• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of ultrashort-pulse reflectometry (USPR) on EAST

    2023-12-18 03:54:52XiaofengYU俞瀟烽RanCHEN陳冉XiaoliangLI李小良YilunZHU朱逸倫CalvinDOMIERXingleiRUAN阮行磊TaihaoHUANG黃泰豪JinGUO郭晉ZiyuLIN林子鈺GuoshengXU徐國(guó)盛ShifengMAO毛世峰NevilleLUHMANNJRandMinyouYE葉民友
    Plasma Science and Technology 2023年12期
    關(guān)鍵詞:徐國(guó)

    Xiaofeng YU (俞瀟烽) ,Ran CHEN (陳冉) ,Xiaoliang LI (李小良),* ,Yilun ZHU (朱逸倫) ,Calvin W DOMIER ,Xinglei RUAN (阮行磊) ,Taihao HUANG (黃泰豪),Jin GUO (郭晉),Ziyu LIN (林子鈺),Guosheng XU (徐國(guó)盛),Shifeng MAO (毛世峰),Neville C LUHMANN JR and Minyou YE (葉民友),*

    1 School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    3 University of California at Davis,1 Shields Avenue,Davis CA 95616,United States of America

    Abstract The microwave reflectometer is a popular non-intrusive plasma density diagnostic instrument on tokamaks that provides centimeter and millisecond level resolution.The ultrashort-pulse reflectometer (USPR) achieves plasma density measurement by emitting a chirped wave containing a broadband signal and measuring the time of flight from different frequency components.A USPR system is currently being built on EAST (Experimental Advanced Superconducting Tokamak) to meet the needs of diagnostic of the pedestal density evolution,such as high-frequency small edge-localized modes.In order to predict the density reconstruction of the EAST USPR system,this work presents a numerical simulation study of the beam propagation of the chirped wave of extraordinary waves (X-mode) in the plasma based on Python.The electron density profile has been successfully reconstructed by the reflection signal interpretation.The small gap between the right-hand cut-off layer and the electron cyclotron resonance layer,due to the low plasma density on the plasma edge,causes unexpected leakage from the transmitting microwave beam to the pedestal and the core region.This kind of‘tunneling’ effect will cause the reflected signal to have energy loss in the low-frequency band.The study also discusses the influence of the poloidal magnetic field on the reflected signal.The spatial variation of the poloidal magnetic field will lead to the conversion between extraordinary(X) waves and ordinary (O) waves,which leads to energy loss in the reflected signals.The simulation results show that the‘tunneling’effect and the O-X mode conversion effect have little effect on the EAST USPR system.Therefore,the currently designed transmit power meets the working requirements.

    Keywords: reflectometer,pedestal density profile,beam mode conversion

    1.Introduction

    The reflectometer is a well-established diagnostic for measuring electron density profiles and fluctuations in magnetic confinement plasmas [1].In microwave reflectometry,broadband electromagnetic waves propagate into the plasma.The wave propagation will be reflected on the cut-off layer,related to frequency,and received by a microwave detector.The plasma properties along the propagation path can be inferred from the phase delay or flight time of the electromagnetic waves [1-5].

    Compared with swept-frequency reflectometers,the ultrashort-pulse reflectometer (USPR) provides another solution for high temporal resolution density measurement with certain advantages [6].An ultrashort pulse is generated and launched to plasma by the USPR transmitter.The pulse with narrow time width causes a broadband frequency probing beam.The single ultrashort pulse provides the full frequency coverage for a wider range of density measurement [7].Since the broadband microwave frequencies are generated quasisimultaneously,this provides incomparable high temporal resolution for density profile evolution measurement,such as edge-localized modes [8].Therefore,ultrashort-pulse reflectometry can improve the spatiotemporal resolution of plasma diagnosis.References [3] and [4] give a comprehensive introduction to reflectometers.Plasma reflectometers enable diagnosis by detecting the phase delay and time of flight(TOF)of reflected electromagnetic waves.Electromagnetic waves in magnetized plasmas have two fundamental modes,ordinary(O) wave and extraordinary (X) wave.The electric field polarization direction of the ordinary mode is parallel to the external magnetic field,while the electric field polarization direction of the extraordinary mode is perpendicular to the external magnetic field.There are two cut-off frequencies for the extraordinary mode,known as left-hand cut-off frequenciesωL=-ωce/2+,and right-hand cut-off frequenciesωR=ωce/2+,whereωceis the electron Larmor frequency andωpeis the plasma frequency[9,10].Based on the observed relation between frequencies and the corresponding time delays (or phase changes),the plasma density profile or magnetic field profile can be inferred[11,12].

    In this paper,we discuss the numerical simulation of the USPR on EAST.We hope to use the simulation program to predict the results of density reconstruction before experiments,and estimate the possible impact of some physical effects on the results.We introduce the EAST ultrashort-pulse reflectometer system,numerical calculation model and inversion algorithm based on the research in section 2.Section 3 presents the 1D and 2D simulation results based on our test density profiles and their comparison.Section 4 introduces the simulation results of ultrashort-pulse microwave based on the EAST real density profile and magnetic field profile,and interprets and analyzes the influences of tunneling effect and O-X-mode conversion effect on the reflected signal.Section 5 summarizes the main results and briefly discusses our future work plan.

