• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic recognition of defects in plasmafacing material using image processingtechnology

    2023-12-18 03:54:56JianhuaLYU呂建驊ChunjieNIU牛春杰YunqiuCUI崔運秋ChaoCHEN陳超WeiyuanNI倪維元andHongyuFAN范紅玉
    Plasma Science and Technology 2023年12期
    關(guān)鍵詞:陳超

    Jianhua LYU (呂建驊) ,Chunjie NIU (牛春杰) ,Yunqiu CUI (崔運秋) ,Chao CHEN (陳超) ,Weiyuan NI (倪維元),* and Hongyu FAN (范紅玉)

    1 School of Electrical Engineering,Dalian University of Technology,Dalian 116024,People’s Republic of China

    2 School of Science,Jiangnan University,Wuxi 214122,People’s Republic of China

    Abstract Observing and analyzing surface images is critical for studying the interaction between plasma and irradiated plasma-facing materials.This paper presents a method for the automatic recognition of bubbles in transmission electron microscope(TEM)images of W nanofibers using image processing techniques and convolutional neural network(CNN).We employ a three-stage approach consisting of Otsu,local-threshold,and watershed segmentation to extract bubbles from noisy images.To address over-segmentation,we propose a combination of area factor and radial pixel intensity scanning.A CNN is used to recognize bubbles,outperforming traditional neural network models such as AlexNet and GoogleNet with an accuracy of 97.1%and recall of 98.6%.Our method is tested on both clear and blurred TEM images,and demonstrates humanlike performance in recognizing bubbles.This work contributes to the development of quantitative image analysis in the field of plasma-material interactions,offering a scalable solution for analyzing material defects.Overall,this study’s findings establish the potential for automatic defect recognition and its applications in the assessment of plasma-material interactions.This method can be employed in a variety of specialties,including plasma physics and materials science.

    Keywords: image processing,automatic defect analysis,object detection,convolutional neural network

    1.Introduction

    Tungsten (W) is a commonly used plasma-facing materials(PFMs) in fusion reactors,subject to high flux and low energy helium (He) plasmas during operation [1].This exposure can induce the formation of a fragile nanofiberlike crystalline structure known as ‘fuzz’ on the surface of W at temperatures of 1000-1900 K.The formation of this nanostructure contains many helium bubbles,which play a crucial role in inducing the surface modification of PFMs[2-4].Rate theory (RT) and molecular dynamics (MD)simulations are useful for gaining insight into these modifications [5-8].However,modeling nanoscale modifications of PFMs necessitates a significant amount of experimental data.The behavior,size,geometry,and distribution of the bubbles are critical to making accurate assumptions and validating the model.While scanning electron microscopy (SEM),atomic force microscopy(AFM),and transmission electron microscopy (TEM) are common techniques used for nanoscale imaging,they may generate blurry images and adversely impact observations[9-11].Additionally,analyzing these images by human experts can introduce the risk of artificial errors in data interpretation[11,12].Therefore,intelligent algorithms that can stably and reproducibly analyze experimental images are vital for producing simulations that realistically replicate physical processes.

    In recent years,machine vision and deep learning algorithms have demonstrated promising results and are increasingly used across various fields of materials science [13-17].In particular,convolutional neural network (CNN) has been used for defect recognition in clear images.Several studies have reported on the use of machine learning algorithms such as Mask R-CNN,Faster R-CNN,and Yolo for the detection of dislocation loops,vacancies,and other defects in materials[14-16].However,these algorithms have not been widely used for PFMs that are exposed to fusion plasma and are subject to significant deformation.Although Roessel et al have used CNN to study time-resolved information of blister evolution in Mo,their proposed CNN model relied on manually-identified results,and bubbles are easily identifiable in their in situ observations of the sample [17].As a result,there is still a need for algorithms that can accurately and automatically detect defects in complex background images of PFMs.

    In this paper,we present a hybrid approach combining image processing techniques and a CNN model to extract bubbles from varied TEM images with complex backgrounds.Our proposed method includes a fused three-stage approach that utilizes Otsu,local-threshold,and watershed segmentation to extract bubbles from noisy images.In addition,we propose a combination of area factor and radial pixel intensity scanning to address issues of over-segmentation.Subsequently,we train our proposed CNN model to accurately recognize the extracted bubbles,achieved through meticulous hyperparameter tuning optimization.Our approach significantly improves the accuracy and efficiency of bubble recognition in TEM images of W nanofibers,paving the way for more automated recognition and further analysis of nanoscale images in the future.

    2.Data acquisition and the method of image processing

    2.1.Data acquisition

    In this study,the polycrystalline W materials are exposed to He plasmas in an inductively coupled plasma (ICP) at 1300 K.He ion irradiations are performed at 50 or 200 eV,with a flux of 1.4×1022m-2s-1.The TEM image of the W nanofibers used is analyzed in our previous work[18],where the W nano-fuzz is wiped off from the surface and observed using H-9000UHR TEM.

    2.2.Image processing for bubble extraction in TEM image of W nanofibers

    Table 1.Detail of CNN training date.

    Figure1.Flow diagram of automatic recognition for bubbles in W nanofibers.

