• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass?

    2021-10-28 07:09:36XingCaiLi李興財(cái)JuanWang王娟andGuoQingSu蘇國慶
    Chinese Physics B 2021年10期
    關(guān)鍵詞:王娟

    Xing-Cai Li(李興財(cái)) Juan Wang(王娟) and Guo-Qing Su(蘇國慶)

    1School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan 750021,China

    2Ningxia Key Laboratory of Intelligent Sensing&Desert Information,Ningxia University,Yinchuan 750021,China

    3Xinhua College of Ningxia University,Yinchuan 750021,China

    Keywords: particle electrification,electrostatic force,photovoltaic glass,dust deposition

    1. Introduction

    Dust particle deposition is an essential factor affecting the efficiency of the photovoltaic (PV) power generation system.[1,2]Studies have shown that a mass density of 0.4 mg/cm2of the dust on the PV panel can reduce the generation efficiency of the panel by about 30%, and even a small amount of deposited dust (0.06 mg/cm2) can lead the generation efficiency to decrease by about 2.5%.[3]According to some researches, the electrical efficiency of not-cleaned PV cells decreases from 16%to 8%over 45 days,but in Baghdad–Iraq, it dropped to less than 6.24% in one day, 11.8% in one week, and 18.74% in one month.[4–6]The influence of deposited dust particles on the power generation performance of PV panel is related to the mass and physical properties of the particles.[7]Long-term accumulation of dust particles will cause the hot spot effect of PV panel, and even damage the panel in severe cases.[8]An effective dust removing technology can wipe out the deposited dust and frequently using it can reduce the loss dramatically. The widespread existence of atmospheric aerosols is beneficial to the cleaning of the PV panel surface.[9]To clarify the deposition mechanism of dust on the PV panel surface may be helpful in designing a more cost-effective dust removing method or PV panel installation process.[9]

    Numerical simulation research has been carried out on the sand & dust deposition on the surface of PV panel based on the fluid dynamics method in recent years. For example,Luet al. studied the flow field and the dust deposition process around the solar panel installed on the ground by adopting a technique coupling computational fluid dynamics(CFD)with the discrete particle model(DPM).[10]Another study discussed the deposition process and behavior of dust on groundmounted solar PV arrays based on the shear stress transportk-turbulence model and the discrete particle model.[11]Chitikaet al. investigated the parametric installation optimization for mitigating the non-tracking solar PV module fouling based on the CFD prediction of dust deposition.[12]Unfortunately, the above-mentioned studies only take the effects of the fluid force and gravity into account. However,the electric phenomenon caused by the contact between different materials has long been concerned.[13–17]The movement of particles in the air is bound to be accompanied by collisions with each other, which will lead to electrification and thus generate an electric field of a certain intensity in the air.[18,19]Few studies on the particle deposition considered the electrification in the atmosphere,except for the research of Cooperet al.,[20]who,however,explored the deposition of charged aerosol particles in the air rather than on the surface of PV panels.

    There are also a lot of studies on the adhesion force between particles and plates. For example,Rimaiet al.[21]studied the mechanism of deformations induced by adhesion between micrometer-sized particles and various substrates, and then discussed the effective application ranges of several adhesion theories.In the analysis of the effect of various fundamental forces on the adhesion of fine dust particles,Walton[22]suggested the dominant role that van der Waals adhesion forces played in small-sized particles. In particular,they gave special regard to the electrostatic image force between a particle and a conductor plane.The study of Moutinhoet al.[23]revealed that the van der Waals forces and capillary forces play the leading role in attaching dust particles to PV modules. Jianget al.[24]used an atomic force microscope to measure the adhesion force between dust particles and PV modules under the action of an electrostatic field,and found that the electrostatic force is five times and one order of magnitude larger than the van der Waals force when applied voltage is 100 V and 100 V to 500 V, respectively. Another paper reported that the electrostatic force is 1 or 2 orders of magnitude stronger than the van der Waals force and the capillary hydraulic force,[25]indicating that the electrostatic force induced by the electric field generated by PV modules cannot be ignored. Obviously,such a kind of electrostatic force differs from that generated in the process of dynamic contact between the deposited particles and the PV glass.

    According to the dynamic contact electrification mechanism, the PV glass will carry a great deal of static charges when contacted with a large number of moving particles,[26]and the resulting electrostatic field will increase the charges,[16,27]thus it also enhances the electrostatic force of moving particles.[28]Under certain conditions, more sand particles will be deposited on the PV panels.[29]However,the contact electrification between deposited dust and PV glass panels is rarely studied, and there is a lack of reports on the influence of such an electrostatic force on the dust deposition process. In view of these situations, in this work, the contact electrification between the deposited sand&dust and the PV panel is studied, and the electrostatic force of the electrified sand particles is analyzed. Furthermore,a new PV glass material is proposed based on the analysis.

