• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*

    2021-11-23 07:32:26YongChaoJiang姜永超GuiXiaLi李桂霞GuiFengYu于桂鳳JuanWang王娟ShuLaiHuang黃樹來andGuoLiangXu徐國亮
    Chinese Physics B 2021年11期
    關(guān)鍵詞:王娟徐國

    Yong-Chao Jiang(姜永超) Gui-Xia Li(李桂霞) Gui-Feng Yu(于桂鳳) Juan Wang(王娟)Shu-Lai Huang(黃樹來) and Guo-Liang Xu(徐國亮)

    1College of Science and Information,Qingdao Agricultural University,Qingdao 266109,China

    2School of Physics,Henan Normal University,Xinxiang 453007,China

    Keywords: supramolecular organic framework, functionalization, modelling and simulation, carbon capture and storage

    1. Introduction

    The rapid climate change caused by global warming has been a serious issue due to the extensive CO2emission into the atmosphere by anthropogenic activities such as industrial production, power plants emission, and vehicle emissions.[1]The development of efficient strategies is more challenging,and becomes an urgent task to mitigate the global warming and to continue to use fossil fuels. Under such a background,carbon capture and storage(CCS)technologies play a critical process to tackle this urgent globally environmental problem by capture and separation of CO2.[2]In order to obtain high efficiency of CCS,it is highly desirable that the suitable materials serving as effective adsorbent is utilized for CO2capture and separation.[3]Supramolecular organic frameworks with intrinsic porosity, based on the assembly of calixarenes,[4]bisurea,[5]cucurbiturils,[6]and more recently pillarenes,[7,8]have emerged as a excellent solid adsorbent materials for CO2adsorption and separation. Among them, pillar[n]arene has been exploited as an excellent candidate for CO2capture and separation because of high thermal stability, favourable pore characteristics and good gas sorption properties.

    As a desired gas adsorption material, pillar[n]arene has been experiencing comprehensive and substantial studies on its structures,properties,and syntheses. Ogoshiet al.adopted per-hydroxylated pillar[6]arene to capture gas and vapour,and found 1D channels of the per-hydroxylated pillar[6]arene can adsorb various gases and organic vapours due to their pillarshaped structures with suitable pore volume of 0.098 cm3/g.[9]Tanet al.investigated pillar[6]arene for selective sorption of hydrocarbons,and found that P5-SOF has good selectively of C2H2over H2(~2969/1), C2H6(~295/1), N2(~60/1),CH4(~41/1), and C2H4(~20/1) and exhibits high selectivity for other gas mixtures under the equimolar gas mixture condition at 1.0 bar.[10]Tanet al.employed pillar[5]arene and pillar[6]arene to realize high selective CO2adsorption capacity for CO2/H2mixtures, reaching up to 3733/1 for 30/70 mixture of CO2/H2at 298 K via strong O-H···O,C-H···O, C-H···π,π···πinteractions.[11]Therefore, pillar[n]arene might be deemed to possess outstanding gas capture performance with strong gas-framework interaction. So far as we know, the effects of functionalization, the improvement mechanism on the CO2adsorption and selectivity over CO2of N2mixture gas in functionalized pillar[6]arenes materials have not been distinctly explained.

    In this work,we adopt azo group(N=N)to decorate pillar[6]arene for investigating the adsorption and separation performance of CO2/N2mixture by density functional theory(DFT) and grand canonical Monte-Carlo (GCMC). Firstly,we optimize the geometry structure of functionalized pillar[6]arenes and calculate their atomic partial charge as the basic input parameters in GCMC simulation by DFT;secondly,the functionalized pillar[6]arenes pore characteristics of the azo-based pillar[6]arenes are showed; thirdly, adsorption capacity and separation of CO2/N2mixture is calculated;finally,the isosteric heats, interaction energy, and adsorption energy are analyzed to determine the effects of azo-functionalization on the adsorption strength and characteristics. Our results highlight the potential use of the azo-based pillar[6]arenes in CCS for high adsorption capacity and high selectivity of CO2over N2.

    2. Model and methodology

    Pillar[6]arene was adopted as the initial unit to form the adsorbing material for separating CO2from CO2/N2mixture. Firstly, we assumed that the incorporation of azo group into the macrocyclic backbone of pillar[6]arene: pillar[6]arene N2, which have two decorated macrocyclic backbones; pillar[6]arene N4, which have four decorated macrocyclic backbones, as shown in Fig. 1. After building these three structures, optimizing structure and analyzing atomic charge were carried out by means of DFT. The B3LYP/6-31+g(d,p) basis was set in Gaussian 09 package with the highly computational effciiency and suffciient accuracy.[12]The self-consistent feild (SCF) was computed with a convergence threshold of 10?6a.u. on total energy. Next,their functionalized pillar[6]arene frameworks were composed by four well-ordered optimized units. Atomic partial charges(ChelpG) of functionalized pillar[6]arenes were used as important information parameters in GCMC simulations to describe the electrostatic interaction by Coulomb law.