    The process of bubble recognition involves noise filtering,binary segmentation,and CNN recognition,as shown in figure 1.To determine the CNN kernels and morphological operations,small snippets of 128×128 pixels are extracted from a larger TEM image and analyzed individually.All snippets are divided into two datasets:‘clean’(D1)and‘blur’(D2) based on quality.A snippet is classified as a ‘fuzzy’ set if two or more nanofibers overlapped,or the grayscale intensity difference between the bubble and the background is not clear.On the other hand,a snippet is classified as a‘clean’set if there is no overlapping and the grayscale intensity difference is clear.Details about the datasets are shown in table 1.All the parameters mentioned in this paper are adjusted for the D1,while the D2 is only used for the final test.

    Figure2.Noise analysis of TEM image.Under the observation of TEM,the image of copper mesh and high-frequency noise will be superimposed on the W nanofibers.

    Figure3.TEM image(a)before and(b)after using Gaussian filter,the high-frequency noise is eliminated by low-pass filter.Thumbnails are their frequency domain images.

    2.2.1.Noise filtering in origin image.In low-magnification TEM images,identifying bubbles in nanofibers can be challenging due to high-frequency noise and the presence of copper mesh.Figure 2 depicts the uneven color and blurred boundary of a bubble influenced by the noise.

    To improve bubble detection,a Gaussian low-pass filter[19] is utilized to enhance the edge of bubbles.The purpose of applying the Gaussian filter is to reduce noise and eliminate unnecessary image details,thus ensuring the integrity of the extracted bubbles during the segmentation process.As the Gaussian filter can be applied to images in the frequency domain only,the image is transformed using the Fourier transform.The Gaussian filter with a standard deviation of 20 is employed which filtered out most of the high-frequency noise and the overlapping copper mesh in the image.This is demonstrated in figure 3.The Gaussian low-pass filter is given by the formula:

    where u and v represent the horizontal and vertical coordinates of the pixel,respectively.D is the distance between the pixel and the frequency center,and D0is the standard deviation.

    2.2.2.Bubble binary segmentation and boundary fitting.Binary segmentation is a standard method to remove the background from an image,leaving only the targets.This method depends on the difference between the grayscale intensity of background and the target.Segmenting bubbles in TEM images is still tricky after using the Gaussian filter because some regions in the bubbles have gray values similar to nanofibers.Therefore,the adaptive histogram equalization[20]are employed before segmentation so that every pixel of the bubble has an analogous grayscale intensity.

    A combination of Otsu segmentation [21],local-threshold segmentation [22],and watershed segmentation [23] is implemented to obtain all possible bubble segments.These segments are then superimposed to address the problem of oversegmentation,as shown in figure 4.To perform the segmentation,Otsu segmentation recognized apparent and larger bubbles,whereas local-threshold segmentation segmented bubbles with low contrast.The watershed segmentation technique is used to identify adjacent and tiny bubbles,and morphological reconstruction [24] with different kernel sizes is conducted to obtain the foreground and background of the image.

    After the segmentation of irregular boundaries of bubbles,a least square fit is applied to obtain an ellipticlike edge.During superimposition,some bubbles might fuse and be fitted into a single bubble,as shown in figure 5.

    Figure4.Image segmentation and fusion process.Three segmentation methods are used to extract bubble edges of different sizes.All binary images are superimposed to form the middle image.

    Figure5.Example of bubble edge extraction and fitting process.(a)Individual bubble is correctly segmented and fitted.(b)Adjacent bubbles are incorrectly segmented and fitted into a single bubble.

    Moreover,in 2D images,some bubbles that are independent in 3D space may be superimposed and similarly resulting in bubble fusion.To identify these fusion errors,we introduced the area factor.The area coefficient responds to the relationship between the fitting area and the binary area.A bubble with the correctly segmented boundary resulted in the smallest area factor,whereas a bubble with a wrong boundary segment indicated a larger area factor as per its difference from the binary image.The definition for area factor is:

    where S1is the bubble size of the binary image,S2is the bubble size of the fitting image,and S is the total size of the image.

    In the next step,radial pixel intensity scanning is implemented to increase the accuracy of identifying fusion errors,as shown in figure 6.The quantity of minimum in pixel intensity distribution in a single bubble is less than three,whereas it is more than three in adjacent bubbles.Upon identification of a bubble as a segmentation fault,the adjacent bubble is removed from the original image,and the segmentation process is repeated.The utilization of the area factor and radial pixel intensity scanning technique ensures the accurate separation of fusion bubbles into two distinct and independent bubbles.However,it is important to note that defining the fusion of extremely small bubbles,with a radius less than 1.5 nm,can pose challenges and may introduce potential errors.

    Figure6.Example of bubble radial line scanning process.The yellow circles are the bubble edges.The scanning direction follows the blue or red arrow,and the intensity of each pixel on the scanning line is plotted.The pixel intensity distributions of (a) single bubble and the (b)adjoin bubble,which have different quantity of minimum.

    Figure7.CNN architecture with three convolution and max-pool layers,and two dense layers.