    2. Contact electrification model

    The modeling of contact electrification mechanism is a classical problem,and a large number of physical models have been developed up to this time.[16,17,30–36]This paper adopts the physical model given by Xieet al.,[35]which can well describe the influence of the particle size ratio on its net charge.The basic equation of the model is

    whereρis the surface charge density andPDis the probability of ion exchange,which is set to be 0.5.[35]The contact areaAi(i=1,2)of two colliding particles can be calculated from[35]

    wherem1andm2are the masses of the two colliding particles, whose radii areR1andr1respectively,Eiandviare respectively the elastic modulus and Poisson’s ratio of the two particles,andvris the impact velocity.

    The particle electrification mechanism model under the impact of an electrostatic field can be expressed as[38]

    whereEis the environmental electric field,riis the radius of thei-th particle,θis the angle between the line of the particle center and the electric filed,QiandQjare the initial charge of thei-th andj-th particles,respectively,ωis the ratio between the charge of one particle transferred to other particles and this particle’s original charge,andγ1is the radius ratio of the two colliding particles.

    Therefore, the charge of the particle after collision in an electric field is given as

    In this paper,the collision occurs between the particle and the PV plate,so we assume that the radius of the massive particle is 1000 times larger than that of the smaller particle,similar to the treatment adopted in Ref.[19].

    3. Electrostatic force acting on charged deposition particles

    As shown in Figs.1 and 2,assuming the length of the PV panel to be 2aand the width to be 2b, a rectangular coordinate system is established by taking the center of the panel as the origin. The number concentration of particles in the atmosphere is represented byN, and the charge of particles is expressed by the charge–mass ratioqm. The coordinate of the center of the element is assumed to be (x,y,z) and the electric field intensity generated by it must have componentsEx,Ey, andEz. Owing to symmetry, there must be no horizontal electric field component and only a vertical component exists in the center of the plate. The three-dimensional(3D)electric field distribution can be found at other positions.

    Fig.1. Scheme of electric field generated by airborne particles.

    Fig.2. Scheme of electric field generated by plate.

    Assuming the diameter of particles suspended in the air to beD,the particle mass density to beρ,the particle number concentration to beN(z),and the particle charge-mass ratio to beqm, the electric field at the position (x1,y1,z1) above the PV panel can be expressed as[39]

    Considering the infinite nature of the space, the electric field generated by the sand particles suspended in the air has only a vertical component. Athough a single particle has a extremely small charge, the electrostatic field generated by the sand particles with a high concentration in the air should not be ignored. This extreme case is not considered in this paper.

    When a large number of falling particles collide with or slide on the PV glass panel,both the particles and the PV panel carry some electrostatic charges, thus generating an electric field around the PV panel.[39–41]Smaller particles are negatively charged while the larger ones are positively charged,[42]so we assume that the charge-mass ratio of the deposition particle is?qm. According to the law of charge conservation,the PV glass plate carries the same number of charges as the number of deposition particles.If we assume the mass concentration of deposited particles in the atmosphere under specified conditions to bemq,the falling velocity to bev,and the horizontal projection area of the PV panel to beA, there is aboutmqvAtparticles colliding with the PV glass panel at timet.The relative movement between deposition particles and the PV panel charges the PV glass plate, whose surface charge density should be

    When the distance between particles and the plate is a minimum value,the plate can be regarded as infinite,and then the electric field can be solvedE=σ/(2ε0).

    Then,the electrostatic force applied to the charged particles can be calculated from

    In order to highlight the effect of electrostatic force from the contact electrification process between the dust particles and the PV glass plate on the deposition and removal process of the particles, we compare the forces on the particles deposited on the tilted photovoltaic panels.

    4. Results and analysis

    Firstly,we measure the charge of polydisperse deposition particles when they fall from different heights and collide with tilted PV panels. We describe the particle charge by using the ratio of the charge to the mass of particle (i.e.charge–mass ratio)in this paper since it is widely used in the present research.[44]The schematic diagram of the experiment device and the particle size distribution function are shown in Fig.3.The dust particles used in the experiment are collected from the southeastern edge of the Tengger desert. When the particles fall free from a certain height, they will collide with and slide over the photovoltaic glass panel. Some of the particles remain on the glass panel, the other slides down the inclined plane and falls into the Faraday cup, from which we can obtain the total chargeQon the particles. Then we weigh the particles in the Faraday cup and record their massmsand. Now we can obtain the charge–mass ratioqm=Q/msand. In the experiment,the EST111 Static Charge Meter is used to measure the charge of the particles,the BSA224S electronic analytical balance is used to measure the mass of particles.