    CO2and N2molecules were regarded as rigid linear molecules, and the three-site molecule was used for CO2and N2molecules.The LJ potential parameters for both CO2and N2molecules were obtained from the TraPPE model,which were reported by Potoff and Siepmann.[13]Dreiding force field[14]was applied to acquire atomic Lennard-Jones 12-6 potential (ULJ) parameters. This force field has been successfully appropriated for a wealth of adsorbed materials,such as CNnsheets,[15]metal organic frameworks(MOFs),[16]and boron nitride nanotube.[17]GCMC simulations were employed to calculate the uptake of single-component CO2and N2,and the selectivity of CO2over N2in their binary mixture with different ratio in functionalized pillar[6]arene. Lennard-Jones 12-6 potential was used to describe the van der Waals interaction,which is calculated as follows:

    where the charge on particlesiandjareqiandqj, respectively,in units ofe. The dielectric constant at vacuum condition is represented byε0with the value of 8.85×10?12F/m.For the GCMC simulations,100000 cycles were used in which the first 50000 cycles were used for initialization,and the last 50000 cycles were performed for taking ensemble averages.All these GCMC simulations were implemented in the RASPA simulation code.[18]

    Fig.1. Initial configurations of the azo-based pillar[6]arenes.

    3. Results and discussion

    3.1. Pore topology and morphology

    Pore structure of frameworks is a decisive factor for gas adsorption and separation. We use Poreblazer v3.0[19]to evaluate the available pore volume (VP), pore limiting diameter(DL), maximum pore diameter(DM), and accessible surface area. The porosity (Φ) is estimated byVP/VTotal, whereVTotalis the total volume of the frameworks. Table 1 lists the pore structure of the three functionalized pillar[6]arene evaluated,which were reported by Sarkisov[20]and Duren[21]methods. After decorating, the density increase to 1.184 g·cm?3from the original 0.979 g·cm?3, and moreNatoms are introduced into frameworks leading to the greater density. TheVpof the azo-based pillar[6]arene fluctuate from 0.32 cm3/g to 0.43 cm3/g, which are lower than those of the unmodified pillar[6]arene. The accessible surface areas of the azo-based pillar[6]arene decrease from 1073.36 m2·g?1to 880.54 m2·g?1with the increasing of the azo group number,and these values are larger than those of traditional adsorbent zeolite 13X (591 m2·g?1),[22]a part of metal?organic materials (200-300 m2·g?1),[23]similar to some 2D covalent organic frameworks (688-1197 m2·g?1),[24]but lower than those of metal organic frameworks with high porosity(~6000 m2·g?1).[25]The porosity of three azo-based pillar[6]arenes is kept about 30%.In contrast with pillar[6]arene,azo-functionalization has little effect onDLandDM.

    Table 1. Physical characteristics of the azo-based pillar[6]arenes(gas probe molecule=He with diameter of 2.58 ?A).

    Fig.2. The pore size distributions of the azo-based pillar[6]arenes.

    To gain a deeper insight into the pore morphological structures, the pore size distributions (PSDs) are showed in Fig. 2. All PSDs present similar continuous distribution, and all pore sizes are smaller than 7 ?A, which are the typical ultramicropore structures(<7.00 ?A)in accordance with the IUPAC classification.[26]The main pore distributions concentrate on 5-6 ?A.The PSDs findings demonstrate the unmodified pillar[6]arene exist some pore,which is smaller than 2 ?A.Based on the previous work, pores with sizes of 5-7 ?A or even below (also referred to as ultramicropores) should be presented because they have a larger adsorption potential for CO2as compared to larger supermicropores (7-20 ?A) or mesopores(>2 nm)[1]at the low-pressure. Therefore, three azo-based pillar[6]arenes provide favorable environment for CO2adsorption and separation.

    3.2. Single-component adsorption of CO2/N2

    Single-component adsorption capacity is the primary standard to evaluate the adsorbent performance. The absolute adsorption isotherms of the single-component CO2adsorption in three azo-based pillar[6]arenes at 298 K are presented in Fig. 3(a). The absolute CO2adsorption capacities in the azo-based pillar[6]arenes are signifciantly higher than that of the unmodifeid pillar[6]arenes. At 1 bar, the adsorption capacity of three azo-based pillar[6]arenes is 0.66 mmol/g for pillar[6]arene, 0.75 mmol/g for pillar[6]arene N2, and 1.36 mmol/g for pillar[6]arene N4, respectively. The results show that azo-functionalization can improve the adsorption capacity of pillar[6]arene. In particular, pillar[6]arene N4 presents larger adsorption capacity, which is larger than those of typical supramolecular organic framework T-SOF-1 (~1.07 mmol/g),[27]TPP (0.94 mmol/g),[4]DMP5-SOF(0.05 mmol/g),[28]SMOF-SIFSIX-1a (1.05 mmol/g)[29]and B2 (~0.67 mmol/g),[4]and MgAl(Cl) (~0.136),[28]but smaller than nanoporous carbons(2.14-9.62 mmol/g),[30]and similar to azo based COF-TpAzo (1.59 mmol/g) at the same conditions. The increased CO2uptake performances are attributed to the introduction of azo groups, which add strong adsorption sites, change pore topology, and strengthen interactions with CO2and N2molecules. Introducing azo groups leads to the increasing of the number of N atoms in the frameworks.That is,an azo group(N=N)with large electronegativity increases interactions with CO2molecules of strong electric quadrupole moment.