    2.2.3.Convolutional neural network.Convolution neural network (CNN) is a feedforward neural network widely used in face recognition and object detection [25].In our work,CNN is used as a filter to screen correctly segmented bubbles.This network includes an input layer,a hidden layer,and an output layer.The convolutional network structure is shown in figure 7.

    Before entering the network,the input TEM images are normalized and resized using bilinear interpolation to avoid distortion.In the hidden layer,convolution kernels of different sizes can move and convolve in the image to extract features.These image features are sent to the max pooling layer to preserve valuable information and reduce its size[25].After convolution,the images are sent to the dense layer for classification.

    In this paper,the CNN model is trained by stochastic gradient descent with momentum (SGDM) on Intel Xeon Platinum 8375C by 100 training epochs,and the learning rate is 0.01.The performance of CNN plays a crucial role in its performance.Different convolution kernel sizes K=[16 32 64] for three convolution layers are combined in our work to achieve the best performance.Specifically,each kernel size is selected from matrix K and results in a total of 27 (33)different CNN architectures.The training data of CNN are listed in table 1.The accuracy comparison of different architecture is shown in figure 8.The formula for accuracy is:

    where P is the quantity of positive and N is the total quantity.

    The No.12[32 32 16]combination has the best accuracy for bubble recognition.The training process of No.12 as shown in figure 9,the accuracy and loss of this architecture tends to be smooth at half of the training process.This indicates that the network fits well with the training set and maintains an accuracy of over ninety percent on the dataset used in this paper.

    Figure 10 presents the hyperparameters calculated by the best (No.12),the baseline (No.2),and the worst (No.10)CNN architectures.The formulas for hyperparameters are:

    where TP is the quantity of true positive,P is the quantity of positive,N is the total quantity.

    To test the neural network’s applicability,we apply it to the D1 and D2 datasets.As shown in figure 10,the hyperparameters of No.12 and No.2 are higher than 95%for both datasets,while No.3 performs worse in the untrained dataset D2 than in the trained dataset D1.This result shows that our proposed CNN architecture can identify bubble snippets of low-definition,even in an untrained dataset.

    Figure8.The accuracy comparison of different convolution kernel combinations,of which No.12[32 32 16]has the best accuracy and No.10[32 16 32]has the worst accuracy.The accuracy of No.2[16 16 32] is close to the average (blue line).The combination of convolution kernels is shown in the bracket.

    Figure9.The accuracy and loss of CNN model (No.12) during training.

    The segmented bubbles in section 2.2 are cut from the original image and are imputed into CNN to filter.Only the image identified as a bubble by CNN can be marked and retained.Figure 11(a)shows the original image.Figures 11(b)and (c) show the binary images before and after recognition,respectively.Figure 11(d) shows the edges of all bubbles displayed in the original image.

    3.Result comparison and presentation of image processing

    This section presents the results showing the applicability of our methods for different datasets in table 1.The CNN and bubble segmentation are two critical parts of our algorithm.To evaluate their performances,we compare their results with other methods separately.

    3.1.CNN comparison of different structures in bubble identification

    Since CNN’s success in the classification field,many highperformance classification models have been proposed,such as AlexNet [25],VGG [26],GoogleNet [27],ResNet [28],etc.Here,we choose two classic networks,AlexNet and GoogleNet,for comparison.Transfer learning can reuse then for bubble recognition.

    The test and training sets of the two classical networks are consistent with those of our algorithm.The two networks’input and hidden layers are retained,and only the dense layer is modified to binary classification.In table 2,we present the performance comparison of the three networks.GoogleNet has an accuracy of 0.9257,and AlexNet has an accuracy of 0.9350 during the training.

    Despite their high training accuracy,the two classic networks performed poorly on the test set.AlexNet’s recognition is more accurate than GoogleNet,but its recall and accuracy could be better,and it is obviously not applicable in the D2.Our CNN architecture outperformed the two classic networks on different datasets,achieving recall and accuracy rates of over 0.98 with nearly zero classification errors.The result shows that our CNN architecture can accurately recognize bubbles in tungsten nanofibers,as shown by the high F1-score in table 2.The size and number of convolution kernel mismatch may cause a difference in network performance.The results of the present study clearly support that fixing the number of convolution kernels to 68 and 128 enables CNN to achieve the best performance [29].

    3.2.Bubble shape recognition

    To verify the algorithm’s recognition accuracy,we created five phantom images of varying quality for testing purposes.These virtual images consist of bubble layers overlaid with clean tungsten layers.It is important to note that these phantom images are appropriately filtered to ensure the absence of potential bubbles.

    Figure 12 presents the phantom images before and after identification using our algorithm.We found that the majority of the phantom bubbles are accurately identified.However,due to blurriness,some bubbles may not precisely match in size.We have provided an accuracy assessment of figure 12 in table 3.While most of the recognized bubbles correspond to phantom bubbles(true positives),there are instances where the recognized area significantly differs from the actual area,and the tungsten substrate is incorrectly identified as a bubble(false positives).

    Based on these results,we can conclude that our algorithm achieves a recognition accuracy of over 90% when applied to a clean TEM dataset.These findings validate the robustness of our approach.

    Table 2.Hyperparameters comparison of GoogleNet,AlexNet,and our CNN for testing the D1 and D2 dataset.