    Fig. 3. (a) Schematic diagram of experimental construction and (b) size distribution of experimental particles.

    Fig. 4. Particle charge–mass ratios varying with impact velocity on an inclined PV glass panel at tilt angle(a)30° and(b)60° for different L values.

    Figure 5 shows the variations of the charge–mass ratio of deposited dust particle with the sliding distance of particle on the PV glass plate. It is obvious that with the increase of the sliding distance and the drop height,the charge–mass ratio of particle increases nonlinearly. Besides,by comparing the four figures in Fig.5, it is easy to find that as the plate inclination angle increases,the charge–mass ratio of particle increases to different degrees. For this reason,the influence of the plate tilt angle on the particle charge–mass ratio is discussed in Fig.6,where the experiments on selected particles are conducted at a free-falling height of 30 cm and 70 cm,respectively. According to the figure,the charge–mass ratio of particle increases as the plate inclination angle enlarges, and a larger drop height results in a higher particle charge. As is well known,the particle’s charge increases more easily when it slides with a plate.The different experimental conditions make the motion states of particles and the contact mode between the particles and the glass plate changed. For example, when the plate inclination angle is small,the particles mainly roll,and with the increase of the angle, the sliding process of the particles is dominant,so the charge on particles increases.

    Fig.5. Particle charge–mass ratios versus sliding distance on an inclined PV glass panel at tilt angle(a)30° and(b)60° for different h values.

    Fig.6. Charge–mass ratios versus tilt angle on particle charge for different heights.

    At the same time, we also measure the distribution of electrostatic field on the photovoltaic glass plate in the abovementioned experiment process. The result is shown in Fig.7.From it we can find that the electrostatic field shows a bellshaped distribution. This is determined by the cooperation of the electric field forces around the location.

    In the above study, we involve with the charged rules of deposition particles after colliding with photovoltaic glass through some experimental measurements. Next, we will investigate the distribution law of electrostatic force received by particles through numerical simulation. These researches will be based on Eq. (11). The results are shown in Fig. 8.Here, we will set the particle distance to bez1=10 cm, the charge–mass ratio to be 2 nC/g, and the particle radius to be 35μm. The results show that the electrostatic forces are distributed in a bell shape,reaching a maximum value in the center of the plate and a minimum value around the edge of the plate. This law is consistent with the electric field distribution of PV glass plate obtained from the above-mentioned experiment. Although the electric quantity on the particle is small,the electrostatic force is still slightly higher than the gravity(4.66 nN),so it will change the deposition process of particles on the surface of photovoltaic panels. Therefore, it is necessary to consider the contact electrification process between deposited particles and the photovoltaic panels,especially the derived electrostatic force in the simulation of the dust deposition on the photovoltaic panels.

    Fig.7. The E-field profile on charged PV plate.

    Fig.8. Electrostatic force acting on charged particles.

    As indicated in Fig.9,the rule of electrostatic force varies with the distance between charged particles and the PV glass plate is discussed. All the parameters are equal to those in Fig. 8, except for the distancez1between particles and the PV plate. We can see that the electrostatic forces fluctuate violently, which can be explained by the mutual attraction between two charged particles with the same charge and the tablet with the opposite charge, as reported in Ref. [7]. It should be pointed out that the numerical results also show that the electric field at the central position diverges with the decrease of the distance between the particles and the plate surface.

    In order to analyze the magnitude relation among the electrostatic forces applied to particles of different sizes, we calculate the electrostatic force acting on particles with sizes of 15 μm, 25 μm, and 35 μm, located atz1=0.1 μm, and compare the results with those of particles each with a size of 5 μm. The simulation results shown in Fig. 10 indicate that the electrostatic force of particles increases significantly with the particle size increasing,which is attributed to the increasing of charge–mass ratio during the collision between particles and the plate surface. Besides, it can be seen from the figure that with the increase of the particle size,the electrostatic force applied to the particles does not always increase,but decreases tremendously in some regions.

    Fig.9. Distribution of electrostatic forces acting on charged particles at different places above PV panel.

    Fig.10. Electrostatic force ratios versus plate width and plate length of particles on flat surface.