    2.USPR system and numerical model

    2.1.EAST’s USPR system

    The EAST USPR system,as shown in figure 1,is composed of a baseband transmitter,millimeter-wave subsystem,receiver and multiple-channel TOF electronics modules.The baseband transmitter can generate 3-4 ns duration chirp with frequencies spanning 10-17 GHz [13,14].In the millimeter-wave (mmwave) subsystem,the transmitted chirps are generated by frequency multiplying the baseband chirp,and launched into plasma.The reflected signal is then received and downconverted back to microwave (5-18 GHz) frequencies.The receiver is composed of a 16-channel high-resolution receiver and two 8-channel standard resolution receivers.The TOF of reflected signals is simultaneously measured at multiple frequencies by a filter and a TOF module.

    Figure1.System of the EAST USPR containing four modules:baseband transmitter,mm-wave subsystem,receiver and TOF module.

    2.2.Numerical model

    The propagation of ultrashort pulsed microwaves in plasma can be described by the electric field wave equation (derived from Maxwell’s equations [15]) under the cold plasma approximation:

    In some previous studies,in the process of component expansion of the above equations,the third term (divergence term)of the electric field wave equation is directly component expanded.The result of this treatment is that the system of equations will contain the spatial second-order mixed partial derivatives of the electric fieldand[18,19].The test results show that this easily brings about numerical instability,resulting in the divergence of the electric field during the propagation process,as shown in figure 2.To solve the problem,we use the Gauss theorem of the electric field in Maxwell’s equations,express the third term (divergence term) as the density perturbation of the plasma,and introduce the plasma continuity equation in the form of perturbation to describe the time evolution of density perturbation,which is as follows:

    Figure2.Numerical instability caused by a spatial second mixed partial derivative(arbitrary unit).These three figures show the cross-section of a 2D wave packet at different times.(a)Normal Gaussian wave packet when t=0,(b)significant instability occurs when t=145,(c)the field is completely divergent when t=160.

    The system of equations (2)-(4) can also fully describe the propagation of the electric field in the plasma,and the test results in figure 3 show that the instability in figure 2 can be eliminated.

    2.3.Inversion algorithm

    The USPR system performs density reconstruction by interpretation of the TOF of microwaves of different frequencies in the plasma.The density inversion algorithm used in the model is based on the formula for calculating the TOF of microwaves in the plasma:

    wherevgis the group velocity of the microwave,xc(ω) is the position of the cut-off layer of the microwave at each frequency andτ(ω) is the flight time of the microwave at each frequency in the plasma.For the ordinary mode,Its form is relatively simple.Using the Abel transform,the density inversion formula can be obtained:

    Figure4.Initial signal and density profile.(a)Initial O-mode pulse of 1D simulation and electron density profile,(b)initial O-mode pulse of 2D simulation,(c)reflected signal of O-mode,(d)initial X-mode pulse of 1D simulation and electron density profile,(e)initial X-mode pulse of 2D simulation,(f) reflected signal of X-mode.

    For extraordinary waves,the form ofvgis very complicated,so there is no simple inverse transformation in analytical form,and the density inversion formula can only be obtained numerically [17]:

    3.Simulation result and data interpretation

    When testing 1D and 2D simulation programs,we set the plasma density profile to a monotonically increasing distribution.The density profile chosen is,

    wherex0is a reference point,ne0is a reference electron density andLsis a scale length for the profile.In 2D simulations,the density profile is simplified to be uniform in the y direction,i.e.the plasma curvature is not considered.The magnetic profile chosen is,

    whereB0is a reference magnetic field andLbis a scale length for the profile.We set the incident microwave of the O-mode to a simple Gaussian wave packetE(x,t=0)=exp[ -(x-xp)2/](1D simulation) andE(x,t=0)=exp{ -[(x-xp)2+(y-yp)2]/}(2D simulation),wherexpandypcorrespond to the initial position of the wave packet andpτis the spatial broadening of the wave packet [19].The X-mode incident microwave uses the same Gaussian wave packet setting,but uses a numerical filter to filter out components below 52 and above 92 GHz (the USPR system is operated in X-mode with frequency coverage from 52-92 GHz),see figures 4(a) and (b) for the O-mode,and figures 4(d)and(e)for the X-mode.The O-mode and X-mode microwaves are simulated by 1D and 2D programs,and in these programs the perfect absorption boundary is set so that no microwave will be reflected by the boundary.Figures 4(c)and(f)show the reflected signals of the O-mode and X-mode microwaves,respectively.

    Figure5.Comparison of TOF versus frequency between 1D and 2D simulations for (a) O-mode and (b) X-mode waves.

    The reflected signal is filtered by a numerical filter to obtain the TOF of microwaves of different frequencies in the plasma.Figure 5(a) shows a comparison of the frequencydependent TOF for the O-mode microwaves in the plasma between 1D and 2D simulations (The low-frequency microwave is reflected from the exponential density profile,and the high-frequency microwave is reflected from the linear density profile so that there is a turning point in figure 5(a)near 7 GHz).Figure 5(b) is the comparison of the results for the X-mode microwaves.It can be seen that the results of 1D simulation and 2D simulation are identical.Therefore,in the following research,we mainly use a 1D simulation program with less computational complexity.