    Figure10.Comparison of precision and recall for the best,baseline,and worst CNN architecture from figure 8.The results are grouped by(a)D1 and (b) D2.

    Figure11.(a)Original TEM image,(b)original TEM image after binarization,(c)fitting image recognized by CNN,(d)original TEM image with fitted bubble edge.

    Figure12.The recognition results of phantom images.All identified bubbles are represented by colored edges.Table 3 summarizes the accuracy assessment of the five images.

    Figure 13 presents the bubble’s shape identification for the different datasets of real images.The bubble recognition algorithm run on a laptop with an Intel core i7-7700HQ CPU@2.8 GHz without GPU acceleration.Each image,similar to figure 2,takes about 40 s to process with this algorithm,which is significantly faster than manual processing time.Figure 13 shows that our algorithm can identify most bubbles in various nanofiber TEM images,including large bubbles with a radius greater than 8 nm,while avoiding over-segmentation.The lower recognition accuracy observed in the real image,in contrast to the phantom image,can be primarily attributed to the increased complexity inherent in real images.

    Table 3.Results of the accuracy assessment of the bubble recognition of figure 12.

    Figure13.Partial recognition results of D1 and D2 datasets.The original images are shown in(a1)and(b1).The color edges of bubbles and their areas are marked on the (a2) and (b2).

    The image quality and the difficulty of defect extraction are different between the D1 and D2 datasets.The D2 dataset in particular has larger overlap areas and closer bubbles,increasing the risk of false positives.Therefore,to demonstrate the effectiveness of our algorithm,we compare our results with the manual results by using the section function in the NanoScope analysis software.

    Figure 14 shows the bubble size distributions obtained from the manual result and our result.The manual results considered only bubbles with a radius greater than 1.5 nm.As shown in figure 14(a),the size distribution for the D1 dataset is similar between our algorithm and the manual results,with a slight increase in the fraction of bubbles with radii between 1 and 1.5 nm in our algorithm.However,for the D2 dataset(figure 14(b)),there is a deviation between the two results.We attribute this difference to two main possible reasons.Firstly,our algorithm identified several times more bubbles than the manual result,suggesting that the noise and uneven gray level in the original TEM image may interfere with the recognition of human experts,particularly in D2.This is why our algorithm identified more vague,tiny bubbles between 1 and 1.5 nm that are ignored in manual statistics,reducing the average bubble size.Secondly,the manual results classified adjacent bubbles as a single bubble,increasing the average bubble size.To counteract this,our method in section 2.2 of the paper reduces false positives in the algorithm.Thus,the limitations of manual identification can explain the differences observed in the bubble size distributions between our algorithm and the manual results.In any case,the size distributions obtained by the algorithm closely align with the manual ones,indicating the feasibility of employing efficient algorithms in lieu of laborious manual statistical analysis.

    There are three limitations of present work.The first limitation is that a large TEM image needs to be manually segmented into snippets of size 128×128 pixels.Secondly,the proposed algorithm utilizes morphological operations,which require extensive testing to determine optimal kernel sizes when applied to different materials or defects.Hence,these parameters must be reset when the algorithm is applied to a new material or defect.Finally,the means to fix over-segmentation in the paper (area factor and radial pixel intensity scanning) is applied to some close bubbles,and some bubbles in the fusion process are still difficult to distinguish.Therefore,there is a need to optimize the entire process to achieve better results.

    4.Summary

    In conclusion,this paper introduces a novel method for the automatic recognition of bubbles in TEM images of W nanofibers using hybrid image processing and CNN.Our three-stage approach,coupled with a combination of area factor and radial pixel intensity scanning,effectively addresses the challenge of over-segmentation.Moreover,the proposed CNN outperformed traditional neural network models such as AlexNet and GoogleNet,achieving an accuracy and recall of 97.1% and 98.6%,respectively.

    Our approach demonstrated reliable and human-like performance in recognizing bubbles in both clear and blurred images,offering a scalable solution for analyzing material defects.The findings of this study establish the potential of automatic defect recognition and its applications in the assessment of plasma-material interactions,with relevance to industries such as plasma physics and materials science.Our proposed method contributes to the development of quantitative image analysis in the field,paving the way for more advanced techniques and applications in the future.

    Acknowledgments

    This work is supported by the National Key R&D Program of China (No.2017YFE0300106),Dalian Science and Technology Star Project (No.2020RQ136),the Central Guidance on Local Science and Technology Development Fund of Liaoning Province (No.2022010055-JH6/100),and the Fundamental Research Funds for the Central Universities(No.DUT21RC(3)066).