    Figure 3(b) shows the absolute adsorption isotherms of N2in the azo-based pillar[6]arenes at 298 K. Pillar[6]arene N2 with two decorated macrocyclic backbones has a slight impact on adsorption capacity of N2. The adsorption capacity of N2has improvement in pillar[6]arene N4 frameworks. At 1 bar,the pillar[6]arene N4 presents the highest adsorption capacity(0.053 mmol/g),which is far less than most of traditional adsorbent materials, such as, 13X zeolites,[31]similar to azo based COF-TpAzo (~0.051 mmol/g), and larger than a family of azo-bridged covalent organic polymers(azo-COPs)(0.03-0.05 mmol/g)at the same conditions.For the temperature effect, the gas adsorption capacity decreases along with the increase of temperature as a result of the exothermic nature of the adsorption process. For instance, at the pressures above 1 bar,the total CO2uptakes in azo-based pillar[6]arenes are within the range of 0.66-1.36 and 1.12-1.66 mmol/g at 298 and 273 K, respectively (see Figs. 3(a)and 3(c)).

    Overall, the adsorption of CO2/N2in the azo-based pillar[6]arenes exhibits type-I Langmuir adsorption behavior,which is a typical characteristic of microporous adsorption.[32]The azo groups signifciantly enhance the adsorption capacities of CO2. In particular, the results show that the pillar[6]arene N4 processes the better adsorption capacity of CO2and weaker adsorption capacity of N2, which compare with congeneric supramolecular frameworks.

    Fig.3. (a)Absolute adsorption isotherms of CO2 at 298 K.(b)N2 in the azobased pillar[6]arenes at 298 K.(c)Absolute adsorption isotherms of CO2 at 273 K.

    3.3. Selectivity of CO2 over N2 with equal molar fraction

    The selectivity of CO2over N2is the important criterion to screen superior adsorbent materials to separate CO2from the CO2/N2mixtures. The selectivity of CO2over N2is defined as

    whereSis the selectivity of CO2over N2,xCO2andxN2are the molar fractions of CO2and N2in their adsorbed phase, andyCO2andyN2are the corresponding molar fractions of CO2and N2in their bulk gas phases. The selectivity of CO2over N2with equal molar fraction in the azo-based pillar[6]arenes at 298 K are showed in Fig.4(a).

    The selectivity of CO2over N2declines initially,and then flattens out to a constant value with the increase in pressure.At 298 K and 1 bar, the selectivity of CO2over N2decreases in the sequence of pillar[6]arene N4(~116)>pillar[6]arene N2(~32)> pillar[6]arene (~27). Pillar[6]arene N4 exhibits the best selectivity, which is better than that of azo-UiO-66(~100),[33]azo-COP-X(X=1-3)(~65-130),[34]and traditional Zr-BFDC (~60),[35]and ZIF-8 (~4).[36]The results show that pillar[6]arene N4 have a distinct advantage over other adsorption materials. This is ascribed that the introducing azo groups (N=N) can provide the stronger attractive interactions between CO2and theframework thanthatof N2.CO2has stronger quadrupole moment (4.30×1026esu·cm2)and polarizability (2.91×1025cm3), while N2have weaker q ua d rupole mo m e nt (1.52×1026e su·c m2)an d p o l a rizab ili t y(1.74×1025cm3).[37]So, CO2has the stronger electrostatic interaction with frameworks than that of N2. In addition, the pore sizes focus on ultramicropores(<7 A?),which is the optimum size for separate CO2/N2mixtures.CO2has preferential adsorption behavior to flil the optimal adsorption sites,whereafter, N2has no void space to adsorb into frameworks due to smaller pore sizes.

    The separation of CO2from N2is an essential step in power plant (“post-combustion”) flue-gas purifciation. Flue gases typicallycontain 3%-15%CO2and morethan70%N2.[38]In ordertobe closertothe practicalproductionand life,CO2/N2mixture gases with 15:85 ratio are taken into account. Figure 4(b) shows the selectivities of CO2over N2in non-equimolar CO2/N2mixtures with ratios of 15:85. Overall,the selectivities of CO2over N2in non-equimolar CO2/N2mixtures show a similar trend to that in equimolar CO2/N2mixtures. And the sequence of selectivity in the azo-based pillar[6]arenes is pillar[6]arene N4(~132)>pillar[6]arene N2(~36)>pillar[6]arene (~28), which shows its sequence is not affected by molar fraction of CO2/N2mixture. Compared with azo decorated structures, pillar[6]arene N4 has superior selectivity of CO2than that of nanoporous azo-linked polymers(~25-38)[39]and some azo-COPs(~95-130)[40]at the same conditions. Moreover, the selectivity of CO2over N2in pillar[6]arene N4 is higher than that of traditional materials, such as, JLU-Liu46-47 (~50),[41]edge-functionalized nanoporous carbons(~3-130)at 298 K,[30]and ordered carbon nanotube arrays(3-65)at 303 K.[42]As a whole,the azobased pillar[6]arenes can provide a high single-component adsorption capacity and selectivity of CO2/N2,and thus exhibit a promising potential for CCS technology.