    4.Simulation based on the EAST density profile

    4.1.Simulation results

    Figure6.Electron density profiles of EAST based on the fitting of data from three diagnostic devices.Black circle: data from sweptfrequency reflectometry.Red square:data from POINT(Polarimeter INTerferometer).Green star: data from probe.Purple solid line:fitted density profile.

    A typical plasma electron density profile covering the core,pedestal and scrape-off layer (SOL) is shown in figure 6(purple curve),which is obtained in EAST shot #98273 based on the joint calibration of the data from three diagnostic devices.The following numerical simulations of the propagation of the ultrashort pulsed microwaves are performed based on this profile.

    Figure 7 shows some initial profile settings for the simulation.Figure 7(a) is the plasma density profile set based on the fitting results of figure 6 and we do not consider the case of density perturbations here,figure 7(b)is the plasma toroidal magnetic field profile,figure 7(c) is the spatial distribution of the cut-off frequency of the ordinary mode and the left-hand and right-hand cut-off frequencies of the extraordinary mode,figure 7(d) is the spatial distribution of the incident X-mode microwave and its corresponding right-hand cut-off frequency.In order to mimic the simulation of the actual USPR system,a numerical filter is used in the program to filter the incident X-mode microwaves so that the frequency components included are in the range of 52-92 GHz.

    Figure 8 shows the obtained simulation results.Figure 8(a)is the reflected signal received by the detector,figure 8(b)is the variation of the TOF of the microwave in the plasma with the frequency obtained after filtering.The reflected signal can be roughly divided into three parts,namely I,II and III in figure 8(a).Among them,part I is the earliest,which corresponds to part B in figure 8(b),and its reflection area is the pedestal area where the plasma density increases rapidly.The reflection of part III is the latest,which corresponds to part A in figure 8(b),and its reflection area is the SOL area with low plasma density.Part II corresponds to part C in figure 8(b),and its reflection area is approximately the core area.Figure 8(c)is the inversion density obtained using the density reconstruction algorithm,which can be well matched with the density profile that we set.

    4.2.Tunneling effect

    The energy spectrum of the initial wave and the reflected wave(see figure 8(a))is compared in figure 9.It is found that for microwaves with a frequency higher than 50 GHz,the energy is almost completely reflected,but for microwaves with a frequency lower than 50 GHz,the energy reflection ratio decreases with the decrease in the microwave frequency until almost no reflection occurs.

    Figure7.Initial setting of simulation.(a) Electron density profile,(b) toroidal magnetic field distribution of EAST at It=11024.1 A,(c) O-mode and X-mode cut-off frequency distributions,(d) initial X-mode pulse and its cut-off frequency profile.

    Figure8.Simulation result.(a) Reflected signal of the USPR,(b) TOF as a function of frequency,(c) electron density profile inversion.

    After testing the evolution process of microwaves of various frequencies in the plasma,it is found that a considerable part of the energy of microwaves with frequencies below 50 GHz passes through the cut-off point and continues to propagate into the core area without reflection as occurs in tunneling.

    Figure9.Tunneling effect phenomenon.(a)Energy spectrum of reflected signal,(b)energy spectrum of transmitted signal,(c)the green part in (b).Black solid line: the energy spectrum of incident signal.Red solid line: the energy spectrum of reflected/transmitted signal.Blue dotted line:50 GHz.Microwave on the left side of the blue dotted line(frequency <50 GHz)will undergo obvious tunneling,while the right side (frequency >50 GHz) will not.

    Figure10.Dispersion relation (phase velocity) of extraordinary mode wave.Wave cannot travel in shaded areas.

    The explanation of this phenomenon should start from the dispersion relationship of extraordinary waves.Figure 10 shows the dispersion relationship of extraordinary waves in plasma [9],whereωRcorresponds to the cut-off point of microwave,andωhcorresponds to the resonance point of microwave.After the X-mode microwave reaches its cut-off point,its wave vector ?kbecomes a pure imaginary number,and after the microwave passes through the resonance point,its wave vector becomes a real number again.Thus,the decay of the microwave occurs in the region between the cut-off point and the resonance point (We call this area the ‘a(chǎn)ctual decay layer’),and the microwave energy will be reflected at the cut-off point,which is exactly the physical principle on which the reflectometer is based.In this study,microwaves with frequencies lower than 50 GHz have their reflection points in a region with very low plasma density so that their cut-off points are very close to the resonance points.In this case,some microwaves have already passed through the resonance points before they decay to zero,and enter the area that can normally propagate forward again so that this part of the energy that has not completely decayed can no longer be reflected.Therefore,the spatial proximity of the resonance point and the cut-off point in the low-density plasma region is the main reason for the tunneling effect.

    Figure11.Resonance point,cut-off point and actual decay layer for 70 GHz wave.

