• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass?

    2021-10-28 07:09:36XingCaiLi李興財(cái)JuanWang王娟andGuoQingSu蘇國慶
    Chinese Physics B 2021年10期
    關(guān)鍵詞:王娟

    Xing-Cai Li(李興財(cái)) Juan Wang(王娟) and Guo-Qing Su(蘇國慶)

    1School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan 750021,China

    2Ningxia Key Laboratory of Intelligent Sensing&Desert Information,Ningxia University,Yinchuan 750021,China

    3Xinhua College of Ningxia University,Yinchuan 750021,China

    Keywords: particle electrification,electrostatic force,photovoltaic glass,dust deposition

    1. Introduction

    Dust particle deposition is an essential factor affecting the efficiency of the photovoltaic (PV) power generation system.[1,2]Studies have shown that a mass density of 0.4 mg/cm2of the dust on the PV panel can reduce the generation efficiency of the panel by about 30%, and even a small amount of deposited dust (0.06 mg/cm2) can lead the generation efficiency to decrease by about 2.5%.[3]According to some researches, the electrical efficiency of not-cleaned PV cells decreases from 16%to 8%over 45 days,but in Baghdad–Iraq, it dropped to less than 6.24% in one day, 11.8% in one week, and 18.74% in one month.[4–6]The influence of deposited dust particles on the power generation performance of PV panel is related to the mass and physical properties of the particles.[7]Long-term accumulation of dust particles will cause the hot spot effect of PV panel, and even damage the panel in severe cases.[8]An effective dust removing technology can wipe out the deposited dust and frequently using it can reduce the loss dramatically. The widespread existence of atmospheric aerosols is beneficial to the cleaning of the PV panel surface.[9]To clarify the deposition mechanism of dust on the PV panel surface may be helpful in designing a more cost-effective dust removing method or PV panel installation process.[9]

    Numerical simulation research has been carried out on the sand & dust deposition on the surface of PV panel based on the fluid dynamics method in recent years. For example,Luet al. studied the flow field and the dust deposition process around the solar panel installed on the ground by adopting a technique coupling computational fluid dynamics(CFD)with the discrete particle model(DPM).[10]Another study discussed the deposition process and behavior of dust on groundmounted solar PV arrays based on the shear stress transportk-turbulence model and the discrete particle model.[11]Chitikaet al. investigated the parametric installation optimization for mitigating the non-tracking solar PV module fouling based on the CFD prediction of dust deposition.[12]Unfortunately, the above-mentioned studies only take the effects of the fluid force and gravity into account. However,the electric phenomenon caused by the contact between different materials has long been concerned.[13–17]The movement of particles in the air is bound to be accompanied by collisions with each other, which will lead to electrification and thus generate an electric field of a certain intensity in the air.[18,19]Few studies on the particle deposition considered the electrification in the atmosphere,except for the research of Cooperet al.,[20]who,however,explored the deposition of charged aerosol particles in the air rather than on the surface of PV panels.

    There are also a lot of studies on the adhesion force between particles and plates. For example,Rimaiet al.[21]studied the mechanism of deformations induced by adhesion between micrometer-sized particles and various substrates, and then discussed the effective application ranges of several adhesion theories.In the analysis of the effect of various fundamental forces on the adhesion of fine dust particles,Walton[22]suggested the dominant role that van der Waals adhesion forces played in small-sized particles. In particular,they gave special regard to the electrostatic image force between a particle and a conductor plane.The study of Moutinhoet al.[23]revealed that the van der Waals forces and capillary forces play the leading role in attaching dust particles to PV modules. Jianget al.[24]used an atomic force microscope to measure the adhesion force between dust particles and PV modules under the action of an electrostatic field,and found that the electrostatic force is five times and one order of magnitude larger than the van der Waals force when applied voltage is 100 V and 100 V to 500 V, respectively. Another paper reported that the electrostatic force is 1 or 2 orders of magnitude stronger than the van der Waals force and the capillary hydraulic force,[25]indicating that the electrostatic force induced by the electric field generated by PV modules cannot be ignored. Obviously,such a kind of electrostatic force differs from that generated in the process of dynamic contact between the deposited particles and the PV glass.