    Fig.4. Selectivity of CO2 over N2 in the azo-based pillar[6]arenes at 298 K with the different mixture ratios of CO2/N2,(a)50:50,(b)15:85.

    3.4. Mechanism of CO2/N2 adsorption and separation

    To deepen our understanding of intrinsic mechanisms of CO2/N2adsorption and separation in the azo-based pillar[6]arenes, isosteric heats (Qst), interaction analyses, the most stable adsorption confgiuration and the corresponding maximum adsorption energy are presented.

    TheQstis the critical parameter to illustrate the interaction strength between CO2/N2and frameworks.Qstis calculated by the Clausius-Clapeyron formula

    Fig.5. Isosteric heat of CO2 and N2 on the azo-based pillar[6]arenes at 298 K.

    To estimate intrinsic of the interaction between CO2/N2and frameworks in detail, Coulomb and van der Waals interactions of gas-framework in azo-based pillar[6]arenes are calculated in Fig. 6. The van der Waals interactions of CO2/N2-framework are relatively larger than the corresponding Coulomb interactions. The pillar[6]arene N4 shows the maximal van der Waals and Coulomb interactions, which is larger than pillar[6]arene N2 and pillar[6]arene for CO2/N2.For the CO2,the van der Waals interaction of CO2-framework in the pillar[6]arene is maximum (~16.11 kJ·mol?1), which accounts for 74.79% contributions of the total interactions.The results show that the van der Waals interaction plays a leading role forthe CO2adsorption capacity. The vander Waals interaction of CO2increase to~17.70kJ·mol?1for pillar[6]arene N2 andfor~18.55 kJ·mol?1pillar[6]areneN4 due to the N=N groups. The van der Waals and Coulomb interactions of N2are less than these of CO2. The Coulomb interaction between N2and framework is very small (~0.89-0.38 kJ·mol?1), which is attributed to the weak electric quadrupole moment of N2. The results reveal the nature mechanism of the difference between CO2and N2adsorption capacities.

    Fig. 6. Coulomb and van der Waals interactions of gas-framework in the azo-based pillar[6]arenes at 298 K. (a) and (c) Van der Waals interactions,(b)and(d)Coulomb interactions.

    Fig. 7. Stable adsorption configurations CO2 (a)-(c), and N2 (d)-(f) at different sites.

    To understand the interaction between CO2/N2and each part in the azo-based pillar[6]arene surface,the adsorption energy(Eads)is explored by DFT simulation.Eadsis obtained by the following equation:[44]Eads=Egas+surf?Egas?Esurf,(7)

    whereEgasis the energy of the gas molecule,Esurfis the energy of fragment in the azo-based pillar[6]arenes,andEgas+surfis the total energy of the gas molecule adsorbed on the fragment of azo-based pillar[6]arens. Based on the definition, a larger negative value represents the more stable adsorption.The macrocyclic backbone are cut off from the initial and azobased pillar[6]arenes to illustrate the effect of O and N atom on CO2/N2molecules. The most stable adsorption configuration of CO2in the fragment of initial pillar[6]arene is shown in Fig. 7(a), CO2is adsorbed on the top of O atom, and the corresponding adsorption energy is?0.166 eV. For the azobased pillar[6]arene,the most stable adsorption configuration of CO2in the fragment of azo-based pillar[6]arene is that CO2is adsorbed on the top of N atom in the N=N group, and the corresponding adsorption energy is?0.306 eV in Fig. 7(c).In addition, the CO2adsorbed on the top of O atom in the azo-based pillar[6]arene is calculated, and the adsorption energy is?0.265 eV in Fig.7(b). Comparing with initial framework, azo-functionalization increase the interaction between CO2and O atom in the frameworks,and the N atoms in N=N group provide most stable adsorption configuration of CO2.For N2molecule, the most stable adsorption configuration of N2in the fragment of initial pillar[6]arene is that CO2is adsorbed on the top of O atom, and the corresponding adsorption energy is?0.153 eV in Fig. 7(d). This value is smaller than that of the azo-based pillar[6]arene (?0.225 eV). CO2is adsorbed on the top of N atom in the N=N group, that is,the most stable adsorption configuration of N2in the fragment of azo-based pillar[6]arene,and the corresponding adsorption energy is?0.253 eV in Fig. 7(e). In short, the introduction of N=N groups has a more positive influence on CO2/N2for surface adsorption enhancement by inductive effect/direct interaction,especially for CO2.

    4. Conclusion

    The effects of azo-functionalization on the adsorption and separation of CO2/N2in pillar[6]arenes have been investigated by DFT and GCMC simulations. Azo-based pillar[6]arene provide a favorable environment for the separation of CO2/N2by suitable pore sizes. The azo-based pillar[6]arene enhance the adsorption and separation capacity of CO2/N2. Adsorption capacity of CO2/N2is more significantly enhanced by azo-functionalization,and the more N=N group leads to the more adsorption capacity. The isosteric heat and adsorption energy show that azo-functionalization can effectively increase the interaction between CO2/N2and pillar[6]arene. The interaction analysis shows that azofunctionalization enhance the van der Waals and Coulomb interaction, and van der Waals interaction of gas is higher than the Coulomb interaction. This work highlights the effects of azo-functionalization on the adsorption and separation of CO2/N2in pillar[6]arenes, and provides an effective strategy for designing and screening adsorbent materials for carbon capture and separation.