    We also give a theoretical calculation based on this explanation.Figure 11 shows the right-hand cut-off frequency distribution and resonant frequency distribution corresponding to the profile set in our simulation.In this figure,we take 70 GHz microwave as an example to show its cut-off point,resonance point and the so-called actual decay layer.According to the dispersion relation of X-mode wave,

    We can obtain its wave vector:

    When the microwave enters the actual decay layer,the square of the wave vector becomes a negative number,and the wave vector becomes a pure imaginary number:

    Figure12.Theoretical explanation for the tunneling effect.(a)Comparison of theoretical value and simulation results of microwave transmittance,(b)comparison between the actual decay layer and the cut-off depth.

    We consider a beam of plane waves:

    In the actual decay layer,

    Whereαis the decay constant (α=α(x)is an x-dependent function),

    We can calculate the average value ofαin the actual decay layer by integrating,

    Figure13.O-X-mode conversion.(a) Poloidal magnetic fielddistribution,(b) energy spectrum of reflected signal.Green dotted line: 50 GHz.

    In this way,the microwave after passing through the decay area can be estimated by the following formula:

    Thus,the energy transmittance is,

    We can obtain the energy transmittance calculated by equation (18),and compare this result with the energy transmittance we obtain by simulation (calculated using the data in figure 9(b)).This result is shown in figure 12(a),and these two transmittance results fit well.

    Figure14.Results of X-mode reflectivity under poloidal magnetic field scanning.(a) Reflectivity of X-mode wave,(b) average energy reflectivity versus frequency.

    According to the decay constant α,we can define a cut-off depth δ to roughly estimate the decay length of microwaves:

    This means that the microwave needs to travel a distance of δ in the actual decay layer to complete the attenuation.Ifδ?xcut-xresonant,which means that the actual decay layer is thick enough so that the microwave will decay to zero before reaching the resonant point and all energy will be reflected.Ifδ≈ or>xcut-xresonant,the actual decay layer is thin,the microwave cannot fully decay.Thus,some energy will pass through the resonance point,and this is what we called the tunneling effect.The comparison between the actual decay layer and the cut-off depth is shown in figure 12(b).

    For EAST’s USPR system,its operating frequency is 52-92 GHz.For microwaves in this frequency band,energy tunneling hardly occurs,so this effect will not affect the operation of the current USPR system.However,this effect should be taken into account if the USPR system is to be extended to the lower-frequency band in the future,in order to have the ability to diagnose lower-density plasma regions,and the corresponding band may require higher-power microwave sources and a more sensitive microwave detector.

    4.3.O-X-mode conversion

    In the EAST plasma,there is not only the external toroidal magnetic field,but also the poloidal magnetic field generated by the plasma current and poloidal field coils.Both magnetic fields vary with the radius.The USPR system of EAST adopts the working mode of the X-mode.As the emitted microwaves continue to propagate into the plasma,the total magnetic field will rotate to a certain extent so that the components of the X-mode will be partially converted into the O-mode,which results in a certain loss of microwave energy received by the detector[20].Generally speaking,the more severe the spatial variation of the poloidal magnetic field,the more obvious this energy loss will be.This study also uses the developed program to simulate the propagation of microwave signals considering the influence of the EAST poloidal magnetic field,and analyze the influence of the conversion between the O-mode and the X-mode on the energy loss of the reflected signal.Figure 13 shows the poloidal magnetic field distribution of EAST and the simulated spectrum of the reflected signal.Figure 13(a) is the poloidal magnetic field profile of EAST shot#98273 in the equilibrium calculated by the equilibrium fitting code program,and figure 13(b) shows the reflected signal energy spectrum obtained under this poloidal magnetic field setting.It can be seen that most of the energy is still received by the detector in the form of X-mode,indicating that the O-X conversion effect has little effect on the energy loss of the reflected signal.

    We keep the shape of the poloidal magnetic field profile in figure 13(a) unchanged,and scan the maximum value of the poloidal magnetic field.The relationship between X-mode microwave reflectivity and frequency is obtained under different poloidal magnetic field settings,as shown in figure 14(a).We calculated the relationship between the average energy reflectivity of 52-92 GHz X-mode microwaves and the maximum value of the poloidal magnetic field,as shown in figure 14(b).

    5.Summary and future work

    In this study,a numerical simulation program for microwave signal propagation was developed for EAST’s USPR system,and the plasma continuity equation was introduced into its numerical model to avoid the numerical instability that may be caused by spatially mixed partial derivatives.Under a simple test profile,the results of the 1D simulation program and the 2D simulation program are compared,and it is verified that the 1D simulation results are consistent with the 2D simulation results.Based on the plasma density profile,toroidal magnetic field profile,and poloidal magnetic field profile of EAST shot#98273,the 1D simulation of the X-mode microwave in the operating frequency band of the USPR system was carried out.The density profile obtained from the simulated reflected signal using the density reconstruction algorithm reproduces the input profile well.Through the spectrum analysis of the reflected signal,it is found that the energy reflectivity of the microwave below 50 GHz is reduced due to the tunneling effect.We give a theoretical explanation for this phenomenon,and the results of theoretical calculations are in good agreement with the simulation results.At the same time,the concept of cut-off depth δ that we introduced can be a criterion to judge whether the tunneling effect will occur.This effect will not have a great impact on the current operating frequency band of the USPR system,but would affect the low-band extension of the diagnostic if the lower limit of the plasma density needs to be improved.Spectral analysis also shows that the energy loss of the reflected signal due to the O-X-mode conversion effect caused by the poloidal magnetic field is negligible.We also scan the poloidal magnetic field,and give the average reflectivity of X-mode microwaves under different poloidal magnetic fields.