    According to the dynamic contact electrification mechanism, the PV glass will carry a great deal of static charges when contacted with a large number of moving particles,[26]and the resulting electrostatic field will increase the charges,[16,27]thus it also enhances the electrostatic force of moving particles.[28]Under certain conditions, more sand particles will be deposited on the PV panels.[29]However,the contact electrification between deposited dust and PV glass panels is rarely studied, and there is a lack of reports on the influence of such an electrostatic force on the dust deposition process. In view of these situations, in this work, the contact electrification between the deposited sand&dust and the PV panel is studied, and the electrostatic force of the electrified sand particles is analyzed. Furthermore,a new PV glass material is proposed based on the analysis.

    2. Contact electrification model

    The modeling of contact electrification mechanism is a classical problem,and a large number of physical models have been developed up to this time.[16,17,30–36]This paper adopts the physical model given by Xieet al.,[35]which can well describe the influence of the particle size ratio on its net charge.The basic equation of the model is

    whereρis the surface charge density andPDis the probability of ion exchange,which is set to be 0.5.[35]The contact areaAi(i=1,2)of two colliding particles can be calculated from[35]

    wherem1andm2are the masses of the two colliding particles, whose radii areR1andr1respectively,Eiandviare respectively the elastic modulus and Poisson’s ratio of the two particles,andvris the impact velocity.

    The particle electrification mechanism model under the impact of an electrostatic field can be expressed as[38]

    whereEis the environmental electric field,riis the radius of thei-th particle,θis the angle between the line of the particle center and the electric filed,QiandQjare the initial charge of thei-th andj-th particles,respectively,ωis the ratio between the charge of one particle transferred to other particles and this particle’s original charge,andγ1is the radius ratio of the two colliding particles.

    Therefore, the charge of the particle after collision in an electric field is given as

    In this paper,the collision occurs between the particle and the PV plate,so we assume that the radius of the massive particle is 1000 times larger than that of the smaller particle,similar to the treatment adopted in Ref.[19].

    3. Electrostatic force acting on charged deposition particles

    As shown in Figs.1 and 2,assuming the length of the PV panel to be 2aand the width to be 2b, a rectangular coordinate system is established by taking the center of the panel as the origin. The number concentration of particles in the atmosphere is represented byN, and the charge of particles is expressed by the charge–mass ratioqm. The coordinate of the center of the element is assumed to be (x,y,z) and the electric field intensity generated by it must have componentsEx,Ey, andEz. Owing to symmetry, there must be no horizontal electric field component and only a vertical component exists in the center of the plate. The three-dimensional(3D)electric field distribution can be found at other positions.

    Fig.1. Scheme of electric field generated by airborne particles.

    Fig.2. Scheme of electric field generated by plate.

    Assuming the diameter of particles suspended in the air to beD,the particle mass density to beρ,the particle number concentration to beN(z),and the particle charge-mass ratio to beqm, the electric field at the position (x1,y1,z1) above the PV panel can be expressed as[39]

    Considering the infinite nature of the space, the electric field generated by the sand particles suspended in the air has only a vertical component. Athough a single particle has a extremely small charge, the electrostatic field generated by the sand particles with a high concentration in the air should not be ignored. This extreme case is not considered in this paper.

    When a large number of falling particles collide with or slide on the PV glass panel,both the particles and the PV panel carry some electrostatic charges, thus generating an electric field around the PV panel.[39–41]Smaller particles are negatively charged while the larger ones are positively charged,[42]so we assume that the charge-mass ratio of the deposition particle is?qm. According to the law of charge conservation,the PV glass plate carries the same number of charges as the number of deposition particles.If we assume the mass concentration of deposited particles in the atmosphere under specified conditions to bemq,the falling velocity to bev,and the horizontal projection area of the PV panel to beA, there is aboutmqvAtparticles colliding with the PV glass panel at timet.The relative movement between deposition particles and the PV panel charges the PV glass plate, whose surface charge density should be

    When the distance between particles and the plate is a minimum value,the plate can be regarded as infinite,and then the electric field can be solvedE=σ/(2ε0).

    Then,the electrostatic force applied to the charged particles can be calculated from

    In order to highlight the effect of electrostatic force from the contact electrification process between the dust particles and the PV glass plate on the deposition and removal process of the particles, we compare the forces on the particles deposited on the tilted photovoltaic panels.

