• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physics design of 14 MeV neutron generator facility at the Institute for Plasma Research

    2023-12-18 03:54:56SWAMIVALARAJPUTABHANGIRatneshKUMARSAXENAandRajeshKUMAR
    Plasma Science and Technology 2023年12期

    H L SWAMI ,S VALA,2 ,M RAJPUT ,M ABHANGI,2 ,Ratnesh KUMAR ,A SAXENA,2 and Rajesh KUMAR,2

    1 Institute for Plasma Research,Gandhinagar 382428,India

    2 Homi Bhabha National Institute,Training School Complex,Mumbai 400094,India

    Abstract A high energy and high yield neutron source is a prime requirement for technological studies related to fusion reactor development.It provides a high-energy neutron environment for smallscale fusion reactor components research and testing such as tritium breeding,shielding,plasmafacing materials,reaction cross-section data study for fusion materials,etc.Along with ITER participation,the Institute of Plasma Research,India is developing an accelerator-based 14 MeV neutron source with a yield of 1012 n s-1.The design of the source is based on the deuteriumtritium fusion reaction.The deuterium beam is accelerated and delivered to the tritium target to generate 14 MeV neutrons.The deuterium beam energy and tritium availability in the tritium target are the base parameters of the accelerator-based neutron source design.The paper gives the physics design of the neutron generator facility of the Institute for Plasma Research.It covers the requirements,design basis,and physics parameters of the neutron generator.As per the analytical results generator can produce more than 1 × 1012 n s-1 with a 110 keV D+ ion beam of 10 mA and a minimum 5 Ci tritium target.However,the detailed simulation with the more realistic conditions of deuteron ion interaction with the tritium titanium target shows that the desired results cannot be achieved with 110 keV.The safe limit of the ion energy should be 300 keV as per the simulation.At 300 keV ion energy and 20 mA current,it reaches 1.6 × 1012 n s-1.Moreover,it was found that to ensure sufficiently long operation time a tritium target of more than 20 Ci should be used.The scope of the neutron source is not limited to the fusion reactor research studies,it is extended to other areas such as medical radioisotopes research,semiconductor devices irradiations,and many more.

    Keywords: neutron generator,neutronics,accelerator,physics design,nuclear fusion

    1.Introduction

    Nuclear fusion-based power plants could prove to be a part of the clean energy mix of the future.In order to achieve nuclear fusion power plants,various research activities are under progress worldwide.One of them is ITER which aims to demonstrate the feasibility of magnetically confined plasma with parameters approaching those of a nuclear fusion power plant.It will be operated on a maximum fusion power of 500 MW [1,2].Further demonstration reactors for power plants are under design [3-7].Various design and material irradiation experiments are required to perform to support nuclear fusion power plants.People are developing neutron irradiation testing facilities to obtain high damage in structural materials similar to the ones in fusion reactors.The International Fusion Material Irradiation Facility (IFMIF) is among them which is under development [8,9].Various accelerator-based neutron sources are also developed or under development to support the various lab-scale experiments needed for the development of nuclear fusion power plants[10-12].

    Figure1.D-T reaction cross-section (barns).

    India is also developing a high-energy neutron generator based on deuterium and tritium fusion reaction at Institute for Plasma Research.It will fill the gap for testing mock-ups and open the door for small-scale experiments related to the ITER and fusion power plant [13-16].The neutron generator is an accelerator-based system where the deuterium ion is accelerated and focused on the tritium target.The use of such a source is very cost-effective,safe,and environmentally friendly.The generator is designed to produce 14 MeV neutrons with a 1012n s-1yield.It provides a maximum flux around 2×1010cm-2s-1just after the target flange (2 cm away from the tritium target) which opens the opportunity to test small-scale mock-up of the breeding blanket and other fusion components [17,18].

    Moreover,it can be also utilized for other applications such as radioisotope generation for medical usage,semiconductor devices functionality checks in neutron environment,neutron diagnostic development,and various basic nuclear research experiments [17-25].

    2.Design basis

    In order to support the Indian fusion programme,a 14 MeV neutron generator facility with a neutron yield of 1×1012n s-1has been designed.The neutron source is designed using the deuterium beam interaction with a stationary tritium target.The cross-section of the deuterium-tritium (D-T) fusion reaction is shown in figure 1 [26].The cross-section is the highest at 108 keV deuteron energy as shown in figure 1.The initial simple calculation for the reaction rate occurrence has been done using the formula(Nt×σdt×φd)where Ntis the number of tritium atoms available at the target,σdtis the cross-section of D-T reaction and φdis the flux of deuterium beam.As per the calculation,a 5 Ci tritium target and 10 mA deuterium beam of 1.0 inch(2.54 cm)diameter can generate a neutron yield of around 2 × 1012n s-1.Therefore,the design parameter of the accelerator should be near the estimated value and the tritium target activity should be higher than the estimated value to get the effective neutron yield of 1 × 1012n s-1from the neutron generator for longer duration to compensate for the tritium losses.

