409?413.
Polk, T. A., Park, J., Smith, M. R., amp; Park, D. C. (2007). Nature versus nurture in ventral visual cortex: A functional magnetic resonance imaging study of twins. Journal of Neuroscience, 27(51), 13921?13925.
Pruden, S. M., Levine, S. C., amp; Huttenlocher, J. (2011). Children’s spatial thinking: Does talk about the spatial world matter? Developmental Science, 14(6), 1417?1430.
Ramano?l, S., York, E., Le Petit, M., Lagrené, K., Habas, C., amp; Arleo, A. (2019). Age-related differences in functional and structural connectivity in the spatial navigation brain network. Frontiers in Neural Circuits, 13, 69.
Ramkhalawansingh, R., Keshavarz, B., Haycock, B., Shahab, S., amp; Campos, J. L. (2017). Examining the effect of age on visual?vestibular self-motion perception using a driving paradigm. Perception, 46(5), 566?585.
Rechavi, Y., Rubin, A., Yizhar, O., amp; Ziv, Y. (2022). Exercise increases information content and affects long- term stability of hippocampal place codes. Cell Reports, 41(8), 111695.
Rentería, M. E., Hansell, N. K., Strike, L. T., McMahon, K. L., de Zubicaray, G. I., Hickie, I. B., … Wright, M. J. (2014). Genetic architecture of subcortical brain regions: Common and region‐specific genetic contributions. Genes, Brain and Behavior, 13(8), 821?830.
Reynolds, N. C., Zhong, J. Y., Clendinen, C. A., Moffat, S. D., amp; Magnusson, K. R. (2019). Age-related differences in brain activations during spatial memory formation in a well-learned virtual Morris water maze (vMWM) task. Neuroimage, 202, 116069.
Riddell, D. R., Zhou, H., Atchison, K., Warwick, H. K., Atkinson, P. J., Jefferson, J., … Hu, Y. (2008). Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. Journal of Neuroscience, 28(45), 11445?11453.
Rimfeld, K., Shakeshaft, N. G., Malanchini, M., Rodic, M., Selzam, S., Schofield, K., … Plomin, R. (2017). Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. Proceedings of the National Academy of Sciences, 114(10), 2777?2782.
Rizk-Jackson, A. M., Acevedo, S. F., Inman, D., Howieson, D., Benice, T. S., amp; Raber, J. (2006). Effects of sex on object recognition and spatial navigation in humans. Behavioural Brain Research, 173(2), 181?190.
Rodgers, M. K., Sindone III, J. A., amp; Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33(1), 202.e215?202.e222.
Rondi-Reig, L., Lemaigre-Dubreuil, Y., Montecot, C., Müller, D., Martinou, J., Caston, J., amp; Mariani, J. (2001). Transgenic mice with neuronal overexpression of bcl-2 gene present navigation disabilites in a water task. Neuroscience, 104(1), 207?215.
Ruginski, I. T., Creem-Regehr, S. H., Stefanucci, J. K., amp; Cashdan, E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64, 12? 20.
Rusted, J., Evans, S., King, S., Dowell, N., Tabet, N., amp; Tofts, P. (2013). APOE e4 polymorphism in young adults is associated with improved attention and indexed by distinct neural signatures. Neuroimage, 65, 364?373.
Sandamas, G., amp; Foreman, N. (2015). Active versus passive acquisition of spatial knowledge while controlling a vehicle in a virtual urban space in drivers and non-drivers. Sage Open, 5(3), 2158244015595443.
Sandstrom, N. J., Kaufman, J., amp; Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6(4), 351?360.
Schuck, N. W., Doeller, C. F., Polk, T. A., Lindenberger, U., amp; Li, S. -C. (2015). Human aging alters the neural computation and representation of space. Neuroimage, 117, 141?150.
Sheline, Y., Mittler, B., amp; Mintun, M. (2002). The hippocampus and depression. European Psychiatry, 17(S3), 300?305.
Simpson, J., Ince, P., Lace, G., Forster, G., Shaw, P., Matthews, F., … Wharton, S. (2010). Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging, 31(4), 578?590.
Smith, A. D. (2015). Spatial navigation in autism spectrum disorders: A critical review. Frontiers in Psychology, 6, 31. https://doi.org/10.3389/fpsyg.2015.00031
Soheili-Nezhad, S., Jahanshad, N., Guelfi, S., Khosrowabadi, R., Saykin, A. J., Thompson, P. M., … Zarei, M. (2020). Imaging genomics discovery of a new risk variant for Alzheimer's disease in the postsynaptic SHARPIN gene. Human Brain Mapping, 41(13), 3737?3748.
Sokolowski, H. M., Hawes, Z., amp; Lyons, I. M. (2019). What explains sex differences in math anxiety? A closer look at the role of spatial processing. Cognition, 182, 193?212.