    4. Results and analysis

    Firstly,we measure the charge of polydisperse deposition particles when they fall from different heights and collide with tilted PV panels. We describe the particle charge by using the ratio of the charge to the mass of particle (i.e.charge–mass ratio)in this paper since it is widely used in the present research.[44]The schematic diagram of the experiment device and the particle size distribution function are shown in Fig.3.The dust particles used in the experiment are collected from the southeastern edge of the Tengger desert. When the particles fall free from a certain height, they will collide with and slide over the photovoltaic glass panel. Some of the particles remain on the glass panel, the other slides down the inclined plane and falls into the Faraday cup, from which we can obtain the total chargeQon the particles. Then we weigh the particles in the Faraday cup and record their massmsand. Now we can obtain the charge–mass ratioqm=Q/msand. In the experiment,the EST111 Static Charge Meter is used to measure the charge of the particles,the BSA224S electronic analytical balance is used to measure the mass of particles.

    Fig. 3. (a) Schematic diagram of experimental construction and (b) size distribution of experimental particles.

    Fig. 4. Particle charge–mass ratios varying with impact velocity on an inclined PV glass panel at tilt angle(a)30° and(b)60° for different L values.

    Figure 5 shows the variations of the charge–mass ratio of deposited dust particle with the sliding distance of particle on the PV glass plate. It is obvious that with the increase of the sliding distance and the drop height,the charge–mass ratio of particle increases nonlinearly. Besides,by comparing the four figures in Fig.5, it is easy to find that as the plate inclination angle increases,the charge–mass ratio of particle increases to different degrees. For this reason,the influence of the plate tilt angle on the particle charge–mass ratio is discussed in Fig.6,where the experiments on selected particles are conducted at a free-falling height of 30 cm and 70 cm,respectively. According to the figure,the charge–mass ratio of particle increases as the plate inclination angle enlarges, and a larger drop height results in a higher particle charge. As is well known,the particle’s charge increases more easily when it slides with a plate.The different experimental conditions make the motion states of particles and the contact mode between the particles and the glass plate changed. For example, when the plate inclination angle is small,the particles mainly roll,and with the increase of the angle, the sliding process of the particles is dominant,so the charge on particles increases.

    Fig.5. Particle charge–mass ratios versus sliding distance on an inclined PV glass panel at tilt angle(a)30° and(b)60° for different h values.

    Fig.6. Charge–mass ratios versus tilt angle on particle charge for different heights.

    At the same time, we also measure the distribution of electrostatic field on the photovoltaic glass plate in the abovementioned experiment process. The result is shown in Fig.7.From it we can find that the electrostatic field shows a bellshaped distribution. This is determined by the cooperation of the electric field forces around the location.

    In the above study, we involve with the charged rules of deposition particles after colliding with photovoltaic glass through some experimental measurements. Next, we will investigate the distribution law of electrostatic force received by particles through numerical simulation. These researches will be based on Eq. (11). The results are shown in Fig. 8.Here, we will set the particle distance to bez1=10 cm, the charge–mass ratio to be 2 nC/g, and the particle radius to be 35μm. The results show that the electrostatic forces are distributed in a bell shape,reaching a maximum value in the center of the plate and a minimum value around the edge of the plate. This law is consistent with the electric field distribution of PV glass plate obtained from the above-mentioned experiment. Although the electric quantity on the particle is small,the electrostatic force is still slightly higher than the gravity(4.66 nN),so it will change the deposition process of particles on the surface of photovoltaic panels. Therefore, it is necessary to consider the contact electrification process between deposited particles and the photovoltaic panels,especially the derived electrostatic force in the simulation of the dust deposition on the photovoltaic panels.

    Fig.7. The E-field profile on charged PV plate.

    Fig.8. Electrostatic force acting on charged particles.

    As indicated in Fig.9,the rule of electrostatic force varies with the distance between charged particles and the PV glass plate is discussed. All the parameters are equal to those in Fig. 8, except for the distancez1between particles and the PV plate. We can see that the electrostatic forces fluctuate violently, which can be explained by the mutual attraction between two charged particles with the same charge and the tablet with the opposite charge, as reported in Ref. [7]. It should be pointed out that the numerical results also show that the electric field at the central position diverges with the decrease of the distance between the particles and the plate surface.

    In order to analyze the magnitude relation among the electrostatic forces applied to particles of different sizes, we calculate the electrostatic force acting on particles with sizes of 15 μm, 25 μm, and 35 μm, located atz1=0.1 μm, and compare the results with those of particles each with a size of 5 μm. The simulation results shown in Fig. 10 indicate that the electrostatic force of particles increases significantly with the particle size increasing,which is attributed to the increasing of charge–mass ratio during the collision between particles and the plate surface. Besides, it can be seen from the figure that with the increase of the particle size,the electrostatic force applied to the particles does not always increase,but decreases tremendously in some regions.