    In this study,the computation model that we used is based on cold plasma approximation.In order to achieve a more realistic simulation of the microwave propagation in the plasma,pressure and temperature effects will be added to the model in our future work.In addition,we found that the largescale density fluctuation will have a great impact on the simulation results.Large-scale density disturbances appear when pellets are injected into the plasma,which can lead to TOF diagram distortion and incorrect density inversion.However,with some processing it is possible to find the location of the greatest density perturbation,as preliminary analysis shows,which would provide a possible way to find the location of the projectile injection deposit.Since these topics are beyond the scope of this paper,we will perform comprehensive research and analysis combined with relevant experimental data in the future.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Energy R&D Program of China (No.2019YFE03030004) and National Natural Science Foundation of China (No.12005144).

    猜你喜歡
    徐國(guó)
    贛粵地區(qū)蕨類植物區(qū)系新資料
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    光影視界
    追本溯源提升素養(yǎng)
    雪后的龍子湖美景
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    讀《牡丹亭》
    国产亚洲5aaaaa淫片| 亚洲五月天丁香| 久久久久久国产a免费观看| a级毛片a级免费在线| 欧美一区二区亚洲| 毛片一级片免费看久久久久| 国产真实乱freesex| 久久久a久久爽久久v久久| 黄色一级大片看看| 97人妻精品一区二区三区麻豆| 久久久久久久午夜电影| 女人十人毛片免费观看3o分钟| 性色avwww在线观看| 好男人在线观看高清免费视频| 51国产日韩欧美| 国内久久婷婷六月综合欲色啪| 九草在线视频观看| 五月伊人婷婷丁香| 亚洲五月天丁香| 国产精品久久电影中文字幕| 小说图片视频综合网站| 精品国产三级普通话版| 一边摸一边抽搐一进一小说| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 国产伦精品一区二区三区视频9| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 国产老妇女一区| 搡女人真爽免费视频火全软件| 国产精品女同一区二区软件| 国产精品久久久久久久久免| 三级经典国产精品| 久久99热这里只有精品18| 亚洲aⅴ乱码一区二区在线播放| 一级av片app| 国产精品不卡视频一区二区| 成人三级黄色视频| 国产精品女同一区二区软件| 欧美另类亚洲清纯唯美| 插逼视频在线观看| 波多野结衣高清作品| 午夜免费激情av| 亚洲第一电影网av| 国产成人精品久久久久久| 97超视频在线观看视频| 国产精品一区www在线观看| 中文字幕久久专区| 精品人妻偷拍中文字幕| 欧美性感艳星| 亚洲av电影不卡..在线观看| 一级黄色大片毛片| av又黄又爽大尺度在线免费看 | 免费大片18禁| 国产精品久久久久久av不卡| 国产精品一区www在线观看| 欧美潮喷喷水| 欧美日本亚洲视频在线播放| 69av精品久久久久久| 成熟少妇高潮喷水视频| 亚洲成人av在线免费| 日韩制服骚丝袜av| 精品欧美国产一区二区三| 国产成人精品一,二区 | 欧美成人精品欧美一级黄| 日韩国内少妇激情av| 亚洲欧美精品专区久久| 色播亚洲综合网| 亚洲国产精品久久男人天堂| 国产极品精品免费视频能看的| 久久中文看片网| 一边摸一边抽搐一进一小说| 国产激情偷乱视频一区二区| 蜜臀久久99精品久久宅男| 成人特级av手机在线观看| 可以在线观看的亚洲视频| 久久人妻av系列| 成人特级黄色片久久久久久久| 我的女老师完整版在线观看| 精品一区二区三区视频在线| 久久亚洲国产成人精品v| 国产亚洲5aaaaa淫片| 