    Finally, we calculate the electrostatic force acting on the particle located atz1=1 nm and with a radius of 20μm and a charge of 2.464×10?16C from Eq.(11),and compare it with the results achieved by other studies. The results shown in Fig.11 reveal that the electrostatic force ranges from 10?4μN(yùn) to 103μN(yùn), with an average value of 7 μN(yùn). This is basically consistent with the results of other literature. The electrostatic force is much higher than the gravity (0.87 nN) and the van der Waals force (1.8 nN),[25]indicating that the electrostatic force will promote more moving particles to deposit on the PV panel,thus resulting in a non-uniform distribution of dust particles deposited on the PV panel.

    Fig.11. Distribution of electrostatic force versus width and length under the same parameters as in other studies.

    5. Conclusions

    We report the electrification phenomenon between deposition particles and PV panels, and analyze the charge–mass ratios of polydisperse dust particles that fall from different heights and collide with tilted PV glass panels. In addition,the corresponding physical model is established to discuss the electrostatic force of dust on the surface of electrified PV panels. The results show that the dust particles colliding with the PV glass plate will carry a large number of static charges,and the number of charges increases to different degrees with the increasing of the impact velocity and the inclination angle of the PV panel. Besides, a larger particle size and a higher impact velocity can significantly increase the electrostatic force exerted on particles,which is even higher than the gravity and the van der Waals force. In addition,the electrostatic force is relatively large in the plate center,and distributed in an oscillatory manner at different positions. On the whole, the electrostatic force caused by the collision of PV glass plates and deposited particles may enhance the deposition of moving particles on the surface of the PV panel and show a non-uniform distribution, which possibly has more complex implications for PV cells.[45,46]Therefore, an anti-static transparent material should be considered for the PV panel that serves in the severe wind-sand environment,for example,the solar powered devices of the Mars explorer. The results of this paper facilitate the understanding of the deposition mechanism of dust particles on the PV panels in dusty weather,and provide some theoretical support for the removing of dust particles deposited on the PV panel in the desert environment.