    Fig.9. Distribution of electrostatic forces acting on charged particles at different places above PV panel.

    Fig.10. Electrostatic force ratios versus plate width and plate length of particles on flat surface.

    Finally, we calculate the electrostatic force acting on the particle located atz1=1 nm and with a radius of 20μm and a charge of 2.464×10?16C from Eq.(11),and compare it with the results achieved by other studies. The results shown in Fig.11 reveal that the electrostatic force ranges from 10?4μN(yùn) to 103μN(yùn), with an average value of 7 μN(yùn). This is basically consistent with the results of other literature. The electrostatic force is much higher than the gravity (0.87 nN) and the van der Waals force (1.8 nN),[25]indicating that the electrostatic force will promote more moving particles to deposit on the PV panel,thus resulting in a non-uniform distribution of dust particles deposited on the PV panel.

    Fig.11. Distribution of electrostatic force versus width and length under the same parameters as in other studies.

    5. Conclusions

    We report the electrification phenomenon between deposition particles and PV panels, and analyze the charge–mass ratios of polydisperse dust particles that fall from different heights and collide with tilted PV glass panels. In addition,the corresponding physical model is established to discuss the electrostatic force of dust on the surface of electrified PV panels. The results show that the dust particles colliding with the PV glass plate will carry a large number of static charges,and the number of charges increases to different degrees with the increasing of the impact velocity and the inclination angle of the PV panel. Besides, a larger particle size and a higher impact velocity can significantly increase the electrostatic force exerted on particles,which is even higher than the gravity and the van der Waals force. In addition,the electrostatic force is relatively large in the plate center,and distributed in an oscillatory manner at different positions. On the whole, the electrostatic force caused by the collision of PV glass plates and deposited particles may enhance the deposition of moving particles on the surface of the PV panel and show a non-uniform distribution, which possibly has more complex implications for PV cells.[45,46]Therefore, an anti-static transparent material should be considered for the PV panel that serves in the severe wind-sand environment,for example,the solar powered devices of the Mars explorer. The results of this paper facilitate the understanding of the deposition mechanism of dust particles on the PV panels in dusty weather,and provide some theoretical support for the removing of dust particles deposited on the PV panel in the desert environment.