    Moreover,to get more realistic design parameters of a neutron generator,the physics simulation supports along with the component feasibility have to be accommodated in the physics model.

    Figure2.Deuterium ion beam energy attenuation in Ti-T target.

    Figure3.Average penetration length in Ti-T target of D+ion beam.

    Tritium is a low-mass element and is found in gas form.To make the tritium a solid target,it should be attached with an affinity of titanium metal.The vapour of tritium is deposited on the titanium coating [27].It will make the deuterium ion transport and interaction different from the simple analytical calculation due to the introduction of another element and taking into account the slowing down of ions in the target.Therefore,deuterium ion energy attenuation in the Ti-T target is simulated.Deuterium ion energy attenuation in the Ti-T target for various beam energy is shown in figure 2,it has been estimated using the code SRIM [28].

    It is shown that a 300 keV deuterium ion beam energy is reduced to less than 50 keV after 1.2 μm thickness which reduces the effective utilization of the tritium target if the target has a higher thickness.As per the calculation,the target having the~24 Ci activity with 1.9 g cm-2surface density will have a thickness of around 4.2 μm.

    As per the details of the Ti-T target,the effective thickness is around 4.2 μm which is about 3.5 times higher than the effectively utilized thickness for neutron generators.The average penetration length of D+ion energy in the Ti-T target is shown in figure 3 [28,29].It gives the effective utilization of the target tritium for neutron yield generation and the scope of further enhancement of the neutron yield.

    Figure4.Neutron yield estimation using analytical formula.

    Following the yield estimation formula,the number of tritium atoms effectively available at the beam interaction area is~2.2×1020tritium atoms.The tritium content in the target is considered constant throughout the thickness.

    The flux of deuterium ions is around 2.0×1016cm-2s-1and the reaction cross-section at an energy of 108 keV is around 5 barn.The cross-section varies from 1 to 5 barns between 50 keV and 300 keV deuteron beam energy.The generated yield between 50 keV and 300 keV calculated using a simple formula (Nt× σdt× φd) is shown in figure 4.The calculation has been done for considering the mono-energetic beam inside the target,there is no beam energy attenuation considered.For the analytic calculation of yield,the average cross-section is assumed to be 2 barns considering the beam attenuation inside the target.The predicted maximum yield would be around 2.0 × 1012n s-1at the tritium target which gives a safe design limit of neutron generation 1×1012n s-1using the design parameters.

    The analytical calculation has been also extended for various D+beam energies with effective availabilities of tritium target and reaction cross-section.The results are plotted in figure 4.It shows a peak around 130 keV with a yield higher than 3.3 × 1012n s-1.

    The physics design parameter has been also simulated using the simulation tool NeuSDesc [30] to assess the analytical calculation.The same input parameters are given to the simulation tool NeuSDesc for estimating the yield.The yield calculated using the NeuSDesc is shown in figure 5.The code uses the ion energy attenuation and effective energy spectrum of the deuterium ion for calculating the neutron yield which is not considered in the analytical calculation.The simulation shows that the yield peaks at the energy of 800 keV.It can be understood from figure 3 which shows the effective utilization of the source that at energies above 800 keV the beam goes through the target resulting in lower neutron yield.The neutron yield at 110 keV D+ion energy is 4.8×1011n s-1.It differs from analytical calculation due to the attenuation of ion energy in the titanium target.The maximum yield generated using the existing 300 keV and 20 mA beam is around 1.6 × 1012n s-1.It validates the design parameters chosen for the neutron generator.It gets a maximum at 800 keV around 2.5 × 1012n s-1.

    Figure5.Estimation of neutron yield using NeuSDesc software.

    The neutron yield cannot be increased with fixed 300 keV ion energy in the accelerator due to a certain ion penetration limit in the solid target,and the flux of deuterium ions cannot be enhanced using a single beamline.It can be further enhanced by using multiple beamlines and multiple tritium targets.Ion energy acceleration above 300 keV can also enhance the yield as shown in figure 5 but it will increase the overall cost of the system.