    猜你喜歡
    陳超
    Understanding the changing mechanism of arc characteristics in ultrasound-magnetic field coaxial hybrid gas tungsten arc welding
    Strong-field response time and its implications on attosecond measurement
    求距求值方程建模
    和我一起去廣西
    歌海(2019年1期)2019-06-11 07:02:15
    鮮紅的紅旗是首歌
    歌海(2019年6期)2019-02-22 12:23:31
    Dipole Polarizabilities of the Ground States for Berylliumlike Ions?
    夸老公也得有度
    婦女生活(2017年4期)2017-04-08 10:28:01
    花山,錦繡畫圖
    歌海(2016年5期)2016-11-15 09:29:28
    陳超:風(fēng)雨兼程且行且珍惜
    江城子·悼詩人陳超先生
    詩選刊(2015年1期)2015-12-20 06:47:54
    亚洲精品影视一区二区三区av| 91久久精品国产一区二区成人| 丰满的人妻完整版| 22中文网久久字幕| 免费观看在线日韩| 少妇高潮的动态图| 欧美高清成人免费视频www| 日本在线视频免费播放| 久久人人爽人人片av| 亚洲综合色惰| 久久久久久九九精品二区国产| 亚洲国产日韩欧美精品在线观看| 欧美潮喷喷水| 午夜福利成人在线免费观看| 一级黄片播放器| 亚洲人与动物交配视频| 日本一二三区视频观看| 91在线精品国自产拍蜜月| 又粗又硬又长又爽又黄的视频 | 高清午夜精品一区二区三区 | 国国产精品蜜臀av免费| 99久久中文字幕三级久久日本| 最新中文字幕久久久久| 国产三级在线视频| 边亲边吃奶的免费视频| 女同久久另类99精品国产91| 黄色一级大片看看| 不卡视频在线观看欧美| 国产精品不卡视频一区二区| 天堂av国产一区二区熟女人妻| 亚洲天堂国产精品一区在线| 亚洲av电影不卡..在线观看| 国产日本99.免费观看| 亚洲av免费高清在线观看| 亚洲婷婷狠狠爱综合网| 岛国在线免费视频观看| 亚洲av第一区精品v没综合| 一个人免费在线观看电影| 最近视频中文字幕2019在线8| 五月玫瑰六月丁香| 日日撸夜夜添| 亚洲av男天堂| 久久中文看片网| 国产精品一及| 少妇丰满av| 男人舔女人下体高潮全视频| 少妇人妻一区二区三区视频| 日韩一本色道免费dvd| 精品人妻偷拍中文字幕| 久久热精品热| 国产高潮美女av| 中文字幕av成人在线电影| 亚洲成人久久性| 国产成人精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 国产伦一二天堂av在线观看| 午夜免费男女啪啪视频观看| 中文字幕av在线有码专区| 免费一级毛片在线播放高清视频| 啦啦啦韩国在线观看视频| 联通29元200g的流量卡| 国产欧美日韩精品一区二区| 免费观看精品视频网站| 午夜免费男女啪啪视频观看| 日韩在线高清观看一区二区三区| 在线国产一区二区在线| 国产成人a区在线观看| 老女人水多毛片| 国产又黄又爽又无遮挡在线| 午夜久久久久精精品| 啦啦啦观看免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看| 午夜视频国产福利| 色5月婷婷丁香| 大香蕉久久网| 亚洲成人av在线免费| 天堂中文最新版在线下载 | 中文字幕免费在线视频6| 精品久久久久久成人av| 国产精品永久免费网站| 国产91av在线免费观看| 国内久久婷婷六月综合欲色啪| 国产av一区在线观看免费| 男女那种视频在线观看| 国产 一区 欧美 日韩| 丝袜喷水一区| 男女那种视频在线观看| av在线老鸭窝| 久久这里有精品视频免费| 人人妻人人看人人澡| 18+在线观看网站| 久久久久免费精品人妻一区二区| 日本熟妇午夜| 伊人久久精品亚洲午夜| 黄色日韩在线| 少妇熟女aⅴ在线视频| 看十八女毛片水多多多| 亚洲色图av天堂| 日本成人三级电影网站| 自拍偷自拍亚洲精品老妇| 亚洲18禁久久av| 精品久久久久久久久av| 欧美一区二区国产精品久久精品| 舔av片在线| 成人午夜高清在线视频| 亚洲精品久久国产高清桃花| 在线观看午夜福利视频| 国产精华一区二区三区| 男插女下体视频免费在线播放| 亚洲欧美清纯卡通| 国产淫片久久久久久久久| 午夜福利视频1000在线观看| 一本一本综合久久| 亚洲成人久久爱视频| 99热这里只有是精品在线观看| 一级黄片播放器| 久久精品国产99精品国产亚洲性色| 国产精品蜜桃在线观看 | 麻豆成人av视频| 成年版毛片免费区| 亚洲在久久综合| 