    猜你喜歡
    王娟
    Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
    巧用“倍數(shù)的和”
    晚期腫瘤患者的姑息照護(hù)和臨床關(guān)懷
    The formation of adolescent performing culture in the chorus
    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*
    貧血鑒別診斷中血液檢驗(yàn)的效果及作用分析
    健康之家(2021年19期)2021-05-23 09:10:44
    哪里哪里?
    A Literature Review of Critical Discourse Analysis
    家族最大的失敗 是教育子女的失敗 智新超越王娟:一個(gè)高級女經(jīng)濟(jì)師的“百萬賭局”
    狂飆美少女
    黄频高清免费视频| 午夜视频精品福利| 黄色 视频免费看| 神马国产精品三级电影在线观看 | 露出奶头的视频| 免费看十八禁软件| 国产69精品久久久久777片 | 一区二区三区国产精品乱码| 亚洲午夜理论影院| 老司机在亚洲福利影院| 小说图片视频综合网站| 欧美乱色亚洲激情| 激情在线观看视频在线高清| 亚洲欧美日韩东京热| 一级毛片高清免费大全| 精品久久蜜臀av无| 精品午夜福利视频在线观看一区| 亚洲人与动物交配视频| a级毛片在线看网站| av有码第一页| 黄色视频不卡| 国产高清有码在线观看视频 | 90打野战视频偷拍视频| 国产av在哪里看| 好男人电影高清在线观看| 一进一出抽搐gif免费好疼| 妹子高潮喷水视频| 老熟妇仑乱视频hdxx| 日韩精品青青久久久久久| 国内少妇人妻偷人精品xxx网站 | 亚洲电影在线观看av| 精品电影一区二区在线| 好男人电影高清在线观看| 国产亚洲精品第一综合不卡| 啦啦啦免费观看视频1| 亚洲狠狠婷婷综合久久图片| 国产真实乱freesex| 人妻丰满熟妇av一区二区三区| 国产视频一区二区在线看| 国产精品av视频在线免费观看| 国产高清有码在线观看视频 | 伊人久久大香线蕉亚洲五| 变态另类丝袜制服| 三级毛片av免费| 成人精品一区二区免费| 午夜福利在线在线| 一个人免费在线观看的高清视频| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 国产精品香港三级国产av潘金莲| 这个男人来自地球电影免费观看| 人妻丰满熟妇av一区二区三区| 身体一侧抽搐| or卡值多少钱| 可以免费在线观看a视频的电影网站| 亚洲国产日韩欧美精品在线观看 | 久久婷婷成人综合色麻豆| 丰满人妻一区二区三区视频av | 免费在线观看完整版高清| 又大又爽又粗| 99精品在免费线老司机午夜| 女人高潮潮喷娇喘18禁视频| 欧美在线一区亚洲| 91大片在线观看| 麻豆成人av在线观看| 久久精品国产亚洲av香蕉五月| 欧美在线一区亚洲| 久久久精品大字幕| 大型黄色视频在线免费观看| 日本免费a在线| 久久这里只有精品19| 国产精品亚洲av一区麻豆| 国产精品av视频在线免费观看| av国产免费在线观看| 美女免费视频网站| 两个人免费观看高清视频| 久久久水蜜桃国产精品网| 国产三级黄色录像| 天天添夜夜摸| 日本 欧美在线| 欧美色视频一区免费| 老司机午夜福利在线观看视频| 久久国产精品人妻蜜桃| 国产午夜精品论理片| 黄色成人免费大全| 午夜福利在线在线| 岛国在线免费视频观看| 欧美极品一区二区三区四区| 午夜激情av网站| 国产蜜桃级精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 高清在线国产一区| 人妻夜夜爽99麻豆av| 麻豆国产97在线/欧美 | 长腿黑丝高跟| e午夜精品久久久久久久| 国产熟女xx| 美女大奶头视频| 日韩欧美免费精品| 最近在线观看免费完整版| 国产97色在线日韩免费| 午夜成年电影在线免费观看| 窝窝影院91人妻| 免费在线观看视频国产中文字幕亚洲| 日韩中文字幕欧美一区二区| av天堂在线播放| 久久这里只有精品中国| 日韩欧美三级三区| 亚洲中文av在线| 一级片免费观看大全| 在线观看午夜福利视频| 97超级碰碰碰精品色视频在线观看| xxx96com| 成人国产综合亚洲| 97碰自拍视频| 十八禁网站免费在线| 国产成人精品无人区| 黄片大片在线免费观看| 亚洲中文av在线| 舔av片在线| 99热只有精品国产| 制服丝袜大香蕉在线| 亚洲一码二码三码区别大吗| 麻豆国产av国片精品| 色综合欧美亚洲国产小说| 黄色a级毛片大全视频| 欧美 亚洲 国产 日韩一| 三级国产精品欧美在线观看 | 亚洲,欧美精品.