一级毛片久久久久久久久女| 内地一区二区视频在线| 国产成人精品久久久久久| 哪里可以看免费的av片| 一级黄片播放器| 97超碰精品成人国产| 亚洲真实伦在线观看| 青青草视频在线视频观看| 又爽又黄无遮挡网站| 亚洲最大成人中文| 国产成年人精品一区二区| 高清毛片免费观看视频网站| 如何舔出高潮| 大又大粗又爽又黄少妇毛片口| 日韩成人伦理影院| 成人永久免费在线观看视频| 欧美精品一区二区大全| 人人妻人人澡欧美一区二区| 精品国产三级普通话版| 中文精品一卡2卡3卡4更新| 狠狠狠狠99中文字幕| 51国产日韩欧美| 天堂影院成人在线观看| 熟妇人妻久久中文字幕3abv| 国产极品精品免费视频能看的| 少妇丰满av| 嫩草影院精品99| 日韩亚洲欧美综合| 午夜精品国产一区二区电影 | av黄色大香蕉| 欧美不卡视频在线免费观看| 自拍偷自拍亚洲精品老妇| 国产成人福利小说| 色播亚洲综合网| 麻豆乱淫一区二区| 精品国内亚洲2022精品成人| 亚洲经典国产精华液单| 男人舔女人下体高潮全视频| 欧美在线一区亚洲| 99热这里只有精品一区| 内射极品少妇av片p| 精品人妻偷拍中文字幕| 成人三级黄色视频| 成人欧美大片| 看黄色毛片网站| 亚洲,欧美,日韩| 黄色日韩在线| 中文欧美无线码| 久久精品国产清高在天天线| 变态另类丝袜制服| 深爱激情五月婷婷| av视频在线观看入口| 99在线视频只有这里精品首页| 在线播放国产精品三级| av专区在线播放| 黄色一级大片看看| 国产乱人视频| 永久网站在线| 国产极品精品免费视频能看的| 亚洲成人精品中文字幕电影| 97超视频在线观看视频| 哪里可以看免费的av片| 久久久精品欧美日韩精品| 青春草亚洲视频在线观看| 亚洲精品久久国产高清桃花| 精品日产1卡2卡| 99精品在免费线老司机午夜| 国产伦一二天堂av在线观看| 国产成人精品久久久久久| 国内少妇人妻偷人精品xxx网站| 国产三级中文精品| 亚洲av成人av| 好男人视频免费观看在线| 欧美色欧美亚洲另类二区| 国产探花在线观看一区二区| 在线a可以看的网站| 国产不卡一卡二| 国产不卡一卡二| 亚洲最大成人av| 久久久国产成人免费| 久久精品国产亚洲av天美| 天堂av国产一区二区熟女人妻| 精品不卡国产一区二区三区| 色噜噜av男人的天堂激情| 国产精品精品国产色婷婷| 嫩草影院入口| 在现免费观看毛片| 欧洲精品卡2卡3卡4卡5卡区| 欧美高清性xxxxhd video| 内地一区二区视频在线| 成年女人看的毛片在线观看| 人人妻人人澡欧美一区二区| 国产亚洲91精品色在线| 成人漫画全彩无遮挡| 国产亚洲av嫩草精品影院| 精品99又大又爽又粗少妇毛片| 久久久久久久久久成人| 自拍偷自拍亚洲精品老妇| 国产一区二区亚洲精品在线观看| 乱系列少妇在线播放| 精品久久久噜噜| 国产熟女欧美一区二区| 高清日韩中文字幕在线| 亚洲欧美日韩卡通动漫| 女的被弄到高潮叫床怎么办| 亚洲无线观看免费| 国产av在哪里看| 国产精品日韩av在线免费观看| 国产成人aa在线观看| 看黄色毛片网站| 日本五十路高清| 国产精品日韩av在线免费观看| 老司机福利观看| 天堂中文最新版在线下载 | 午夜激情欧美在线| av.在线天堂| 日韩强制内射视频| 级片在线观看| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 亚洲欧美成人精品一区二区| 亚洲精品色激情综合| 久久99热6这里只有精品| 国产精品1区2区在线观看.| 国国产精品蜜臀av免费| 男女那种视频在线观看| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 22中文网久久字幕| 99riav亚洲国产免费| 午夜精品一区二区三区免费看| 身体一侧抽搐| 三级男女做爰猛烈吃奶摸视频| 日本成人三级电影网站| 不卡一级毛片| 九色成人免费人妻av| 性插视频无遮挡在线免费观看| 午夜精品国产一区二区电影 | 欧美最黄视频在线播放免费| 12—13女人毛片做爰片一| 国产爱豆传媒在线观看| 亚洲精华国产精华液的使用体验 | 人人妻人人澡欧美一区二区| 日日撸夜夜添| 免费观看人在逋| 免费看av在线观看网站| 亚洲在久久综合| 日韩精品有码人妻一区| 99riav亚洲国产免费| 国产综合懂色| 国产免费一级a男人的天堂| 美女黄网站色视频| 在线免费十八禁| 又爽又黄a免费视频| 色综合色国产| 看非洲黑人一级黄片| 91久久精品国产一区二区成人| 午夜精品国产一区二区电影 | 大香蕉久久网| 久久精品久久久久久噜噜老黄 | 精品欧美国产一区二区三| 成人一区二区视频在线观看| ponron亚洲| 欧美性猛交黑人性爽| 国产亚洲欧美98| 国产精品.久久久| 久久精品国产清高在天天线| 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| 一个人观看的视频www高清免费观看| 看黄色毛片网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av福利片在线观看| 成人漫画全彩无遮挡| 午夜精品一区二区三区免费看| 少妇被粗大猛烈的视频| 日本黄色片子视频| 日韩一本色道免费dvd| 97热精品久久久久久| 国产伦在线观看视频一区| 国产一区亚洲一区在线观看| av黄色大香蕉| 久久精品国产亚洲av香蕉五月| 国产日本99.