少妇高潮的动态图| 亚洲第一区二区三区不卡| 亚洲一区二区三区色噜噜| 99久久久亚洲精品蜜臀av| 国产av在哪里看| 欧美日韩在线观看h| 国产午夜精品久久久久久一区二区三区| 最好的美女福利视频网| 婷婷色综合大香蕉| 九九久久精品国产亚洲av麻豆| 国产蜜桃级精品一区二区三区| 亚洲精品国产成人久久av| 嫩草影院入口| 99在线视频只有这里精品首页| 久久精品久久久久久久性| 午夜精品国产一区二区电影 | 中文字幕熟女人妻在线| 狂野欧美激情性xxxx在线观看| 97热精品久久久久久| 18禁在线无遮挡免费观看视频| 白带黄色成豆腐渣| 看免费成人av毛片| 亚洲国产精品国产精品| 成熟少妇高潮喷水视频| 午夜久久久久精精品| 在线国产一区二区在线| av在线蜜桃| 国产一区二区三区av在线 | 免费在线观看成人毛片| 国产一级毛片在线| 精品久久久久久成人av| 天堂网av新在线| 18+在线观看网站| 欧美激情久久久久久爽电影| 插逼视频在线观看| 男人舔奶头视频| 男女做爰动态图高潮gif福利片| 国产精品av视频在线免费观看| 高清日韩中文字幕在线| a级毛片免费高清观看在线播放| 国产高清有码在线观看视频| 一本久久中文字幕| 亚洲欧美中文字幕日韩二区| 国产日本99.免费观看| 精品99又大又爽又粗少妇毛片| 黄色欧美视频在线观看| 成人一区二区视频在线观看| 国产成人freesex在线| 成人特级黄色片久久久久久久| 日韩av不卡免费在线播放| 久久精品久久久久久噜噜老黄 | 亚洲一级一片aⅴ在线观看| 色综合站精品国产| 国产精品久久视频播放| 最近2019中文字幕mv第一页| 特大巨黑吊av在线直播| 久久久a久久爽久久v久久| 看黄色毛片网站| 国产精品一区二区在线观看99 | 欧美一区二区国产精品久久精品| 毛片一级片免费看久久久久| 精品欧美国产一区二区三| 国产单亲对白刺激| 成人综合一区亚洲| 日韩,欧美,国产一区二区三区 | 久久精品91蜜桃| 亚洲国产精品sss在线观看| 亚洲18禁久久av| 日日干狠狠操夜夜爽| 一本一本综合久久| 精品日产1卡2卡| a级一级毛片免费在线观看| 国产精品国产高清国产av| 日韩一本色道免费dvd| 国产精品久久久久久精品电影| 久久久精品欧美日韩精品| 六月丁香七月| 在线免费十八禁| 99久国产av精品| 国产探花在线观看一区二区| 日本熟妇午夜| 寂寞人妻少妇视频99o| 日韩欧美精品v在线| 床上黄色一级片| 最近中文字幕高清免费大全6| 51国产日韩欧美| 一卡2卡三卡四卡精品乱码亚洲| 在线国产一区二区在线| 在线天堂最新版资源| 黄片无遮挡物在线观看| 国产亚洲91精品色在线| 少妇猛男粗大的猛烈进出视频 | 国产精品久久久久久久久免| 精品国内亚洲2022精品成人| 婷婷精品国产亚洲av| 日产精品乱码卡一卡2卡三| 国产私拍福利视频在线观看| 岛国在线免费视频观看| 国产黄色视频一区二区在线观看 | 尤物成人国产欧美一区二区三区| 国产在线男女| 免费观看在线日韩| 男人舔女人下体高潮全视频| 丰满乱子伦码专区| 99久国产av精品国产电影| 精品99又大又爽又粗少妇毛片| 国产精品电影一区二区三区| 国产精品1区2区在线观看.| 成人三级黄色视频| 麻豆国产97在线/欧美| 欧美成人a在线观看| 久久精品国产99精品国产亚洲性色| 少妇的逼水好多| 国产高潮美女av| 在线免费观看的www视频| 日日干狠狠操夜夜爽| 国产视频内射| 黄色欧美视频在线观看| h日本视频在线播放| 国产午夜精品久久久久久一区二区三区| 亚洲国产欧美在线一区| 嫩草影院入口| 欧美另类亚洲清纯唯美| 日韩欧美在线乱码| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美成人综合另类久久久 | 乱人视频在线观看| 99久久精品国产国产毛片| 99久久成人亚洲精品观看| 不卡视频在线观看欧美| 亚洲av中文av极速乱| 波多野结衣高清作品| 日韩欧美精品免费久久| 国产 一区 欧美 日韩| 国产亚洲精品久久久久久毛片| 国产精品av视频在线免费观看| 色哟哟·www| 亚洲五月天丁香| 午夜福利成人在线免费观看| 成人永久免费在线观看视频| 精品人妻偷拍中文字幕| 国产成人福利小说| 久久午夜亚洲精品久久| 男女那种视频在线观看| 成人亚洲欧美一区二区av| 精华霜和精华液先用哪个| 免费看美女性在线毛片视频| 午夜激情欧美在线| 日韩大尺度精品在线看网址| 人体艺术视频欧美日本| 久久精品国产自在天天线| 欧美一区二区亚洲| 99久久精品国产国产毛片| 高清在线视频一区二区三区 | 少妇丰满av| 亚洲欧洲日产国产| 老司机影院成人| 精品99又大又爽又粗少妇毛片| 国产免费男女视频| 久久久久久九九精品二区国产| 长腿黑丝高跟| 欧美xxxx黑人xx丫x性爽| 校园春色视频在线观看| 尾随美女入室| 欧美一区二区精品小视频在线| АⅤ资源中文在线天堂| 亚洲四区av| 