    猜你喜歡
    王娟
    Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
    巧用“倍數(shù)的和”
    晚期腫瘤患者的姑息照護(hù)和臨床關(guān)懷
    The formation of adolescent performing culture in the chorus
    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*
    貧血鑒別診斷中血液檢驗(yàn)的效果及作用分析
    健康之家(2021年19期)2021-05-23 09:10:44
    哪里哪里?
    A Literature Review of Critical Discourse Analysis
    家族最大的失敗 是教育子女的失敗 智新超越王娟:一個(gè)高級女經(jīng)濟(jì)師的“百萬賭局”
    狂飆美少女
    国产精品av久久久久免费| 19禁男女啪啪无遮挡网站| 老司机影院毛片| 国产免费现黄频在线看| 欧美日韩成人在线一区二区| aaaaa片日本免费| 欧美国产精品一级二级三级| 老司机在亚洲福利影院| 老熟女久久久| 久久久欧美国产精品| 久久天堂一区二区三区四区| 亚洲avbb在线观看| 亚洲av欧美aⅴ国产| 国产成人精品在线电影| 狠狠婷婷综合久久久久久88av| 一区二区三区精品91| aaaaa片日本免费| 黑人猛操日本美女一级片| 亚洲精品av麻豆狂野| 动漫黄色视频在线观看| 日本一区二区免费在线视频| 国产精品欧美亚洲77777| 国产免费视频播放在线视频| 在线播放国产精品三级| 日韩 欧美 亚洲 中文字幕| 一级毛片精品| 亚洲精品久久午夜乱码| 狂野欧美激情性xxxx| 亚洲精品国产精品久久久不卡| 中文字幕精品免费在线观看视频| 色尼玛亚洲综合影院| av福利片在线| 嫁个100分男人电影在线观看| 91av网站免费观看| 久久国产精品大桥未久av| 亚洲精品美女久久久久99蜜臀| 午夜福利一区二区在线看| avwww免费| 午夜免费成人在线视频| 国产高清视频在线播放一区| 999久久久精品免费观看国产| 建设人人有责人人尽责人人享有的| 亚洲伊人色综图| 一区二区日韩欧美中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 纵有疾风起免费观看全集完整版| 欧美另类亚洲清纯唯美| 久久精品亚洲精品国产色婷小说| 999久久久精品免费观看国产| 免费看a级黄色片| 国产xxxxx性猛交| 19禁男女啪啪无遮挡网站| 久久精品成人免费网站| 狂野欧美激情性xxxx| 高潮久久久久久久久久久不卡| 黄色视频在线播放观看不卡| avwww免费| 91成年电影在线观看| 18在线观看网站| aaaaa片日本免费| 最新美女视频免费是黄的| 最近最新中文字幕大全电影3 | 久久人妻福利社区极品人妻图片| 亚洲天堂av无毛| 久久国产精品人妻蜜桃| 下体分泌物呈黄色| 日韩视频在线欧美| 女人久久www免费人成看片| 18禁美女被吸乳视频| 狂野欧美激情性xxxx| 久久国产亚洲av麻豆专区| 一二三四在线观看免费中文在| 女人被躁到高潮嗷嗷叫费观| 黄片小视频在线播放| 18禁美女被吸乳视频| 满18在线观看网站| 国产区一区二久久| 精品高清国产在线一区| 极品少妇高潮喷水抽搐| 99国产综合亚洲精品| 欧美成狂野欧美在线观看| 老司机福利观看| 午夜福利视频精品| 飞空精品影院首页| 午夜福利欧美成人| 国产福利在线免费观看视频| 日韩中文字幕视频在线看片| 99精品在免费线老司机午夜| 麻豆av在线久日| 90打野战视频偷拍视频| 天天添夜夜摸| 少妇裸体淫交视频免费看高清 | 桃花免费在线播放| 国产一区二区 视频在线| 我要看黄色一级片免费的| 美女视频免费永久观看网站| 久久天堂一区二区三区四区| 这个男人来自地球电影免费观看| 国产国语露脸激情在线看| 久久久久精品国产欧美久久久| 欧美 亚洲 国产 日韩一| 麻豆成人av在线观看| 色播在线永久视频| 久久久精品免费免费高清| 欧美日韩精品网址| 搡老熟女国产l中国老女人| 91精品国产国语对白视频| 久久精品国产综合久久久| 在线观看舔阴道视频| www日本在线高清视频| 亚洲国产成人一精品久久久| 国产精品九九99| 最新的欧美精品一区二区| 9色porny在线观看| 蜜桃国产av成人99| 国产精品国产av在线观看| 亚洲七黄色美女视频| 三级毛片av免费| 99久久国产精品久久久| 天天躁日日躁夜夜躁夜夜| 老熟妇仑乱视频hdxx| 免费在线观看完整版高清| 亚洲av欧美aⅴ国产| 精品熟女少妇八av免费久了| 最近最新中文字幕大全电影3 | 视频在线观看一区二区三区| 搡老乐熟女国产| 岛国在线观看网站| 日本黄色日本黄色录像| 免费在线观看黄色视频的| 黑人欧美特级aaaaaa片| 