    The simulation of neutron yield variation with time has been also performed to assure the design parameter for the neutron generator.The results have been plotted in figure 6(a).It is shown that the D+beam of 300 keV energy can produce a stagnant yield with a longer time than 150 keV.After a period of relatively stable operation,we see a reduction in the neutron yield due to various processes such as outgassing,sputtering,diffusion,etc[31].The degradation of the target is estimated using the SDTrimSp code and the outcome is represented in figure 6(b).More details about the target degradation simulation are given in the [31].The tritium removal process is increased when we enhance the beam energy and beam current as shown in figure 6(b).The energy deposition also increases in the target with energy and current increase which leads to higher temperature.The nominal design parameters can be clearer from figures 6(a)and (b) for the solid tritium target concept-based neutron generator.The removal process is increasing drastically after 20 mA current and 400 keV ion energy.The target limitation towards the energy and current makes the design parameters for the neutron generator stronger.

    3.Design parameters

    Figure6.(a) Neutron yield variation with accelerator operation time.(b) (i) Tritium removal with ion current variation and (ii) tritium removal and heat deposition with ion energy variation.

    As per the analytical calculations and simulations,to generate the neutron yield of 1×1012n s-1,the beam energy required is around 300 keV and 20 mA,and target activity should be more than 20 Ci.It is also necessary to maintain the optimized parameter with respect to tritium losses from the target and target overheating due to D+ion bombardment.The higher energy of D+ion and current increase the tritium losses and heating of the target which requires enhancement in the safety aspect and overall cost of the system.The tritium losses and heating in the target are represented in figure 6(b).The basic components of the accelerator-based neutron source are deuterium ion source,Low Energy Beam Transport (LEBT)and Medium Energy Beam Transport (MEBT) lines,acceleration column,power supply,tritium target,and diagnostics for beam current and energy measurements.The ion beam will transport in a high vacuum system to avoid radiation losses and hazards.The basic design parameters decided for the neutron generator are given in table 1.A schematic diagram of the accelerator is shown in figure 7.

    4.Neutron flux profile of neutron source

    The neutron generator produces 14 MeV neutrons which will be emitted from the tritium target location all around.The distribution of neutrons around the tritium target is shown infigure 8.The neutron flux near the source is around~2 × 1010cm-2s-1which can be available for lab-scale experiments.The calculation has been done using MCNP and ENDF/B-VII cross-section library [32-34].The calculation has been also performed to analyze the tritium production using the neutron generator for fusion reactor blanket studies and achievable dpa in the structural materials.It is found that the tritium production in the 5 cm thick Li2TiO3is around 7 × 1011tritons/cm3/day.The dpa in the India Specific Reduced Activation Ferritic Martensitic Steel (INRAFMS)can be expected around 0.3×10-3/year,it is estimated using the Norgett-Robinson-Torrens method.

    Table 1.Design parameters of accelerator-based 14 MeV neutron generator.

    Figure7.Schematic diagram of accelerator-based 14 MeV neutron generator.

    Figure8.Neutron flux near the tritium target for the nominal yield of 1 × 1012 n s-1.

    5.Radiation safety and design requirements

    The neutron generator facility needs radiation safety assurance before development.The neutron generator facility should be well shielded to control the radiation exposure to the occupational workers as well as the general public.A systematic study of the shield and radiation exposure has been carried out to ensure radiation safety[32].The wall thickness of the biological shield is 1.8 m with additional local shields to limit the radiation exposures during operation.The maximum annual dose rate outside the lab in the area accessible to the general public is estimated to be around~70 μSv/year.The assessment shows that the dose rate is quite lower than the nuclear regulatory limit of 1.0 mSv/year for general public accessibility.Detailed results have been provided in the [32].

    Moreover,to reduce the radiation exposure after operation a radio-activation analysis has been done for the entire laboratory [35].It is also necessary to prepare the operation and maintenance strategy for the neutron generator.The steel components of the generator are a major source of radioactive hazards and have a high contact dose rate immediately after irradiation.This means that some cooling time is required before they can be safely handled.However,no component shows significant radioactivity for a longer duration.The calculations of shielding and radio activation permit a safe and long-term operation of a neutron generator.

    The deuterium ion hits the tritium target for neutron production.The ion hitting also initiates the sputtering and outgassing of tritium from the target which can come out in the laboratory environment and could pose risk to workers during the maintenance activities.In order to reduce such possibility a tritium handling and recovery system is required.The neutron generator also requires a reliable control system along with all safety interlocks to maintain the safe,and consistent operation of the neutron generator.