国产色爽女视频免费观看| 免费观看在线日韩| 深夜精品福利| 亚洲av免费高清在线观看| 日韩欧美国产在线观看| 变态另类成人亚洲欧美熟女| 美女大奶头视频| 深爱激情五月婷婷| 国产人妻一区二区三区在| 中文在线观看免费www的网站| 亚洲色图av天堂| eeuss影院久久| 亚洲aⅴ乱码一区二区在线播放| 嘟嘟电影网在线观看| 免费看光身美女| 国产午夜精品久久久久久一区二区三区| 91久久精品国产一区二区三区| 午夜爱爱视频在线播放| 黄色欧美视频在线观看| 国内精品美女久久久久久| 精品午夜福利在线看| 禁无遮挡网站| 久久久精品大字幕| 亚洲中文字幕一区二区三区有码在线看| 国产成年人精品一区二区| 最近手机中文字幕大全| 亚洲不卡免费看| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 中文字幕av成人在线电影| 综合色av麻豆| 一级黄片播放器| 人人妻人人看人人澡| 亚洲欧美日韩无卡精品| 狠狠狠狠99中文字幕| 欧美高清性xxxxhd video| 亚洲在久久综合| 97人妻精品一区二区三区麻豆| 综合色丁香网| 免费黄网站久久成人精品| 在线观看66精品国产| 97超视频在线观看视频| 美女cb高潮喷水在线观看| 中文字幕久久专区| 国产极品天堂在线| 搡老妇女老女人老熟妇| 国产精品久久电影中文字幕| 波野结衣二区三区在线| 色吧在线观看| 国产亚洲av嫩草精品影院| 久久久久久久亚洲中文字幕| 国产免费一级a男人的天堂| 国产成人精品婷婷| 成人av在线播放网站| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 麻豆国产97在线/欧美| 欧美3d第一页| 国产精品.久久久| 国产精品,欧美在线| 亚洲欧美中文字幕日韩二区| av在线亚洲专区| 国产伦精品一区二区三区视频9| 一本一本综合久久| 国产av麻豆久久久久久久| 国产午夜精品久久久久久一区二区三区| 91在线精品国自产拍蜜月| 亚洲图色成人| 人妻夜夜爽99麻豆av| 久久精品综合一区二区三区| 美女高潮的动态| 伦理电影大哥的女人| 亚州av有码| 久99久视频精品免费| 国产成人一区二区在线| 日韩精品有码人妻一区| 久久韩国三级中文字幕| 天堂影院成人在线观看| 日本黄大片高清| 乱人视频在线观看| 欧美成人免费av一区二区三区| av天堂中文字幕网| 哪里可以看免费的av片| 人妻系列 视频| 成年版毛片免费区| 国产av不卡久久| 久久人人爽人人片av| 人妻制服诱惑在线中文字幕| 久久久久久久久大av| 1024手机看黄色片| 啦啦啦韩国在线观看视频| 亚洲真实伦在线观看| 夜夜爽天天搞| 99精品在免费线老司机午夜| 亚洲真实伦在线观看| 嫩草影院入口| 亚洲在线自拍视频| www日本黄色视频网| 日韩亚洲欧美综合| 国产精品麻豆人妻色哟哟久久 | 99久久无色码亚洲精品果冻| 中文在线观看免费www的网站| 亚洲成人久久性| 校园人妻丝袜中文字幕| 在线播放国产精品三级| 中文字幕av成人在线电影| 国产黄色小视频在线观看| 高清在线视频一区二区三区 | 18+在线观看网站| 亚洲av男天堂| 久久精品夜色国产| 国产精品1区2区在线观看.| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| av.在线天堂| 天美传媒精品一区二区| 日本一本二区三区精品| 日产精品乱码卡一卡2卡三| 欧美成人一区二区免费高清观看| 中文字幕久久专区| 欧美日韩在线观看h| 一进一出抽搐动态| 日韩,欧美,国产一区二区三区 | 久久中文看片网| 国产淫片久久久久久久久| 人妻制服诱惑在线中文字幕| 美女黄网站色视频| 久久99热6这里只有精品| 人人妻人人澡人人爽人人夜夜 | 美女 人体艺术 gogo| 中国美白少妇内射xxxbb| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久com| 国产午夜精品论理片| 国产蜜桃级精品一区二区三区| 成人性生交大片免费视频hd| 两性午夜刺激爽爽歪歪视频在线观看| 美女国产视频在线观看| 国产麻豆成人av免费视频| 婷婷精品国产亚洲av| 亚洲欧洲日产国产| 日本三级黄在线观看| 亚洲精品日韩在线中文字幕 | 天天一区二区日本电影三级| 久久这里只有精品中国| 日韩一区二区三区影片| 99视频精品全部免费 在线| 成人特级av手机在线观看| 日本在线视频免费播放| 国产女主播在线喷水免费视频网站 | 日韩亚洲欧美综合| 搞女人的毛片| 国产一区亚洲一区在线观看| 国产精品蜜桃在线观看 | 黑人高潮一二区| 成人鲁丝片一二三区免费| 国内精品美女久久久久久| 成人午夜高清在线视频| 亚洲欧美日韩高清在线视频| 亚洲欧美清纯卡通| 97热精品久久久久久| 中国美白少妇内射xxxbb| 久久精品国产清高在天天线| 狂野欧美白嫩少妇大欣赏| 亚洲经典国产精华液单| 