    猜你喜歡
    王娟徐國
    Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
    The formation of adolescent performing culture in the chorus
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass?
    貧血鑒別診斷中血液檢驗(yàn)的效果及作用分析
    健康之家(2021年19期)2021-05-23 09:10:44
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    追本溯源提升素養(yǎng)
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    讀《牡丹亭》
    国产成人aa在线观看| 最新中文字幕久久久久| 国产精品国产高清国产av| av专区在线播放| 亚洲在线自拍视频| 午夜久久久久精精品| 亚洲精品乱码久久久v下载方式| 91精品国产九色| 亚洲成人久久爱视频| 国产淫片久久久久久久久| 精品欧美国产一区二区三| 亚洲婷婷狠狠爱综合网| 一级毛片我不卡| 禁无遮挡网站| 人妻少妇偷人精品九色| 一本一本综合久久| 久久久久网色| 亚洲欧美中文字幕日韩二区| 亚洲国产精品成人久久小说| 最近手机中文字幕大全| 一区二区三区乱码不卡18| 最近手机中文字幕大全| 好男人在线观看高清免费视频| 久久国内精品自在自线图片| 女人十人毛片免费观看3o分钟| 一二三四中文在线观看免费高清| 91在线精品国自产拍蜜月| 免费观看人在逋| 国产高清有码在线观看视频| 69人妻影院| 久久6这里有精品| 99国产精品一区二区蜜桃av| 亚洲欧美日韩卡通动漫| 91久久精品国产一区二区成人| av国产久精品久网站免费入址| 一本久久精品| 在现免费观看毛片| 久久久国产成人免费| 毛片女人毛片| 能在线免费观看的黄片| 最近2019中文字幕mv第一页| 国产精品一二三区在线看| 久99久视频精品免费| 免费在线观看成人毛片| 欧美3d第一页| 超碰97精品在线观看| 特大巨黑吊av在线直播| 亚洲国产精品久久男人天堂| 国产av一区在线观看免费| 又黄又爽又刺激的免费视频.| 中文在线观看免费www的网站| 男女那种视频在线观看| 在线播放国产精品三级| 国产精品麻豆人妻色哟哟久久 | 亚洲av熟女| 亚洲欧美日韩卡通动漫| 日韩高清综合在线| 亚洲四区av| 亚洲精品国产av成人精品| 国产真实乱freesex| 一本一本综合久久| 热99re8久久精品国产| 超碰97精品在线观看| 嘟嘟电影网在线观看| 午夜福利成人在线免费观看| 欧美另类亚洲清纯唯美| 国产一区有黄有色的免费视频 | 美女cb高潮喷水在线观看| 91精品伊人久久大香线蕉| 天天躁日日操中文字幕| 99久久精品国产国产毛片| 国产精品美女特级片免费视频播放器| 熟女人妻精品中文字幕| 国产人妻一区二区三区在| 超碰97精品在线观看| 国产在线一区二区三区精 | 欧美日韩国产亚洲二区| 亚洲在久久综合| 网址你懂的国产日韩在线| 在线天堂最新版资源| 18+在线观看网站| 最近最新中文字幕免费大全7| 国产高潮美女av| 欧美日本亚洲视频在线播放| 91av网一区二区| 99热网站在线观看| 国产精品国产三级国产av玫瑰| 久久99热这里只有精品18| 国产精品人妻久久久影院| 少妇的逼好多水| 视频中文字幕在线观看| 男女视频在线观看网站免费| 中文乱码字字幕精品一区二区三区 | 久久亚洲国产成人精品v| 欧美日韩国产亚洲二区| 亚洲av二区三区四区| 99视频精品全部免费 在线| 男的添女的下面高潮视频| 国产极品天堂在线| 最新中文字幕久久久久| 国产成年人精品一区二区| 一级毛片电影观看 | 最近2019中文字幕mv第一页| 亚洲一区高清亚洲精品| 在线播放国产精品三级| 一级毛片aaaaaa免费看小| 国产午夜精品一二区理论片| 成人高潮视频无遮挡免费网站| 国产高清不卡午夜福利| 国产毛片a区久久久久| av.在线天堂| 亚洲欧美精品专区久久| 亚洲av成人精品一二三区| 麻豆国产97在线/欧美| 久久综合国产亚洲精品| 最后的刺客免费高清国语| 乱系列少妇在线播放| 中文字幕亚洲精品专区| 黄色欧美视频在线观看| 免费av观看视频| 一级黄色大片毛片| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩无卡精品| 久久这里只有精品中国| 国产亚洲午夜精品一区二区久久 | 久久这里有精品视频免费| 国产免费男女视频| 成人美女网站在线观看视频| 亚洲在线观看片| 亚洲人成网站在线播| 中文在线观看免费www的网站| 可以在线观看毛片的网站| 亚洲,欧美,日韩| 熟女电影av网| 只有这里有精品99| 