    6.Brief engineering details of neutron generator components

    The accelerator-based 14 MeV neutron source mainly consists of Electron Cyclotron Resonance Ion Source (ECRIS),Low Energy Beam Transport (LEBT) system,Electrostatic Acceleration,Medium Energy Beam Transport (MEBT)system,300 kV and 50 mA High Voltage Power Supply(HVPS),Beam diagnostic system (BDS),Switching Magnet(SM)and tritium target.The ECRIS,LEBT,and subsystem of LEBT,are kept on a high voltage deck,which is at 300 kV floating to the ground potential.The input electric power to the entire unit is provided through an isolation transformer.The MEBT,switching magnet,subsystem of MEBT,and target are at ground potential.LEBT system is to transport the 20 mA,40 keV deuterium beam from ECRIS to the entrance of the acceleration column.MEBT system is to transport the 300 keV beam from the acceleration column to the target assembly.Both LEBT and MEBT have a Beam Diagnostic System (BDS)which consists of a Faraday cup,beam profile monitor,and slit-type emittance scanner.The beam is first analyzed with the help of a 90-degree dipole magnet to exclude the unwanted particles from the beam.It avoids the extra heating of the target.The 40 keV beam is then focused on the acceleration column with the help of the Magnetic Quadruple Triplet.The beam is accelerated to 300 keV with the help of the acceleration column.The final 300 keV beam is then focused using another magnetic quadrupole triplet at the target.The target is kept at 1.8 m away from the semicircular magnet.The beam is guided using a switching magnet.Considering the ion beam heating and temperature rise in the titanium target,the target is designed with efficient cooling to avoid heating.The rotating target arrangement is mounted for more effective cooling and longer steady-state emission [13].Detailed design of the target is given by Sudhirsinh Vala et al [13].The engineering sketch of the neutron generator is shown in figure 9.The neutron generator is kept inside a shielded laboratory in order to ensure occupational radiation safety.To handle the tritium outgassing and sputtering during the accelerator operation,a tritium handling and recovery system is attached to the target assembly.This system collects tritium coming out from the target during the accelerator operation and is stored in the depleted uranium getter bed.

    Figure9.Neutron generator and associated systems.

    7.Conclusion

    High energy and a high intense neutron source is a prerequisite for the fusion reactor-based power plant,and it provides the platform for qualification of the power plant components in an intense nuclear environment.The neutronic behaviour understanding of components and materials of the proposed nuclear fusion power plant is necessary for plant safety and lifetime perspective.The 14 MeV neutron generator based on an accelerator provides the intermediate answers for fusion power plant safety.An IFMIF kind of neutron irradiation facility is required to test the fusion power plant materials in the short term.

    India is also developing a 14 MeV neutron generator with intensity 1012n s-1for the primary testing of fusion reactor components.It will be utilized in tritium breeding experiments,neutron shielding experiments,testing of radiation capabilities of vessel materials,neutron-induced reaction cross-section studies,diagnostic developments,etc It can be also utilized to develop neutron-induced medical radioisotopes.

    The physics design and design basis of the neutron generator are assessed and reported here.The design parameters selected for the neutron generator are based on the basic calculation and it can achieve the neutron yield of 1 × 1012n s-1.The associated components are designed as per their technical requirements.Analytical calculations were performed to get some basic insight and were later expanded with more realistic simulations using NeuSDesc.

    The simulation tool NeuSDesc is used to further assess the design calculations.The code uses the ion energy attenuation and effective energy spectrum of the deuterium ion to calculate the neutron yield.The simulation shows that the yield peaks at the energy of 800 keV which covers the effective utilization of the tritium source.The maximum yield generated using the existing 300 keV and 20 mA beam is~1.6 × 1012which validates the design expectations.The yield variation along with time is also assessed to get more confidence in the design parameters of the accelerator.It will also provide the stability of the yield with a Ti-T target.

    It can be further enhanced by using the multiple D+ion beamlines and multiple tritium targets however,it will increase the overall cost of the system.