色哟哟·www| 天堂影院成人在线观看| 亚洲av中文av极速乱| 最后的刺客免费高清国语| 亚洲精华国产精华液的使用体验 | 91精品国产九色| 国产高潮美女av| 中国美女看黄片| 日韩国内少妇激情av| 国产黄a三级三级三级人| 成熟少妇高潮喷水视频| 久久精品人妻少妇| 欧美xxxx黑人xx丫x性爽| 久久亚洲国产成人精品v| 亚洲精品色激情综合| 免费看av在线观看网站| 精品人妻偷拍中文字幕| 国产成人影院久久av| 天天一区二区日本电影三级| 一级毛片电影观看 | 日韩欧美精品免费久久| 日日摸夜夜添夜夜添av毛片| 亚洲自偷自拍三级| 内地一区二区视频在线| 日韩一本色道免费dvd| 国产成人影院久久av| 人妻制服诱惑在线中文字幕| 中文字幕熟女人妻在线| 成人一区二区视频在线观看| 亚洲av.av天堂| 国产精品蜜桃在线观看 | 我的女老师完整版在线观看| 女人被狂操c到高潮| 一区二区三区高清视频在线| 午夜老司机福利剧场| 日本熟妇午夜| 成人特级av手机在线观看| 久久久a久久爽久久v久久| 2021天堂中文幕一二区在线观| 日本欧美国产在线视频| 插逼视频在线观看| 超碰av人人做人人爽久久| 黄色欧美视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 偷拍熟女少妇极品色| av专区在线播放| 亚洲综合色惰| 成人亚洲精品av一区二区| av在线观看视频网站免费| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久av不卡| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区| 国产精品免费一区二区三区在线| 99热这里只有精品一区| 只有这里有精品99| 少妇人妻精品综合一区二区 | 哪个播放器可以免费观看大片| 国产淫片久久久久久久久| 日本成人三级电影网站| 搡老妇女老女人老熟妇| 91精品一卡2卡3卡4卡| 国产av不卡久久| 丝袜喷水一区| 美女国产视频在线观看| 国产精品久久电影中文字幕| 亚洲精品日韩av片在线观看| 色视频www国产| 亚洲激情五月婷婷啪啪| 精品欧美国产一区二区三| 亚洲经典国产精华液单| 最近中文字幕高清免费大全6| 亚洲国产日韩欧美精品在线观看| 亚洲精品粉嫩美女一区| 一本精品99久久精品77| eeuss影院久久| 干丝袜人妻中文字幕| 久久欧美精品欧美久久欧美| 给我免费播放毛片高清在线观看| 伊人久久精品亚洲午夜| 国产精品一区二区三区四区久久| 午夜精品在线福利| 欧美最新免费一区二区三区| 成人无遮挡网站| 国产熟女欧美一区二区| 亚洲欧美清纯卡通| 国产精品一区二区性色av| 免费观看的影片在线观看| 日本黄大片高清| 国产精品美女特级片免费视频播放器| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 久久99精品国语久久久| 国产精品伦人一区二区| 久久亚洲精品不卡| 国产综合懂色| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播放欧美日韩| 国产69精品久久久久777片| 国产精品人妻久久久影院| 日本熟妇午夜| 能在线免费观看的黄片| 菩萨蛮人人尽说江南好唐韦庄 | 三级经典国产精品| 99热6这里只有精品| 高清日韩中文字幕在线| 特级一级黄色大片| 亚洲国产色片| 亚洲欧美成人综合另类久久久 | 自拍偷自拍亚洲精品老妇| 日韩欧美国产在线观看| 综合色丁香网| 边亲边吃奶的免费视频| 99热这里只有精品一区| 国产视频首页在线观看| 亚洲国产高清在线一区二区三| 久久草成人影院| 国产成人福利小说| 夫妻性生交免费视频一级片| 成年免费大片在线观看| 又粗又硬又长又爽又黄的视频 | 观看美女的网站| 12—13女人毛片做爰片一| 久久精品国产亚洲av天美| 中国国产av一级| 亚洲一区二区三区色噜噜| 99热这里只有精品一区| 中国国产av一级| 亚洲一区二区三区色噜噜| 免费黄网站久久成人精品| 嫩草影院精品99| 国产成人精品久久久久久| 亚洲人成网站在线播| 日韩强制内射视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲av电影不卡..在线观看| 日韩强制内射视频| 亚洲欧美精品自产自拍| 内地一区二区视频在线| 深爱激情五月婷婷| 一进一出抽搐gif免费好疼| 久久精品国产亚洲av天美| 偷拍熟女少妇极品色| 日韩欧美 国产精品| 国产久久久一区二区三区| 偷拍熟女少妇极品色| 91久久精品电影网| 成人亚洲精品av一区二区| 久久久精品欧美日韩精品| 身体一侧抽搐| 久久久久久久久久久丰满| 日本免费a在线| 午夜福利在线观看免费完整高清在 | 成人特级黄色片久久久久久久| 99久国产av精品| or卡值多少钱| 国产免费一级a男人的天堂| 高清在线视频一区二区三区 |