亚洲精品乱久久久久久| 噜噜噜噜噜久久久久久91| 超碰av人人做人人爽久久| 国语对白做爰xxxⅹ性视频网站| 国产精品美女特级片免费视频播放器| 久热久热在线精品观看| 国产淫语在线视频| 久久久久国产网址| 国内精品美女久久久久久| 91aial.com中文字幕在线观看| 亚洲av.av天堂| 舔av片在线| 国语对白做爰xxxⅹ性视频网站| 国产单亲对白刺激| 99热精品在线国产| 亚洲色图av天堂| 国产亚洲5aaaaa淫片| 成人国产麻豆网| 国产精品女同一区二区软件| 国内精品宾馆在线| 晚上一个人看的免费电影| 国产色婷婷99| 伦理电影大哥的女人| 91午夜精品亚洲一区二区三区| av免费在线看不卡| 国产黄色小视频在线观看| 毛片女人毛片| 久热久热在线精品观看| 亚洲人成网站在线观看播放| av天堂中文字幕网| 村上凉子中文字幕在线| 在线免费观看的www视频| 一级毛片久久久久久久久女| 一区二区三区乱码不卡18| 亚洲欧美精品综合久久99| 免费一级毛片在线播放高清视频| 精品不卡国产一区二区三区| 村上凉子中文字幕在线| 日本猛色少妇xxxxx猛交久久| 亚洲高清免费不卡视频| 桃色一区二区三区在线观看| 国产日韩欧美在线精品| 免费av不卡在线播放| 黄片wwwwww| 听说在线观看完整版免费高清| 最近2019中文字幕mv第一页| 老师上课跳d突然被开到最大视频| 欧美日本视频| 国产成人精品久久久久久| 男女下面进入的视频免费午夜| 成人漫画全彩无遮挡| 久99久视频精品免费| 国产又黄又爽又无遮挡在线| 大香蕉久久网| 日韩制服骚丝袜av| 久久久久久大精品| 插阴视频在线观看视频| 欧美极品一区二区三区四区| a级一级毛片免费在线观看| 国产精品久久久久久久电影| 亚洲乱码一区二区免费版| 国产一区二区亚洲精品在线观看| 日韩高清综合在线| 桃色一区二区三区在线观看| videos熟女内射| 一个人看视频在线观看www免费| 国产爱豆传媒在线观看| 国产不卡一卡二| 嫩草影院精品99| 国产精品一区www在线观看| 老师上课跳d突然被开到最大视频| 国内精品一区二区在线观看| 国产乱人视频| 高清日韩中文字幕在线| 国产黄色小视频在线观看| 国产精品美女特级片免费视频播放器| 天堂影院成人在线观看| 国产精品.久久久| 日产精品乱码卡一卡2卡三| 日本猛色少妇xxxxx猛交久久| 亚洲国产最新在线播放| 干丝袜人妻中文字幕| 欧美潮喷喷水| 亚洲精品aⅴ在线观看| 国产男人的电影天堂91| videossex国产| 精品99又大又爽又粗少妇毛片| 国产精品人妻久久久久久| 日本免费一区二区三区高清不卡| 99久久中文字幕三级久久日本| 国产免费视频播放在线视频 | 国产精品一区www在线观看| 久久久a久久爽久久v久久| 久久久久久久久久久免费av| 久久国产乱子免费精品| 免费大片18禁| 久久精品久久久久久久性| 18+在线观看网站| 日韩av不卡免费在线播放| 成年女人永久免费观看视频| 国产亚洲精品久久久com| 欧美成人午夜免费资源| 内射极品少妇av片p| 国产精品无大码| 久久久精品94久久精品| 午夜激情欧美在线| 久久久久久久久中文| 午夜福利在线观看免费完整高清在| 精品国产三级普通话版| av在线天堂中文字幕| 久久精品夜色国产| 亚洲av中文字字幕乱码综合| 男的添女的下面高潮视频| 欧美精品国产亚洲| 日本欧美国产在线视频| 99久久人妻综合| www.av在线官网国产| 国产三级在线视频| 日韩中字成人| 国产亚洲最大av| 精品无人区乱码1区二区| 久久久久久久久中文| 神马国产精品三级电影在线观看| 色综合站精品国产| 国产黄色视频一区二区在线观看 | 亚洲av福利一区| 老司机影院成人| 成人欧美大片| 久久热精品热| 91久久精品国产一区二区三区| 精品人妻熟女av久视频| 国产精品野战在线观看| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx在线观看| 日韩一区二区三区影片| 久久亚洲国产成人精品v| 久久欧美精品欧美久久欧美| 欧美性猛交╳xxx乱大交人| 麻豆乱淫一区二区| 亚洲无线观看免费| 少妇人妻一区二区三区视频| 女人十人毛片免费观看3o分钟| 亚洲欧美精品综合久久99| 天天一区二区日本电影三级| 亚洲成人精品中文字幕电影| 欧美性猛交╳xxx乱大交人| 女人被狂操c到高潮| 高清视频免费观看一区二区 | av免费观看日本| 一区二区三区四区激情视频| 中文字幕免费在线视频6| 在线a可以看的网站| av又黄又爽大尺度在线免费看 | 精品国内亚洲2022精品成人| 亚洲精品aⅴ在线观看| 成年女人永久免费观看视频| 99热6这里只有精品| 啦啦啦啦在线视频资源| 国产黄a三级三级三级人| 国产精品野战在线观看| 亚洲精品国产成人久久av| 国产熟女欧美一区二区| 久久久国产成人精品二区| 