| 亚洲一卡2卡3卡4卡5卡精品中文| 成人高潮视频无遮挡免费网站| 亚洲精品久久成人aⅴ小说| 高清毛片免费观看视频网站| 在线观看舔阴道视频| 国产成人系列免费观看| 久久九九热精品免费| 日日摸夜夜添夜夜添小说| 国产av在哪里看| 欧美zozozo另类| 黄色丝袜av网址大全| 日本黄大片高清| 午夜福利免费观看在线| 国内久久婷婷六月综合欲色啪| 在线观看www视频免费| 中亚洲国语对白在线视频| 成人18禁高潮啪啪吃奶动态图| 国产99白浆流出| 女生性感内裤真人,穿戴方法视频| 最新在线观看一区二区三区| 国产精品久久久久久久电影 | 亚洲av美国av| 久久久国产成人精品二区| 国产黄片美女视频| 国产精品日韩av在线免费观看| 国产区一区二久久| 亚洲熟女毛片儿| 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 757午夜福利合集在线观看| 国产精品,欧美在线| 女警被强在线播放| 变态另类成人亚洲欧美熟女| 99国产综合亚洲精品| 蜜桃久久精品国产亚洲av| 999久久久精品免费观看国产| 一个人免费在线观看的高清视频| 亚洲天堂国产精品一区在线| 国产三级在线视频| 在线观看免费日韩欧美大片| 亚洲专区字幕在线| 免费高清视频大片| 日本撒尿小便嘘嘘汇集6| 老熟妇乱子伦视频在线观看| 亚洲国产欧美人成| 中文字幕最新亚洲高清| 国产三级在线视频| 国产精品av久久久久免费| 免费在线观看亚洲国产| 一级作爱视频免费观看| 亚洲国产欧美人成| 国产精华一区二区三区| 色av中文字幕| 日韩精品中文字幕看吧| 免费看a级黄色片| 日本 av在线| 最近视频中文字幕2019在线8| 俺也久久电影网| 日韩有码中文字幕| 亚洲欧洲精品一区二区精品久久久| 日本熟妇午夜| 亚洲美女黄片视频| 叶爱在线成人免费视频播放| 操出白浆在线播放| 欧美一级a爱片免费观看看 | av有码第一页| 久99久视频精品免费| xxx96com| 国产精品久久久久久久电影 | 亚洲av片天天在线观看| 久久久久久人人人人人| 首页视频小说图片口味搜索| 中文字幕最新亚洲高清| 一本大道久久a久久精品| 我的老师免费观看完整版| 黄色女人牲交| 成人午夜高清在线视频| 99久久综合精品五月天人人| 午夜日韩欧美国产| 日韩欧美 国产精品| 亚洲男人天堂网一区| 黄片大片在线免费观看| 成人18禁在线播放| www日本在线高清视频| 久久久国产欧美日韩av| 露出奶头的视频| 非洲黑人性xxxx精品又粗又长| 香蕉av资源在线| 国产成人一区二区三区免费视频网站| 动漫黄色视频在线观看| 夜夜爽天天搞| 欧美乱码精品一区二区三区| 亚洲精品粉嫩美女一区| 日本三级黄在线观看| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 777久久人妻少妇嫩草av网站| 亚洲av日韩精品久久久久久密| 亚洲精品国产精品久久久不卡| 国产精品久久电影中文字幕| 日韩精品青青久久久久久| 1024视频免费在线观看| 国产亚洲精品av在线| 国产精品,欧美在线| 久久久国产成人精品二区| 日本黄大片高清| 亚洲aⅴ乱码一区二区在线播放 | 男女床上黄色一级片免费看| 黄色丝袜av网址大全| av天堂在线播放| 麻豆av在线久日| 亚洲午夜理论影院| 99精品欧美一区二区三区四区| 亚洲欧美精品综合久久99| 免费在线观看影片大全网站| 日韩大码丰满熟妇| 手机成人av网站| 国产一区二区三区在线臀色熟女| 制服人妻中文乱码| 久久精品国产亚洲av香蕉五月| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品久久久久久毛片| 国产精品av久久久久免费| 夜夜躁狠狠躁天天躁| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器 | 久久伊人香网站| 999久久久国产精品视频| 国产一区二区在线av高清观看| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 三级毛片av免费| 欧美三级亚洲精品| 1024视频免费在线观看| 精品福利观看| 欧美成人性av电影在线观看| 国产伦在线观看视频一区| 亚洲av成人av| 久久国产精品人妻蜜桃| 他把我摸到了高潮在线观看| 国产久久久一区二区三区| 免费看a级黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文字幕一区二区三区有码在线看 | 色精品久久人妻99蜜桃| 老熟妇乱子伦视频在线观看| 国产成人精品久久二区二区91| 午夜日韩欧美国产| 亚洲中文av在线| 观看免费一级毛片| 精品国产美女av久久久久小说| 国产成人欧美在线观看| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 一级黄色大片毛片| 中亚洲国语对白在线视频| 免费在线观看视频国产中文字幕亚洲| 久久精品综合一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲,欧美精品.