久久国产精品影院| 国产av一区二区精品久久| 亚洲九九香蕉| 久久午夜亚洲精品久久| 中文字幕精品免费在线观看视频| 巨乳人妻的诱惑在线观看| 国产精品九九99| 美女主播在线视频| 精品一区二区三区av网在线观看 | 黄片小视频在线播放| 黄色视频,在线免费观看| 精品国产乱码久久久久久小说| 黄色怎么调成土黄色| 午夜激情av网站| 国产精品麻豆人妻色哟哟久久| 天天添夜夜摸| 久久精品国产99精品国产亚洲性色 | 丝袜美腿诱惑在线| 十分钟在线观看高清视频www| 一级毛片精品| 纯流量卡能插随身wifi吗| 露出奶头的视频| 欧美人与性动交α欧美精品济南到| 中文字幕最新亚洲高清| 国产亚洲一区二区精品| 国产又色又爽无遮挡免费看| 免费观看av网站的网址| 国产97色在线日韩免费| 国产精品久久久久成人av| 亚洲三区欧美一区| 两个人免费观看高清视频| 香蕉国产在线看| 国产一区二区 视频在线| 一边摸一边做爽爽视频免费| 精品人妻在线不人妻| 蜜桃在线观看..| 精品福利永久在线观看| 欧美中文综合在线视频| 欧美+亚洲+日韩+国产| 岛国毛片在线播放| 别揉我奶头~嗯~啊~动态视频| 国产成人精品久久二区二区免费| 乱人伦中国视频| 女性生殖器流出的白浆| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 国产日韩欧美在线精品| 久久亚洲真实| 精品欧美一区二区三区在线| 欧美 日韩 精品 国产| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 国产一区有黄有色的免费视频| 狠狠狠狠99中文字幕| 成人国语在线视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 亚洲国产av影院在线观看| 国产精品99久久99久久久不卡| 99re在线观看精品视频| 露出奶头的视频| 亚洲欧洲日产国产| 亚洲伊人色综图| 另类亚洲欧美激情| 久久精品91无色码中文字幕| 亚洲国产中文字幕在线视频| 看免费av毛片| 91字幕亚洲| 欧美精品人与动牲交sv欧美| 午夜91福利影院| 考比视频在线观看| 香蕉国产在线看| 黑人操中国人逼视频| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区大全| 亚洲精品国产一区二区精华液| 亚洲国产欧美日韩在线播放| 国产一区二区三区在线臀色熟女 | 亚洲精品国产精品久久久不卡| 高清毛片免费观看视频网站 | 在线观看舔阴道视频| 午夜激情久久久久久久| 性少妇av在线| 少妇的丰满在线观看| 国产高清国产精品国产三级| 亚洲国产中文字幕在线视频| 成人18禁在线播放| 色视频在线一区二区三区| 黑人操中国人逼视频| 久久国产精品影院| 下体分泌物呈黄色| 精品国产亚洲在线| 好男人电影高清在线观看| 午夜福利一区二区在线看| 国产免费现黄频在线看| 视频在线观看一区二区三区| 免费不卡黄色视频| 成人18禁高潮啪啪吃奶动态图| 99国产精品99久久久久| 亚洲国产毛片av蜜桃av| 亚洲av欧美aⅴ国产| 国产片内射在线| 丝袜人妻中文字幕| 国产一区二区 视频在线| 午夜免费成人在线视频| 久久久久久久久久久久大奶| av国产精品久久久久影院| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩中文字幕国产精品一区二区三区 | 黄片小视频在线播放| 亚洲熟女精品中文字幕| 国产精品国产高清国产av | 欧美日韩中文字幕国产精品一区二区三区 | 丝袜喷水一区| 久久午夜亚洲精品久久| av电影中文网址| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 免费在线观看日本一区| 精品视频人人做人人爽| 中亚洲国语对白在线视频| 淫妇啪啪啪对白视频| 每晚都被弄得嗷嗷叫到高潮| 性色av乱码一区二区三区2| 制服人妻中文乱码| 激情视频va一区二区三区| 国产在线视频一区二区| 少妇的丰满在线观看| 欧美日韩精品网址| 国产福利在线免费观看视频| 黄色怎么调成土黄色| 老熟女久久久| 一级,二级,三级黄色视频| 黑人操中国人逼视频| 日韩视频在线欧美| 69精品国产乱码久久久| 国产在线精品亚洲第一网站| 久久久精品免费免费高清| 日本av免费视频播放| 国产成人精品久久二区二区免费| 精品人妻熟女毛片av久久网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美国产精品va在线观看不卡| 美女午夜性视频免费| 性少妇av在线| 免费日韩欧美在线观看| 人妻一区二区av| 免费不卡黄色视频| 欧美精品啪啪一区二区三区| 亚洲精品粉嫩美女一区| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 亚洲精品美女久久av网站| 