Stangl, M., Kanitscheider, I., Riemer, M., Fiete, I., amp; Wolbers, T. (2020). Sources of path integration error in young and aging humans. Nature Communications, 11(1), 2626.
Steiner, J., Bogerts, B., Schroeter, M. L., amp; Bernstein, H. -G. (2011). S100B protein in neurodegenerative disorders. Clinical Chemistry and Laboratory Medicine, 49(3), 409?424.
Stites, M. C., Matzen, L. E., amp; Gastelum, Z. N. (2020). Where are we going and where have we been? Examining the effects of maps on spatial learning in an indoor guided navigation task. Cognitive Research: Principles and Implications, 5(1), 13.
Szechter, L. E., amp; Liben, L. S. (2004). Parental guidance in preschoolers' understanding of spatial-graphic representations. Child Development, 75(3), 869?885.
Tarampi, M. R., Heydari, N., amp; Hegarty, M. (2016). A tale of two types of perspective taking: Sex differences in spatial ability. Psychological Science, 27(11), 1507?1516.
Tarnanas, I., Laskaris, N., Tsolaki, M., Muri, R., Nef, T., amp; Mosimann, U. P. (2015). On the comparison of a novel serious game and electroencephalography biomarkers for early dementia screening. In GeNeDis 2014: Geriatrics (pp. 63?77). Springer International Publishing.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189?208.
Tosto, M. G., Hanscombe, K. B., Haworth, C. M., Davis, O. S., Petrill, S. A., Dale, P. S., ... Kovas, Y. (2014). Why do spatial abilities predict mathematical performance? Developmental Science, 17(3), 462?470.
Ulrich, S., Grill, E., amp; Flanagin, V. L. (2019). Who gets lost and why: A representative cross-sectional survey on sociodemographic and vestibular determinants of wayfinding strategies. PloS One, 14(1), e0204781.
Uttal, D. H. (2000). Seeing the big picture: Map use and the development of spatial cognition. Developmental Science, 3(3), 247?264.
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., amp; Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352?402.
Vander Heyden, K. M., Huizinga, M., amp; Jolles, J. (2017). Effects of a classroom intervention with spatial play materials on children’s object and viewer transformation abilities. Developmental Psychology, 53(2), 290?305.
Vermeulen, R., Schymanski, E. L., Barabási, A. -L., amp; Miller, G. W. (2020). The exposome and health: Where chemistry meets biology. Science, 367(6476), 392?396.
Vieites, V., Pruden, S. M., Shusterman, A., amp; Reeb- Sutherland, B. C. (2020). Using hippocampal‐dependent eyeblink conditioning to predict individual differences in spatial reorientation strategies in 3‐to 6‐year‐olds. Developmental Science, 23(1), e12867.
Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Südhof, T. C., amp; Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035?1041.
Voyer, D., Postma, A., Brake, B., amp; Imperato-McGinley, J. (2007). Gender differences in object location memory: A meta-analysis. Psychonomic Bulletin amp; Review, 14(1), 23?38.
Vukovic, N., amp; Shtyrov, Y. (2017). Cortical networks for reference-frame processing are shared by language and spatial navigation systems. Neuroimage, 161, 120?133.
Vygotsky, L. S. (2012). Thought and language. Cambridge, MIT press.
Wai, J., Lubinski, D., amp; Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
Wang, C., Najm, R., Xu, Q., Jeong, D. -E., Walker, D., Balestra, M. E., … Miller, Z. A. (2018). Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nature Medicine, 24(5), 647?657.
Wang, J., Zhou, Y., Yang, Y., Gao, X., Liu, Z., Hong, G., … Li, K. (2021). S100B gene polymorphisms are associated with the S100B level and Alzheimer’s disease risk by altering the miRNA binding capacity. Aging (Albany NY), 13(10), 13954?13967.
Wang, S., Irving, G., Jiang, L., Wang, H., Li, M., Wang, X., … Zeng, T. (2017). Oxidative stress mediated hippocampal neuron apoptosis participated in carbon disulfide-induced rats cognitive dysfunction. Neurochemical Research, 42(2), 583?594.
Wang, T., Liu, C. -Z., Yu, J. -C., Jiang, W., amp; Han, J. -X. (2009). Acupuncture protected cerebral multi-infarction rats from memory impairment by regulating the expression of apoptosis related genes Bcl-2 and Bax in hippocampus. Physiology amp; Behavior, 96(1), 155?161.
Wang, Y., amp; Han, T. -Z. (2009). Prenatal exposure to heroin in mice elicits memory deficits that can be attributed to neuronal apoptosis. Neuroscience, 160(2), 330?338.
Wang, Y., Yin, H., Lou, J., Han, B., Qin, X., Meng, F., Geng, S., amp; Liu, Y. (2011). Effects of curcumin on hippocampal Bax and Bcl-2 expression and cognitive function of a rat model of Alzheimer's disease*☆. Neural Regeneration Research, 6(24), 1845?1849.