免费观看| 国内精品美女久久久久久| 99国产精品一区二区蜜桃av| 国产免费男女视频| 18禁在线播放成人免费| 亚洲成av人片在线播放无| 深夜精品福利| 亚洲天堂国产精品一区在线| 亚洲欧洲国产日韩| 欧美另类亚洲清纯唯美| 精品久久久久久久久亚洲| 国产中年淑女户外野战色| 国产成人精品久久久久久| 99久久无色码亚洲精品果冻| 日本熟妇午夜| 欧美一区二区亚洲| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 直男gayav资源| 久久99蜜桃精品久久| 简卡轻食公司| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一小说| 变态另类成人亚洲欧美熟女| 毛片一级片免费看久久久久| 国产精品.久久久| 青青草视频在线视频观看| 天堂av国产一区二区熟女人妻| 日韩欧美三级三区| 国产精品永久免费网站| 热99在线观看视频| 亚洲人成网站在线播| 久久99精品国语久久久| 99热全是精品| 亚洲精品乱码久久久久久按摩| 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 美女xxoo啪啪120秒动态图| 联通29元200g的流量卡| 国产成人精品婷婷| av黄色大香蕉| 亚洲欧美日韩高清专用| 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 午夜精品一区二区三区免费看| 村上凉子中文字幕在线| 天美传媒精品一区二区| 成人鲁丝片一二三区免费| 日韩成人伦理影院| 中文欧美无线码| 69av精品久久久久久| 观看免费一级毛片| 国产av在哪里看| 好男人视频免费观看在线| av专区在线播放| 哪个播放器可以免费观看大片| 一个人观看的视频www高清免费观看| 亚洲在线自拍视频| 日日啪夜夜撸| 色哟哟·www| 1024手机看黄色片| av专区在线播放| av.在线天堂| 有码 亚洲区| 久久草成人影院| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 亚洲人成网站高清观看| 村上凉子中文字幕在线| 99久国产av精品国产电影| 免费一级毛片在线播放高清视频| 国产黄a三级三级三级人| 国产日韩欧美在线精品| 亚洲av成人av| 美女被艹到高潮喷水动态| 亚洲av成人av| 国产欧美日韩精品一区二区| 欧美一区二区国产精品久久精品| 日韩欧美在线乱码| 舔av片在线| 久久久欧美国产精品| 精品久久国产蜜桃| 看黄色毛片网站| 久久精品综合一区二区三区| kizo精华| 我要搜黄色片| 搞女人的毛片| 一区二区三区四区激情视频 | 国产精品久久久久久av不卡| 大香蕉久久网| 好男人视频免费观看在线| h日本视频在线播放| 欧美激情在线99| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 国产老妇女一区| 国模一区二区三区四区视频| 国产精品久久久久久久电影| 好男人在线观看高清免费视频| 午夜福利在线观看免费完整高清在 | 99热全是精品| 国产午夜精品久久久久久一区二区三区| 最近的中文字幕免费完整| 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 中文字幕精品亚洲无线码一区| 亚洲激情五月婷婷啪啪| 桃色一区二区三区在线观看| 亚洲乱码一区二区免费版| 久久精品久久久久久久性| 只有这里有精品99| 男人狂女人下面高潮的视频| 最新中文字幕久久久久| 99热这里只有精品一区| 91麻豆精品激情在线观看国产| 日韩欧美国产在线观看| 欧美精品国产亚洲| 欧美变态另类bdsm刘玥| 免费大片18禁| 欧美不卡视频在线免费观看| 日韩欧美精品免费久久| 不卡一级毛片| 三级毛片av免费| 亚洲精品久久久久久婷婷小说 | 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 午夜久久久久精精品| 免费电影在线观看免费观看| 99热精品在线国产| 嫩草影院精品99| 亚洲性久久影院| 搡老妇女老女人老熟妇| 黄色日韩在线| 午夜精品在线福利| 国产爱豆传媒在线观看| 麻豆av噜噜一区二区三区| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看 | 色视频www国产| av在线观看视频网站免费| 干丝袜人妻中文字幕| 日韩中字成人| 直男gayav资源| 丰满人妻一区二区三区视频av| 成人美女网站在线观看视频| 欧美性猛交黑人性爽| 尾随美女入室| 99国产精品一区二区蜜桃av| 中文亚洲av片在线观看爽| 一本久久精品| 久久热精品热| 婷婷色av中文字幕| 婷婷六月久久综合丁香| 成人美女网站在线观看视频| 亚洲精品国产成人久久av| 国产午夜精品论理片| 日韩成人av中文字幕在线观看| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| av在线蜜桃| 三级毛片av免费| 亚洲欧美精品专区久久| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 哪个播放器可以免费观看大片| 久久精品久久久久久久性| 亚洲成a人片在线一区二区| 99热6这里只有精品| 天天一区二区日本电影三级| 久久久精品94久久精品| 免费人成在线观看视频色| 亚洲18禁久久av| 