    在线观看免费日韩欧美大片| 超色免费av| 精品无人区乱码1区二区| 伦理电影免费视频| 亚洲中文字幕日韩| 午夜影院日韩av| 久久久国产精品麻豆| 一区二区三区精品91| 老司机午夜十八禁免费视频| 国产av又大| 少妇的丰满在线观看| 色综合婷婷激情| 午夜视频精品福利| 亚洲成人国产一区在线观看| 夜夜爽天天搞| 日韩欧美在线二视频| 欧美国产精品va在线观看不卡| 神马国产精品三级电影在线观看 | 国产欧美日韩一区二区精品| www.熟女人妻精品国产| 午夜日韩欧美国产| 一边摸一边做爽爽视频免费| 亚洲自拍偷在线| 丁香欧美五月| 免费搜索国产男女视频| 在线播放国产精品三级| 天堂俺去俺来也www色官网| 午夜福利欧美成人| 视频在线观看一区二区三区| 男女高潮啪啪啪动态图| 久久精品91蜜桃| 亚洲成人国产一区在线观看| 十八禁人妻一区二区| 国产精品永久免费网站| 动漫黄色视频在线观看| 亚洲精品国产精品久久久不卡| 男人操女人黄网站| 精品久久久久久久久久免费视频 | 久久99一区二区三区| 性欧美人与动物交配| 午夜91福利影院| 波多野结衣高清无吗| 国产三级黄色录像| 夜夜夜夜夜久久久久| 91在线观看av| 精品国产一区二区三区四区第35| 18禁美女被吸乳视频| 久久久国产成人精品二区 | 久久天躁狠狠躁夜夜2o2o| 熟女少妇亚洲综合色aaa.| 超碰成人久久| 亚洲国产毛片av蜜桃av| 亚洲欧美一区二区三区黑人| 欧美一级毛片孕妇| 在线观看66精品国产| 日韩欧美一区视频在线观看| 国产精品 国内视频| av网站在线播放免费| 757午夜福利合集在线观看| 国产精品久久久av美女十八| 久久精品国产亚洲av高清一级| 亚洲欧美精品综合久久99| 不卡av一区二区三区| 欧美av亚洲av综合av国产av| 69av精品久久久久久| 高清av免费在线| 久久久久国产精品人妻aⅴ院| 天天影视国产精品| 色精品久久人妻99蜜桃| 国产成人av激情在线播放| 欧美亚洲日本最大视频资源| 亚洲熟妇熟女久久| 精品久久久久久电影网| 日韩国内少妇激情av| 国产成人系列免费观看| 免费看十八禁软件| 国产成人av激情在线播放| 老司机靠b影院| 亚洲精品美女久久av网站| 男人操女人黄网站| 一级毛片高清免费大全| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新中文字幕大全免费视频| 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| av视频免费观看在线观看| 久久精品成人免费网站| 免费在线观看日本一区| 久久人人精品亚洲av| 久久人妻福利社区极品人妻图片| 99久久精品国产亚洲精品| 少妇的丰满在线观看| 国产亚洲精品久久久久5区| 久久亚洲真实| 视频区图区小说| 99久久国产精品久久久| √禁漫天堂资源中文www| av天堂久久9| xxx96com| 亚洲精品av麻豆狂野| 欧美乱色亚洲激情| 亚洲专区国产一区二区| 久久人人97超碰香蕉20202| 久久天堂一区二区三区四区| 大陆偷拍与自拍| 国产黄色免费在线视频| 欧美成人免费av一区二区三区| 亚洲av片天天在线观看| 动漫黄色视频在线观看| 久久亚洲精品不卡| 悠悠久久av| 老司机亚洲免费影院| 国产精品98久久久久久宅男小说| 自线自在国产av| 精品一区二区三卡| 中文字幕人妻丝袜一区二区| 欧美激情高清一区二区三区| 制服诱惑二区| 国产精品久久电影中文字幕| 男男h啪啪无遮挡| 国产亚洲av高清不卡| 巨乳人妻的诱惑在线观看| 大陆偷拍与自拍| bbb黄色大片| 国产成人av激情在线播放| 99久久99久久久精品蜜桃| av片东京热男人的天堂| 精品久久久久久电影网| 丰满迷人的少妇在线观看| 免费一级毛片在线播放高清视频 | 欧美一区二区精品小视频在线| tocl精华| 一级作爱视频免费观看| 精品久久久久久成人av| 精品久久久久久电影网| 成年女人毛片免费观看观看9| 国产亚洲欧美98| av天堂久久9| 久久精品亚洲熟妇少妇任你| 亚洲成人久久性| 亚洲激情在线av| 电影成人av| 女人被狂操c到高潮| 亚洲 欧美一区二区三区| 侵犯人妻中文字幕一二三四区| 国产又爽黄色视频| 久久久久久大精品| 中文欧美无线码| 91麻豆av在线| 9191精品国产免费久久| 国产高清视频在线播放一区| 在线永久观看黄色视频| 俄罗斯特黄特色一大片| 日韩高清综合在线| av网站在线播放免费| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 