在线播放国产精品三级| 999久久久国产精品视频| 一夜夜www| 成人精品一区二区免费| 精品人妻在线不人妻| 亚洲天堂av无毛| 亚洲欧美日韩另类电影网站| 天天添夜夜摸| 高清在线国产一区| h视频一区二区三区| 精品一区二区三区四区五区乱码| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿诱惑在线| 国产精品久久电影中文字幕 | 成人永久免费在线观看视频 | 人妻 亚洲 视频| 久久亚洲真实| 国产精品国产高清国产av | 亚洲性夜色夜夜综合| 成人三级做爰电影| 757午夜福利合集在线观看| 人妻一区二区av| 老司机午夜十八禁免费视频| 在线观看免费视频日本深夜| 日本欧美视频一区| 亚洲成a人片在线一区二区| 亚洲五月色婷婷综合| 大香蕉久久网| 欧美另类亚洲清纯唯美| 日本欧美视频一区| 操出白浆在线播放| 午夜福利影视在线免费观看| 亚洲久久久国产精品| 日韩大片免费观看网站| 成人国产一区最新在线观看| 亚洲国产欧美一区二区综合| 亚洲午夜理论影院| 少妇精品久久久久久久| 日本vs欧美在线观看视频| 黄色成人免费大全| 在线天堂中文资源库| 黄色a级毛片大全视频| 亚洲少妇的诱惑av| 久久九九热精品免费| 亚洲三区欧美一区| 久久精品国产亚洲av高清一级| 淫妇啪啪啪对白视频| 黄色成人免费大全| 极品教师在线免费播放| 怎么达到女性高潮| 不卡一级毛片| 国产精品98久久久久久宅男小说| 色婷婷av一区二区三区视频| 2018国产大陆天天弄谢| 两个人看的免费小视频| 女性被躁到高潮视频| 欧美av亚洲av综合av国产av| 国产精品自产拍在线观看55亚洲 | 在线亚洲精品国产二区图片欧美| 欧美精品高潮呻吟av久久| 午夜福利在线免费观看网站| 久久午夜亚洲精品久久| 久久 成人 亚洲| 亚洲全国av大片| 免费在线观看完整版高清| 亚洲精品自拍成人| 极品人妻少妇av视频| 大片免费播放器 马上看| 人人妻,人人澡人人爽秒播| 男女床上黄色一级片免费看| av超薄肉色丝袜交足视频| 多毛熟女@视频| 久久精品国产a三级三级三级| 露出奶头的视频| 成人国产av品久久久| 成人特级黄色片久久久久久久 | videosex国产| 桃花免费在线播放| 成年人午夜在线观看视频| 99国产综合亚洲精品| www.精华液| 精品国产亚洲在线| 国产精品九九99| av福利片在线| 91精品国产国语对白视频| 美女国产高潮福利片在线看| 国产日韩欧美在线精品| 最近最新中文字幕大全免费视频| 日本vs欧美在线观看视频| 日日摸夜夜添夜夜添小说| 999久久久国产精品视频| 成人免费观看视频高清| 人人妻人人澡人人看| 丁香六月欧美| 18禁观看日本| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区黑人| 久久影院123| 侵犯人妻中文字幕一二三四区| 国产精品香港三级国产av潘金莲| cao死你这个sao货| 午夜成年电影在线免费观看| 一边摸一边做爽爽视频免费| 国产伦理片在线播放av一区| 国产97色在线日韩免费| 欧美日韩黄片免| 久久久久久久精品吃奶| 亚洲成人手机| 人人妻人人爽人人添夜夜欢视频| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区mp4| 欧美日韩亚洲综合一区二区三区_| 天堂8中文在线网| 国产淫语在线视频| av福利片在线| 午夜两性在线视频| 亚洲av第一区精品v没综合| 日日摸夜夜添夜夜添小说| 久久久精品免费免费高清| 中文字幕色久视频| 岛国在线观看网站| 一区福利在线观看| 热99久久久久精品小说推荐| 在线观看免费日韩欧美大片| 淫妇啪啪啪对白视频| 亚洲精品中文字幕在线视频| 国产三级黄色录像| 国产精品美女特级片免费视频播放器 | 久久99一区二区三区| av网站在线播放免费| 国产精品99久久99久久久不卡| 久久中文看片网| 男人操女人黄网站| 少妇猛男粗大的猛烈进出视频| 亚洲伊人色综图| 男女下面插进去视频免费观看| 一级毛片电影观看| 丰满饥渴人妻一区二区三| 美女高潮到喷水免费观看| 青草久久国产| 日日夜夜操网爽| 午夜免费成人在线视频| 精品国产乱码久久久久久男人| 成人三级做爰电影| 老司机在亚洲福利影院| 国产欧美日韩一区二区三| 最新的欧美精品一区二区| 久久久久精品国产欧美久久久| 欧美 日韩 精品 国产| 露出奶头的视频| 777米奇影视久久| 又紧又爽又黄一区二区| 一区二区日韩欧美中文字幕| 大香蕉久久成人网| 99国产精品99久久久久| 国产精品98久久久久久宅男小说| 国产主播在线观看一区二区| 国产黄色免费在线视频| 91九色精品人成在线观看| 国产一区二区三区视频了| 久久久久视频综合| 久久久久网色| 午夜福利,免费看| 午夜精品久久久久久毛片777| 色综合婷婷激情| 在线观看人妻少妇| 最新的欧美精品一区二区| 