国产v大片淫在线免费观看| 少妇的逼水好多| 日日啪夜夜撸| 狠狠狠狠99中文字幕| 国产v大片淫在线免费观看| 色5月婷婷丁香| 中文天堂在线官网| 国产亚洲最大av| 99热这里只有是精品在线观看| 国产伦一二天堂av在线观看| 国产v大片淫在线免费观看| 久久久欧美国产精品| 只有这里有精品99| 少妇裸体淫交视频免费看高清| 晚上一个人看的免费电影| 三级男女做爰猛烈吃奶摸视频| 99久久中文字幕三级久久日本| 欧美色视频一区免费| av专区在线播放| 自拍偷自拍亚洲精品老妇| 91在线精品国自产拍蜜月| 久久久久久久久久久丰满| 久久精品91蜜桃| 变态另类丝袜制服| 国产黄色视频一区二区在线观看 | 亚洲av福利一区| 51国产日韩欧美| 成人高潮视频无遮挡免费网站| 婷婷六月久久综合丁香| 午夜福利视频1000在线观看| 国产成人精品一,二区| 日韩一本色道免费dvd| 九色成人免费人妻av| 99热全是精品| 免费看光身美女| 久久久久久久久大av| 亚洲成人久久爱视频| 尾随美女入室| 国产精品久久久久久精品电影| 国产片特级美女逼逼视频| 国产亚洲精品av在线| 国产不卡一卡二| 日韩高清综合在线| 国产亚洲精品av在线| 日日撸夜夜添| 建设人人有责人人尽责人人享有的 | 欧美+日韩+精品| 国产 一区精品| 男人的好看免费观看在线视频| 国产精品野战在线观看| 色噜噜av男人的天堂激情| 我的女老师完整版在线观看| 嫩草影院精品99| 亚洲精品乱码久久久v下载方式| 国产一级毛片七仙女欲春2| 97在线视频观看| 国产v大片淫在线免费观看| 亚洲国产高清在线一区二区三| 久久久久久久午夜电影| 欧美丝袜亚洲另类| 伊人久久精品亚洲午夜| 菩萨蛮人人尽说江南好唐韦庄 | 男人狂女人下面高潮的视频| 黄色日韩在线| 色哟哟·www| 麻豆乱淫一区二区| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 欧美成人精品欧美一级黄| 国产av码专区亚洲av| 欧美性猛交黑人性爽| 亚洲av不卡在线观看| 你懂的网址亚洲精品在线观看 | 成人一区二区视频在线观看| 亚洲精品日韩av片在线观看| videossex国产| 欧美高清成人免费视频www| 草草在线视频免费看| 国产精品一区www在线观看| 国产精品乱码一区二三区的特点| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 中文字幕亚洲精品专区| 永久网站在线| 一个人免费在线观看电影| 国产色婷婷99| 日韩精品青青久久久久久| 免费搜索国产男女视频| 日韩视频在线欧美| 日韩中字成人| 亚洲国产色片| 天天一区二区日本电影三级| 99久久中文字幕三级久久日本| 99在线视频只有这里精品首页| 国产精品99久久久久久久久| 亚洲av.av天堂| 99热这里只有是精品在线观看| .国产精品久久| 一级毛片电影观看 | 欧美激情久久久久久爽电影| 国产精品一区二区三区四区久久| 婷婷色av中文字幕| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| 久久精品国产99精品国产亚洲性色| 欧美日韩一区二区视频在线观看视频在线 | 长腿黑丝高跟| 一卡2卡三卡四卡精品乱码亚洲| 男的添女的下面高潮视频| 精品久久久久久久末码| 看黄色毛片网站| 亚洲综合色惰| 久热久热在线精品观看| 纵有疾风起免费观看全集完整版 | 亚洲美女视频黄频| 成人性生交大片免费视频hd| 亚洲最大成人中文| 99在线人妻在线中文字幕| 中文字幕制服av| 日韩av不卡免费在线播放| 国模一区二区三区四区视频| 国产伦精品一区二区三区四那| 男人舔女人下体高潮全视频| 国产精品一区www在线观看| www.av在线官网国产| 国产一区二区亚洲精品在线观看| 免费黄网站久久成人精品| 久久欧美精品欧美久久欧美| 欧美成人一区二区免费高清观看| 尾随美女入室| 免费电影在线观看免费观看| 91精品国产九色| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| kizo精华| 国产成人福利小说| 国产高清三级在线| 精品国产三级普通话版| 国产黄色视频一区二区在线观看 | 一级毛片久久久久久久久女| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 成人无遮挡网站| 国产成人freesex在线| 国产精品一区二区三区四区久久| 特大巨黑吊av在线直播| av国产免费在线观看| 毛片女人毛片| h日本视频在线播放| 综合色av麻豆| 久久久a久久爽久久v久久| 国产精品.