国产av精品麻豆| a在线观看视频网站| 亚洲精品中文字幕一二三四区| 免费观看人在逋| 一区在线观看完整版| 国产高清videossex| 亚洲一区中文字幕在线| 国产男靠女视频免费网站| 亚洲精品国产精品久久久不卡| 精品熟女少妇八av免费久了| 免费在线观看日本一区| 国产视频一区二区在线看| av欧美777| 日日干狠狠操夜夜爽| 日韩一卡2卡3卡4卡2021年| 夜夜躁狠狠躁天天躁| 亚洲成人免费电影在线观看| avwww免费| 亚洲欧美一区二区三区黑人| 国产成人av教育| 欧美大码av| 97人妻天天添夜夜摸| 天天影视国产精品| 黄频高清免费视频| 三级毛片av免费| 熟女少妇亚洲综合色aaa.| 成人影院久久| 黄片播放在线免费| 国产精品免费视频内射| 色在线成人网| 叶爱在线成人免费视频播放| 精品国产一区二区久久| xxx96com| 一边摸一边做爽爽视频免费| av欧美777| 国产精品久久久久久人妻精品电影| 欧美中文日本在线观看视频| 亚洲国产欧美网| 女人高潮潮喷娇喘18禁视频| 视频区欧美日本亚洲| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩高清在线视频| 一级黄色大片毛片| 国产成人系列免费观看| 亚洲国产看品久久| 亚洲,欧美精品.| 国产伦人伦偷精品视频| 国产精品美女特级片免费视频播放器 | 欧美人与性动交α欧美软件| 欧美+亚洲+日韩+国产| videosex国产| 日韩有码中文字幕| 亚洲欧洲精品一区二区精品久久久| 日韩精品中文字幕看吧| 亚洲成人免费av在线播放| 色综合站精品国产| 黄片大片在线免费观看| 国产激情久久老熟女| 女性被躁到高潮视频| 亚洲欧美日韩无卡精品| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| 精品电影一区二区在线| 亚洲精品在线观看二区| 国产欧美日韩一区二区三| 国产亚洲精品久久久久5区| 大香蕉久久成人网| 日韩欧美在线二视频| 国产1区2区3区精品| 国产一区二区三区视频了| 久久精品国产清高在天天线| 欧美精品一区二区免费开放| 在线播放国产精品三级| 亚洲欧美精品综合一区二区三区| 亚洲精品在线观看二区| 香蕉丝袜av| 精品久久蜜臀av无| 老司机亚洲免费影院| 国产又色又爽无遮挡免费看| 久久久久久久久久久久大奶| 欧洲精品卡2卡3卡4卡5卡区| 午夜激情av网站| 他把我摸到了高潮在线观看| 18禁美女被吸乳视频| 青草久久国产| 久久久国产成人精品二区 | 宅男免费午夜| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 母亲3免费完整高清在线观看| 成人三级做爰电影| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 国产成人精品无人区| 亚洲国产中文字幕在线视频| 亚洲五月色婷婷综合| 久久精品国产清高在天天线| 国产精品久久视频播放| 久久伊人香网站| 丝袜美足系列| 激情视频va一区二区三区| 亚洲第一av免费看| 90打野战视频偷拍视频| 99久久国产精品久久久| 又黄又粗又硬又大视频| 99re在线观看精品视频| 夜夜爽天天搞| 久久久久久久久免费视频了| 黄色 视频免费看| 久久精品人人爽人人爽视色| 国产97色在线日韩免费| 又黄又爽又免费观看的视频| 丝袜在线中文字幕| av在线播放免费不卡| 久久久精品欧美日韩精品| 精品一区二区三区四区五区乱码| 麻豆一二三区av精品| av天堂在线播放| 狠狠狠狠99中文字幕| 老司机午夜福利在线观看视频| 侵犯人妻中文字幕一二三四区| 91av网站免费观看| 丝袜美足系列| 精品国产一区二区三区四区第35| 亚洲精华国产精华精| 欧美另类亚洲清纯唯美| 午夜91福利影院| 纯流量卡能插随身wifi吗| 欧美日本中文国产一区发布| 99在线视频只有这里精品首页| 久久 成人 亚洲| 亚洲一区二区三区色噜噜 | 国产黄色免费在线视频| 女性被躁到高潮视频| 黑丝袜美女国产一区| 欧洲精品卡2卡3卡4卡5卡区| 女性被躁到高潮视频| 女人被躁到高潮嗷嗷叫费观| 久久精品国产亚洲av香蕉五月| 51午夜福利影视在线观看| 精品久久蜜臀av无| 少妇 在线观看| 亚洲男人天堂网一区| 久久香蕉激情| 看黄色毛片网站| 国产真人三级小视频在线观看| 热99re8久久精品国产| 在线观看www视频免费| 久久久精品欧美日韩精品| 在线av久久热| 淫妇啪啪啪对白视频| 国产精品99久久99久久久不卡| 