| 日韩欧美在线二视频| 亚洲美女黄片视频| 国产亚洲欧美98| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 亚洲熟女毛片儿| 久久亚洲真实| 曰老女人黄片| 国产精品久久久久久人妻精品电影| 黑人操中国人逼视频| 亚洲熟妇熟女久久| 啦啦啦韩国在线观看视频| 91麻豆精品激情在线观看国产| 99久久综合精品五月天人人| 精华霜和精华液先用哪个| aaaaa片日本免费| 国产爱豆传媒在线观看 | 人人妻人人澡欧美一区二区| 97超级碰碰碰精品色视频在线观看| 99久久久亚洲精品蜜臀av| 久久久久国内视频| 变态另类成人亚洲欧美熟女| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 久久久久久大精品| 亚洲国产欧美网| 国产一区二区激情短视频| 99热这里只有是精品50| 岛国视频午夜一区免费看| 亚洲av电影不卡..在线观看| 精品一区二区三区视频在线观看免费| 草草在线视频免费看| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 日本在线视频免费播放| 精品电影一区二区在线| 亚洲av第一区精品v没综合| 国产97色在线日韩免费| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩精品亚洲av| 欧美3d第一页| 中文亚洲av片在线观看爽| 亚洲无线在线观看| 久久久久久久久中文| 久久这里只有精品中国| 亚洲一卡2卡3卡4卡5卡精品中文| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 午夜免费激情av| 中文字幕高清在线视频| 一级a爱片免费观看的视频| 91国产中文字幕| 99久久99久久久精品蜜桃| 国产av一区二区精品久久| 女警被强在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久大精品| 在线播放国产精品三级| 神马国产精品三级电影在线观看 | netflix在线观看网站| 一级毛片精品| 久久久久久久久免费视频了| 少妇粗大呻吟视频| 黄色视频,在线免费观看| 婷婷丁香在线五月| 久久久久久免费高清国产稀缺| 91成年电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 又紧又爽又黄一区二区| 久久久水蜜桃国产精品网| bbb黄色大片| 欧美不卡视频在线免费观看 | 国产成人啪精品午夜网站| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 人妻丰满熟妇av一区二区三区| 日韩欧美精品v在线| 十八禁人妻一区二区| 91在线观看av| 国产精品,欧美在线| 香蕉久久夜色| 国产成年人精品一区二区| 国产区一区二久久| 悠悠久久av| 欧美成狂野欧美在线观看| 在线观看www视频免费| 毛片女人毛片| ponron亚洲| 亚洲成人久久爱视频| 亚洲专区中文字幕在线| 两人在一起打扑克的视频| 婷婷精品国产亚洲av在线| 别揉我奶头~嗯~啊~动态视频| 一区二区三区高清视频在线| 国产麻豆成人av免费视频| 此物有八面人人有两片| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆| 国产v大片淫在线免费观看| 国产一区二区在线观看日韩 | 免费搜索国产男女视频| 亚洲专区国产一区二区| 亚洲成av人片免费观看| 精品电影一区二区在线| 成年免费大片在线观看| 国产不卡一卡二| www.精华液| 国产精品久久久久久精品电影| 最新美女视频免费是黄的| 亚洲男人天堂网一区| 看免费av毛片| 成在线人永久免费视频| 岛国在线观看网站| 99riav亚洲国产免费| 999久久久精品免费观看国产| 久9热在线精品视频| 伊人久久大香线蕉亚洲五| 欧美色欧美亚洲另类二区| 日韩成人在线观看一区二区三区| 日韩欧美在线二视频| 国产精品一及| 国产精品野战在线观看| 最近视频中文字幕2019在线8| 久久精品亚洲精品国产色婷小说| 99久久无色码亚洲精品果冻| 亚洲 欧美 日韩 在线 免费| bbb黄色大片| 亚洲真实伦在线观看| 亚洲第一欧美日韩一区二区三区| 国产蜜桃级精品一区二区三区| 亚洲天堂国产精品一区在线| 19禁男女啪啪无遮挡网站| 日韩欧美在线乱码| 岛国在线免费视频观看| 亚洲中文字幕日韩| 亚洲成人久久爱视频| 最好的美女福利视频网| 校园春色视频在线观看| 1024香蕉在线观看| 国产激情偷乱视频一区二区| 国产伦人伦偷精品视频| 在线观看66精品国产| 黄片大片在线免费观看| 好男人电影高清在线观看| 成年免费大片在线观看| 两个人免费观看高清视频| 两个人看的免费小视频| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 一本久久中文字幕| 日本免费一区二区三区高清不卡| 国产亚洲欧美98| 日韩精品免费视频一区二区三区| 