久久久| 少妇裸体淫交视频免费看高清| 联通29元200g的流量卡| 亚洲综合色惰| 久久久国产成人精品二区| 精品熟女少妇av免费看| 18禁在线播放成人免费| 精品久久久噜噜| 久久精品夜夜夜夜夜久久蜜豆| 51国产日韩欧美| 日本免费在线观看一区| 听说在线观看完整版免费高清| 大又大粗又爽又黄少妇毛片口| 日韩精品有码人妻一区| 蜜桃亚洲精品一区二区三区| 成人毛片a级毛片在线播放| 18禁在线无遮挡免费观看视频| 国产免费男女视频| 91久久精品国产一区二区三区| 欧美一级a爱片免费观看看| 精品一区二区免费观看| 国产69精品久久久久777片| 中文字幕av成人在线电影| 国产精品熟女久久久久浪| 国产精品一区二区在线观看99 | 美女大奶头视频| 久99久视频精品免费| 亚洲国产高清在线一区二区三| 国产成人a∨麻豆精品| 亚洲最大成人中文| 青春草亚洲视频在线观看| 亚洲在线观看片| 国产成人免费观看mmmm| 内地一区二区视频在线| 亚洲成人中文字幕在线播放| 国产中年淑女户外野战色| 久久热精品热| 老司机影院成人| 中文亚洲av片在线观看爽| 狠狠狠狠99中文字幕| 欧美激情国产日韩精品一区| 欧美性猛交黑人性爽| 精品国内亚洲2022精品成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 岛国毛片在线播放| 一级二级三级毛片免费看| 国产又色又爽无遮挡免| 国产成人福利小说| av在线老鸭窝| 精品一区二区免费观看| 久久久久久久国产电影| 婷婷色综合大香蕉| 久久久国产成人精品二区| 国产极品天堂在线| 简卡轻食公司| 麻豆久久精品国产亚洲av| 精品久久久久久久末码| 日本熟妇午夜| 中国国产av一级| 午夜视频国产福利| 精品久久久久久久久av| 99热精品在线国产| 亚洲av成人av| 国产日韩欧美在线精品| 国产精品一区二区三区四区久久| 亚洲av成人精品一区久久| 久久久成人免费电影| 国产精品久久电影中文字幕| 欧美bdsm另类| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区| 少妇人妻精品综合一区二区| 22中文网久久字幕| 熟女人妻精品中文字幕| 永久免费av网站大全| 午夜免费激情av| 欧美三级亚洲精品| 免费观看的影片在线观看| 中文亚洲av片在线观看爽| 欧美成人a在线观看| 亚洲经典国产精华液单| av在线播放精品| 日韩,欧美,国产一区二区三区 | 色5月婷婷丁香| 深爱激情五月婷婷| 特级一级黄色大片| 免费观看人在逋| 亚洲在久久综合| 在线观看美女被高潮喷水网站| 日日摸夜夜添夜夜添av毛片| 我要看日韩黄色一级片| 午夜视频国产福利| 亚洲伊人久久精品综合 | 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| kizo精华| 国产亚洲午夜精品一区二区久久 | 精品人妻偷拍中文字幕| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 日日干狠狠操夜夜爽| 黄色一级大片看看| 日日摸夜夜添夜夜爱| 免费无遮挡裸体视频| videossex国产| 看十八女毛片水多多多| 毛片一级片免费看久久久久| 国产白丝娇喘喷水9色精品| 午夜福利在线观看吧| 亚洲av二区三区四区| 18禁在线无遮挡免费观看视频| av福利片在线观看| 国语对白做爰xxxⅹ性视频网站| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影小说 | 久久久久久久久中文| 激情 狠狠 欧美| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站| 亚洲在久久综合| 99国产精品一区二区蜜桃av| 夫妻性生交免费视频一级片| 一本久久精品| 三级国产精品欧美在线观看| 热99re8久久精品国产| 国产精品无大码| 国产v大片淫在线免费观看| 国产精品福利在线免费观看| 国产一级毛片在线| 成人国产麻豆网| 乱码一卡2卡4卡精品| 国产亚洲91精品色在线| 国产伦精品一区二区三区四那| 中文字幕熟女人妻在线| 麻豆成人av视频| 日日摸夜夜添夜夜爱| 九九在线视频观看精品| 1024手机看黄色片| 亚洲精品日韩在线中文字幕| 超碰97精品在线观看| 国内揄拍国产精品人妻在线| 亚洲人与动物交配视频| 只有这里有精品99| 国产单亲对白刺激| 亚洲av成人精品一二三区| 国产大屁股一区二区在线视频| 国产亚洲91精品色在线| 久久久久久久久中文| 国产黄片视频在线免费观看| 九草在线视频观看| 一本久久精品| 男女啪啪激烈高潮av片| 久久精品国产99精品国产亚洲性色| 最新中文字幕久久久久| 丝袜喷水一区| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜添av毛片| 日日摸夜夜添夜夜爱| av.在线天堂| 精品人妻熟女av久视频| 精品人妻视频免费看| 99久久人妻综合| 亚洲熟妇中文字幕五十中出| 国产又色又爽无遮挡免|