免费少妇av软件| 国产成人影院久久av| 人人妻人人添人人爽欧美一区卜| av天堂在线播放| 极品教师在线免费播放| 人妻久久中文字幕网| 精品少妇一区二区三区视频日本电影| a级毛片在线看网站| 热99国产精品久久久久久7| 日韩三级视频一区二区三区| 精品国产一区二区久久| 黄色a级毛片大全视频| 精品国产亚洲在线| 午夜福利一区二区在线看| 大香蕉久久成人网| 国产成人精品久久二区二区免费| 最好的美女福利视频网| 久久精品国产亚洲av高清一级| 亚洲男人的天堂狠狠| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 狠狠狠狠99中文字幕| 国产欧美日韩综合在线一区二区| av免费在线观看网站| 巨乳人妻的诱惑在线观看| 亚洲av第一区精品v没综合| 9色porny在线观看| 久久国产乱子伦精品免费另类| 日韩大码丰满熟妇| 日韩大尺度精品在线看网址 | 亚洲欧美日韩另类电影网站| 亚洲aⅴ乱码一区二区在线播放 | 9191精品国产免费久久| 91成人精品电影| 亚洲国产精品一区二区三区在线| 久久人妻av系列| 免费看a级黄色片| 1024视频免费在线观看| 久久 成人 亚洲| 午夜福利一区二区在线看| 免费在线观看亚洲国产| 亚洲欧美精品综合一区二区三区| 久久精品人人爽人人爽视色| 国产欧美日韩综合在线一区二区| 在线观看日韩欧美| 午夜成年电影在线免费观看| 三上悠亚av全集在线观看| 免费人成视频x8x8入口观看| 91大片在线观看| 纯流量卡能插随身wifi吗| 日日干狠狠操夜夜爽| 看黄色毛片网站| 亚洲,欧美精品.| 国内久久婷婷六月综合欲色啪| 久久国产精品男人的天堂亚洲| 日韩一卡2卡3卡4卡2021年| 国产高清视频在线播放一区| 国产精华一区二区三区| 国产乱人伦免费视频| 一夜夜www| 精品久久久精品久久久| 90打野战视频偷拍视频| 窝窝影院91人妻| 88av欧美| 国产高清videossex| 乱人伦中国视频| 69av精品久久久久久| 成在线人永久免费视频| 人妻丰满熟妇av一区二区三区| 国产蜜桃级精品一区二区三区| 欧美一级毛片孕妇| 乱人伦中国视频| 久9热在线精品视频| 看免费av毛片| 搡老岳熟女国产| 无人区码免费观看不卡| 亚洲中文字幕日韩| 日本a在线网址| 国产亚洲精品综合一区在线观看 | 午夜亚洲福利在线播放| 亚洲av第一区精品v没综合| 精品久久久久久成人av| 91成人精品电影| 中亚洲国语对白在线视频| 午夜日韩欧美国产| 黄色视频不卡| 精品一区二区三区av网在线观看| av视频免费观看在线观看| 欧美一级毛片孕妇| 亚洲全国av大片| 久久香蕉激情| 妹子高潮喷水视频| 一个人观看的视频www高清免费观看 | 日韩 欧美 亚洲 中文字幕| 无人区码免费观看不卡| 色哟哟哟哟哟哟| 免费看十八禁软件| 午夜激情av网站| 亚洲av日韩精品久久久久久密| 人人澡人人妻人| 亚洲片人在线观看| x7x7x7水蜜桃| 精品一区二区三区视频在线观看免费 | 男女下面插进去视频免费观看| 国产精品野战在线观看 | 国产精品一区二区在线不卡| 国产又爽黄色视频| 性少妇av在线| 亚洲专区中文字幕在线| 久久九九热精品免费| 亚洲一区中文字幕在线| 99精国产麻豆久久婷婷| 日日爽夜夜爽网站| a级片在线免费高清观看视频| 日本wwww免费看| 老熟妇乱子伦视频在线观看| 极品教师在线免费播放| 50天的宝宝边吃奶边哭怎么回事| 又紧又爽又黄一区二区| 老鸭窝网址在线观看| 色老头精品视频在线观看| 亚洲第一青青草原| www国产在线视频色| 天堂俺去俺来也www色官网| 一级片免费观看大全| 国产精品乱码一区二三区的特点 | 精品久久久久久,| 一级作爱视频免费观看| 九色亚洲精品在线播放| 日本免费a在线| 亚洲精品国产色婷婷电影| 亚洲激情在线av| 国产黄色免费在线视频| 亚洲一区中文字幕在线| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 久久亚洲精品不卡| 国产亚洲欧美98| 999久久久国产精品视频| tocl精华| 国产成人欧美| 电影成人av| 欧美人与性动交α欧美软件| а√天堂www在线а√下载| 制服人妻中文乱码| a级片在线免费高清观看视频| 国产aⅴ精品一区二区三区波| 国产又色又爽无遮挡免费看| 啦啦啦在线免费观看视频4| 在线观看66精品国产| 大型av网站在线播放| 久久久久久久久中文| 国产精品爽爽va在线观看网站 | videosex国产| 精品国产国语对白av| 