国产精品电影一区二区三区 | 国产av又大| 成人精品一区二区免费| tube8黄色片| 国产黄频视频在线观看| 午夜91福利影院| 国产精品香港三级国产av潘金莲| 日韩大码丰满熟妇| 亚洲色图综合在线观看| 精品亚洲成国产av| 人成视频在线观看免费观看| 最新美女视频免费是黄的| 人人妻,人人澡人人爽秒播| 亚洲黑人精品在线| 久久久久久久久免费视频了| av天堂在线播放| 免费女性裸体啪啪无遮挡网站| 日韩有码中文字幕| 亚洲av成人一区二区三| 亚洲国产毛片av蜜桃av| 免费看十八禁软件| 久久 成人 亚洲| tube8黄色片| 18在线观看网站| 在线 av 中文字幕| 女人久久www免费人成看片| 窝窝影院91人妻| 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 精品人妻熟女毛片av久久网站| 亚洲欧美日韩高清在线视频 | 这个男人来自地球电影免费观看| 婷婷成人精品国产| 波多野结衣一区麻豆| 国产亚洲一区二区精品| 一级片免费观看大全| 999精品在线视频| 欧美成狂野欧美在线观看| 两人在一起打扑克的视频| 亚洲精品久久成人aⅴ小说| 黑人猛操日本美女一级片| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 99精品欧美一区二区三区四区| 国产高清videossex| 欧美变态另类bdsm刘玥| 亚洲天堂av无毛| 波多野结衣av一区二区av| aaaaa片日本免费| 99国产极品粉嫩在线观看| 夫妻午夜视频| 久久亚洲精品不卡| 免费av中文字幕在线| 在线天堂中文资源库| 精品国内亚洲2022精品成人 | 少妇 在线观看| 亚洲精华国产精华精| 99国产精品一区二区三区| 高清视频免费观看一区二区| 黑人欧美特级aaaaaa片| 亚洲av日韩精品久久久久久密| 我的亚洲天堂| 啦啦啦 在线观看视频| xxxhd国产人妻xxx| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频 | 久久毛片免费看一区二区三区| 夜夜爽天天搞| 国产亚洲精品一区二区www | 亚洲一区二区三区欧美精品| 99久久99久久久精品蜜桃| 91精品三级在线观看| 搡老乐熟女国产| 国产又色又爽无遮挡免费看| 窝窝影院91人妻| 一二三四社区在线视频社区8| 成人精品一区二区免费| 国产有黄有色有爽视频| 两个人看的免费小视频| 黑丝袜美女国产一区| 亚洲自偷自拍图片 自拍| 中文字幕另类日韩欧美亚洲嫩草| 搡老熟女国产l中国老女人| 久久久久久久精品吃奶| 国产亚洲av高清不卡| 欧美激情高清一区二区三区| 人妻久久中文字幕网| 精品少妇久久久久久888优播| 美女午夜性视频免费| 亚洲人成伊人成综合网2020| 建设人人有责人人尽责人人享有的| 亚洲性夜色夜夜综合| 9色porny在线观看| 亚洲第一青青草原| 日韩一卡2卡3卡4卡2021年| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 人人澡人人妻人| 无遮挡黄片免费观看| 久久九九热精品免费| 我要看黄色一级片免费的| 19禁男女啪啪无遮挡网站| 高清在线国产一区| 曰老女人黄片| 亚洲精品一二三| 色婷婷av一区二区三区视频| 一级黄色大片毛片| 国产成人精品久久二区二区91| 人人妻人人添人人爽欧美一区卜| 777久久人妻少妇嫩草av网站| 老司机影院毛片| 亚洲精品国产一区二区精华液| 亚洲伊人色综图| 欧美日韩视频精品一区| 下体分泌物呈黄色| 国产精品.久久久| av天堂久久9| 欧美成人午夜精品| 女同久久另类99精品国产91| 少妇精品久久久久久久| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| 国产单亲对白刺激| 老熟女久久久| 欧美亚洲 丝袜 人妻 在线| 欧美 亚洲 国产 日韩一| 国产一区有黄有色的免费视频| 日韩有码中文字幕| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| 亚洲精品中文字幕一二三四区 | 午夜久久久在线观看| 又黄又粗又硬又大视频| 成年人免费黄色播放视频| 国产成人精品久久二区二区免费| 叶爱在线成人免费视频播放| 亚洲色图av天堂| 一区二区三区精品91| 蜜桃国产av成人99| 亚洲国产av影院在线观看| 亚洲第一av免费看| av天堂久久9| 国产欧美亚洲国产| 丰满少妇做爰视频| 日韩人妻精品一区2区三区| 12—13女人毛片做爰片一| 老司机午夜十八禁免费视频| av在线播放免费不卡| 看免费av毛片| 免费观看av网站的网址| 午夜激情av网站| 91国产中文字幕| av天堂在线播放| 午夜久久久在线观看| 亚洲熟妇熟女久久| 国产精品熟女久久久久浪| 国产精品偷伦视频观看了| 亚洲av成人不卡在线观看播放网| 自拍欧美九色日韩亚洲蝌蚪91|