Weisberg, S. M., amp; Ekstrom, A. D. (2021). Hippocampal volume and navigational ability: The map (ping) is not to scale. Neuroscience amp; Biobehavioral Reviews, 126, 102?112.
Weisberg, S. M., amp; Newcombe, N. S. (2015). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 768?785.
Weisberg, S. M., amp; Newcombe, N. S. (2018). Cognitive maps: Some people make them, some people struggle. Current Directions in Psychological Science, 27(4), 220?226.
Weissberger, G. H., Nation, D. A., Nguyen, C. P., Bondi, M. W., amp; Han, S. D. (2018). Meta-analysis of cognitive ability differences by apolipoprotein e genotype in young humans. Neuroscience amp; Biobehavioral Reviews, 94, 49?58.
Wolbers, T., amp; Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138?146.
Woollett, K., amp; Maguire, E. A. (2009). Navigational expertise may compromise anterograde associative memory. Neuropsychologia, 47(4), 1088?1095.
Woollett, K., amp; Maguire, E. A. (2011). Acquiring “the Knowledge” of London's layout drives structural brain changes. Current Biology, 21(24), 2109?2114.
Worchel, P. (1951). Space perception and orientation in the blind. Psychological Monographs: General and Applied, 65(15), 1?28.
Wray, N. R., Lin, T., Austin, J., McGrath, J. J., Hickie, I. B., Murray, G. K., amp; Visscher, P. M. (2021). From basic science to clinical application of polygenic risk scores: A primer. JAMA Psychiatry, 78(1), 101?109.
Wu, J., Qu, J. -Q., Zhou, Y. -J., Zhou, Y. -J., Li, Y. -Y., Huang, N. -Q., Deng, C. -M., amp; Luo, Y. (2020). Icariin improves cognitive deficits by reducing the deposition of β-amyloid peptide and inhibition of neurons apoptosis in SAMP8 mice. Neuroreport, 31(9), 663?671.
Wunderlich, A., amp; Gramann, K. (2019). Overcoming spatial deskilling using landmark-based navigation assistance systems. Cold Spring Harbor Laboratory. https://doi.org/ 10.1101/789529
Wunderlich, A., Grieger, S., amp; Gramann, K. (2020). Landmark- based turn-by-turn instructions enhance incidental spatial knowledge acquisition. Biorxiv. https://doi.org/10.1101/ 2020.11.30.403428
Xie, Y., Bigelow, R. T., Frankenthaler, S. F., Studenski, S. A., Moffat, S. D., amp; Agrawal, Y. (2017). Vestibular loss in older adults is associated with impaired spatial navigation: Data from the triangle completion task. Frontiers in Neurology, 8, 173.
Xu, J., Xia, X., Li, Q., Dou, Y., Suo, X., Sun, Z., … Yu, C. (2022). A causal association of ANKRD37 with human hippocampal volume. Molecular Psychiatry, 27(11), 4432?4445.
Xu, S., Song, Y., amp; Liu, J. (2023). The development of spatial cognition and its malleability assessed in mass population via a mobile game. Psychological Science, 34(3), 345?357.
Yasen, A. L., Raber, J., Miller, J. K., amp; Piper, B. J. (2015). Sex, but not apolipoprotein E polymorphism, differences in spatial performance in young adults. Archives of Sexual Behavior, 44(8), 2219?2226.
Yuliani, S., Akbar, M. F., Rochmafihro, N., Uthary, Y., amp; Deslaila, L. (2021). Effects of centella asiatica L. on spatial memory and Bcl-2 gene expression in the hippocampus of rats injected with trimethyltin. Indonesian Journal of Pharmacy, 32(2), 141?149.
Zhang, R., Xu, X., Yu, H., Xu, X., Wang, M., amp; Le, W. (2022). Factors influencing Alzheimer’s disease risk: Whether and how they are related to the APOE genotype. Neuroscience Bulletin, 38(7), 809?819.
Abstract: Spatial navigation occurs every day in our lives. Decline in spatial navigation is an important early behavioral manifestation of various brain disorders, including Alzheimer's disease (AD). Existing researches have revealed significant individual differences in spatial navigation. However, the biological and environmental origins of such differences are not well defined. From a multi-scale perspective, we reviewed the latest studies on this important topic, and proposed a gene-brain-behavior model for mapping the links between genetic and environmental factors and individual differences in spatial navigation. Integrative analysis of multi-omics and clinical data would be promising for future studies concerning the complex pathways of spatial navigation. Results will help us understand the development patterns of spatial navigation and further explore the potential clinical application relevant brain diseases.
Keywords: spatial navigation; individual differences; genetic basis; cognitive map; environmental factors