琪琪午夜伦伦电影理论片6080| 50天的宝宝边吃奶边哭怎么回事| 国产一卡二卡三卡精品| 午夜久久久在线观看| 丁香欧美五月| 黑人欧美特级aaaaaa片| √禁漫天堂资源中文www| 久久国产精品男人的天堂亚洲| 国产单亲对白刺激| 午夜影院日韩av| x7x7x7水蜜桃| 老司机靠b影院| 欧美在线一区亚洲| 又黄又爽又免费观看的视频| 黄频高清免费视频| 日日爽夜夜爽网站| 黄色视频不卡| 国产成人av激情在线播放| 亚洲熟妇中文字幕五十中出 | 日韩免费av在线播放| 在线观看午夜福利视频| 黑人巨大精品欧美一区二区mp4| 1024视频免费在线观看| 亚洲欧美精品综合一区二区三区| 俄罗斯特黄特色一大片| 丝袜美足系列| 欧美激情极品国产一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 岛国视频午夜一区免费看| 久久影院123| 久久精品国产清高在天天线| 国产精品一区二区在线不卡| 80岁老熟妇乱子伦牲交| 国产精品 欧美亚洲| 80岁老熟妇乱子伦牲交| svipshipincom国产片| 久久精品国产亚洲av香蕉五月| 免费av中文字幕在线| 精品国产一区二区三区四区第35| 午夜久久久在线观看| 18禁国产床啪视频网站| 搡老乐熟女国产| 亚洲,欧美精品.| 级片在线观看| 一区福利在线观看| 国产不卡一卡二| 在线av久久热| 国产又爽黄色视频| av片东京热男人的天堂| 波多野结衣av一区二区av| 欧美丝袜亚洲另类 | 波多野结衣一区麻豆| 亚洲全国av大片| e午夜精品久久久久久久| 午夜视频精品福利| 亚洲色图 男人天堂 中文字幕| 精品国产亚洲在线| 成人手机av| 免费在线观看影片大全网站| 欧美精品一区二区免费开放| 国产无遮挡羞羞视频在线观看| 99riav亚洲国产免费| 久久精品91蜜桃| 男人操女人黄网站| 国产精品综合久久久久久久免费 | 69av精品久久久久久| 超碰成人久久| 日本a在线网址| 不卡av一区二区三区| 狠狠狠狠99中文字幕| 超碰成人久久| 久久精品国产亚洲av高清一级| 香蕉久久夜色| 国产精品av久久久久免费| 国产成+人综合+亚洲专区| cao死你这个sao货| 国产精品国产高清国产av| 久久久久久久久久久久大奶| 变态另类成人亚洲欧美熟女 | 国产精品偷伦视频观看了| 亚洲 欧美 日韩 在线 免费| 欧美日韩福利视频一区二区| 女人被躁到高潮嗷嗷叫费观| 午夜精品在线福利| 国产高清视频在线播放一区| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 在线观看免费午夜福利视频| 欧美+亚洲+日韩+国产| 国产精品秋霞免费鲁丝片| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 亚洲成人免费av在线播放| 亚洲欧美精品综合久久99| 亚洲成人国产一区在线观看| 无限看片的www在线观看| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 丁香六月欧美| 最近最新免费中文字幕在线| 日韩欧美国产一区二区入口| 91大片在线观看| 午夜亚洲福利在线播放| 12—13女人毛片做爰片一| 国产成人啪精品午夜网站| 亚洲av电影在线进入| 亚洲欧美激情在线| 中出人妻视频一区二区| 欧美激情极品国产一区二区三区| 黄色成人免费大全| 操美女的视频在线观看| 99热只有精品国产| 欧美精品啪啪一区二区三区| 一进一出抽搐动态| 国产精品国产av在线观看| 韩国av一区二区三区四区| 欧美精品一区二区免费开放| 一a级毛片在线观看| 美女福利国产在线| 午夜免费激情av| 久久国产精品男人的天堂亚洲| av天堂久久9| 90打野战视频偷拍视频| 美女国产高潮福利片在线看| 国产精品成人在线| 亚洲伊人色综图| 在线看a的网站| 很黄的视频免费| 夜夜看夜夜爽夜夜摸 | 久久久精品国产亚洲av高清涩受| 神马国产精品三级电影在线观看 | 看片在线看免费视频| 亚洲精品粉嫩美女一区| 99久久99久久久精品蜜桃| 久久精品国产亚洲av高清一级| 黑人巨大精品欧美一区二区mp4| 后天国语完整版免费观看| 国产高清视频在线播放一区| 两人在一起打扑克的视频| 搡老岳熟女国产| 久久人人爽av亚洲精品天堂| 久久久水蜜桃国产精品网| 亚洲自偷自拍图片 自拍| 久久久久九九精品影院| 丝袜在线中文字幕| 在线观看免费午夜福利视频| 乱人伦中国视频| 成人亚洲精品av一区二区 | svipshipincom国产片| 国产一区二区在线av高清观看|