国产高清三级在线| 国产成人91sexporn| 久久精品国产亚洲av天美| 亚洲精品成人久久久久久| 99热全是精品| 1000部很黄的大片| 嫩草影院新地址| 国产成人午夜福利电影在线观看| 国产一区亚洲一区在线观看| 日本三级黄在线观看| 18禁黄网站禁片免费观看直播| 国产真实乱freesex| 成年女人看的毛片在线观看| videossex国产| 国产精品国产高清国产av| 在线观看美女被高潮喷水网站| 国产成人午夜福利电影在线观看| 亚洲内射少妇av| 国内精品久久久久精免费| 美女国产视频在线观看| 精品99又大又爽又粗少妇毛片| 日本三级黄在线观看| 久久国产乱子免费精品| 国产又黄又爽又无遮挡在线| 九九热线精品视视频播放| av在线亚洲专区| 性插视频无遮挡在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 一进一出抽搐动态| 18禁黄网站禁片免费观看直播| 精品久久久久久久久久久久久| 国产男人的电影天堂91| 欧美+日韩+精品| 成人无遮挡网站| 国产91av在线免费观看| 黑人高潮一二区| kizo精华| 精品久久久久久久末码| 国产乱人视频| 中文字幕免费在线视频6| 国产成年人精品一区二区| 欧美高清成人免费视频www| 91久久精品国产一区二区成人| 国产午夜福利久久久久久| 在线免费观看不下载黄p国产| 黄片wwwwww| 久久久a久久爽久久v久久| a级毛片a级免费在线| 99久久九九国产精品国产免费| 亚洲四区av| 欧美又色又爽又黄视频| 日本在线视频免费播放| 成年女人永久免费观看视频| 九草在线视频观看| 亚洲最大成人手机在线| 91aial.com中文字幕在线观看| 久久久久久久久久久丰满| 亚洲国产欧美人成| 国产精品国产高清国产av| 久久午夜亚洲精品久久| 自拍偷自拍亚洲精品老妇| 国产av一区在线观看免费| 成年女人永久免费观看视频| 色综合色国产| 一本久久中文字幕| 自拍偷自拍亚洲精品老妇| 国产av一区在线观看免费| 国产精品日韩av在线免费观看| 成人高潮视频无遮挡免费网站| 国内精品宾馆在线| 亚洲国产精品sss在线观看| 久久久a久久爽久久v久久| 青春草亚洲视频在线观看| 夫妻性生交免费视频一级片| 最近的中文字幕免费完整| 精品国产三级普通话版| 天堂av国产一区二区熟女人妻| 女人十人毛片免费观看3o分钟| av在线蜜桃| 欧美色欧美亚洲另类二区| 亚洲成人精品中文字幕电影| 91精品国产九色| 亚洲av电影不卡..在线观看| 午夜福利在线在线| 久久久国产成人精品二区| 亚洲精品成人久久久久久| 国产精品蜜桃在线观看 | 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 国产精品精品国产色婷婷| 亚洲四区av| 12—13女人毛片做爰片一| 三级毛片av免费| av免费观看日本| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 久久精品国产亚洲av天美| 亚洲av男天堂| 国产色爽女视频免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲一区高清亚洲精品| 成人国产麻豆网| 又爽又黄a免费视频| 在线免费观看的www视频| 国产精品麻豆人妻色哟哟久久 | 国产精品.久久久| 一边摸一边抽搐一进一小说| 国产精品久久久久久久电影| 午夜福利视频1000在线观看| 国产精品久久久久久久电影| 中国美女看黄片| 欧美区成人在线视频| 精品久久久久久久末码| 99视频精品全部免费 在线| 中国美女看黄片| 精品熟女少妇av免费看| 麻豆成人午夜福利视频| 又粗又爽又猛毛片免费看| 亚洲成a人片在线一区二区| 看非洲黑人一级黄片| 在线播放国产精品三级| 亚州av有码| 国产伦精品一区二区三区四那| 九九热线精品视视频播放| 麻豆成人av视频| 免费搜索国产男女视频| 在线天堂最新版资源| 久久久国产成人免费| av天堂在线播放| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影| 久久久久久久亚洲中文字幕| 国产精品三级大全| 国产成人一区二区在线| 丝袜美腿在线中文| 国产三级中文精品| 真实男女啪啪啪动态图| 国产黄色小视频在线观看| 一区二区三区高清视频在线| 校园春色视频在线观看| 色综合站精品国产| 小说图片视频综合网站| 男人狂女人下面高潮的视频| 哪里可以看免费的av片| av福利片在线观看| 干丝袜人妻中文字幕| 九色成人免费人妻av| 三级男女做爰猛烈吃奶摸视频| 日本黄色片子视频| АⅤ资源中文在线天堂| 欧美最新免费一区二区三区| 国产69精品久久久久777片| 天堂√8在线中文| .国产精品久久| 欧美丝袜亚洲另类| 日韩欧美一区二区三区在线观看| 麻豆成人av视频| 国产精品久久久久久精品电影小说 | 热99在线观看视频| 久久亚洲国产成人精品v| 国产精品嫩草影院av在线观看| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 日本欧美国产在线视频| 国产高清激情床上av| 亚洲无线观看免费| 国产真实乱freesex| 日日撸夜夜添| 亚洲国产精品合色在线| 久久精品国产亚洲网站| 黑人高潮一二区| 国产白丝娇喘喷水9色精品| 久久99热6这里只有精品| 九色成人免费人妻av| 在线观看免费视频日本深夜| 国产精品蜜桃在线观看 |