男女那种视频在线观看| 精品久久久久久,| 欧美精品亚洲一区二区| 舔av片在线| 亚洲人成网站高清观看| 久久中文看片网| 中文字幕最新亚洲高清| 亚洲色图av天堂| 国产高清有码在线观看视频 | 999久久久国产精品视频| 1024手机看黄色片| 久久精品91蜜桃| 丝袜人妻中文字幕| 婷婷精品国产亚洲av| 99国产精品一区二区蜜桃av| 超碰成人久久| 免费看美女性在线毛片视频| 欧美乱码精品一区二区三区| 久久久精品欧美日韩精品| 欧美高清成人免费视频www| 久久精品影院6| 精品一区二区三区av网在线观看| 欧美午夜高清在线| 午夜久久久久精精品| 黄色女人牲交| 久久久久精品国产欧美久久久| 国产蜜桃级精品一区二区三区| 国产精品 国内视频| 国语自产精品视频在线第100页| 色精品久久人妻99蜜桃| 午夜激情av网站| 国产精品久久视频播放| 婷婷精品国产亚洲av| 夜夜爽天天搞| 又紧又爽又黄一区二区| 日本一二三区视频观看| 国产亚洲av高清不卡| 俺也久久电影网| 一区二区三区激情视频| www.www免费av| 日本黄色视频三级网站网址| 在线观看免费日韩欧美大片| 国产99白浆流出| 99在线视频只有这里精品首页| 身体一侧抽搐| 午夜精品久久久久久毛片777| 国产高清视频在线播放一区| 黄色片一级片一级黄色片| 悠悠久久av| 操出白浆在线播放| 欧美+亚洲+日韩+国产| 18禁裸乳无遮挡免费网站照片| 久久香蕉精品热| 成年人黄色毛片网站| 国产一区二区三区视频了| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看 | 国产一区二区在线观看日韩 | 国产精品久久久久久精品电影| 99热这里只有是精品50| 国产午夜精品久久久久久| 久久久久久久久中文| 亚洲九九香蕉| 亚洲国产精品合色在线| 中亚洲国语对白在线视频| 女同久久另类99精品国产91| 香蕉国产在线看| 嫩草影视91久久| 日韩有码中文字幕| 色在线成人网| 国产v大片淫在线免费观看| 日韩精品免费视频一区二区三区| 国产精品永久免费网站| 久久久久久久久久黄片| 亚洲欧美日韩高清在线视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲午夜理论影院| 18禁美女被吸乳视频| 成人国产综合亚洲| 丝袜人妻中文字幕| 成人国产综合亚洲| 舔av片在线| 国产精品亚洲美女久久久| 男女之事视频高清在线观看| 亚洲av片天天在线观看| www.999成人在线观看| 成人精品一区二区免费| 免费观看人在逋| 亚洲国产精品合色在线| 久久久久久久精品吃奶| 亚洲精品一卡2卡三卡4卡5卡| 在线观看午夜福利视频| 亚洲国产日韩欧美精品在线观看 | 午夜免费激情av| 亚洲熟女毛片儿| 日韩高清综合在线| 亚洲 欧美 日韩 在线 免费| 日韩有码中文字幕| 无遮挡黄片免费观看| 久久精品成人免费网站| 99国产精品一区二区三区| 欧美黑人巨大hd| 麻豆成人av在线观看| 1024手机看黄色片| 欧美+亚洲+日韩+国产| 国产69精品久久久久777片 | 啦啦啦免费观看视频1| 法律面前人人平等表现在哪些方面| 国产片内射在线| 男女床上黄色一级片免费看| 国产激情欧美一区二区| 亚洲狠狠婷婷综合久久图片| 757午夜福利合集在线观看| 免费人成视频x8x8入口观看| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| 久久久久久免费高清国产稀缺| 99精品久久久久人妻精品| 精品久久久久久,| 国产片内射在线| 亚洲av美国av| 中文字幕av在线有码专区| 亚洲欧美一区二区三区黑人| 久热爱精品视频在线9| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 日韩欧美在线二视频| 免费在线观看完整版高清| 看免费av毛片| 制服丝袜大香蕉在线| 久久香蕉精品热| 三级毛片av免费| av在线播放免费不卡| 欧美一级a爱片免费观看看 | xxx96com| 舔av片在线| 精品福利观看| 麻豆国产av国片精品| 国产av在哪里看| 国产成人啪精品午夜网站| 久久这里只有精品中国| 精品国内亚洲2022精品成人| av在线天堂中文字幕| 一级黄色大片毛片| 黄色片一级片一级黄色片| 久久久国产欧美日韩av| 国产精品永久免费网站| 免费电影在线观看免费观看| 免费在线观看日本一区| 欧美性猛交╳xxx乱大交人| 欧美日韩瑟瑟在线播放| 亚洲成av人片免费观看| 2021天堂中文幕一二区在线观| www.熟女人妻精品国产| 床上黄色一级片| 看片在线看免费视频| 成在线人永久免费视频| 黄色成人免费大全| 免费在线观看黄色视频的| 搡老岳熟女国产| 91老司机精品| 成在线人永久免费视频| 国产精品98久久久久久宅男小说| 日本一区二区免费在线视频| 村上凉子中文字幕在线| 亚洲欧洲精品一区二区精品久久久| 国产av不卡久久| 欧美性长视频在线观看| www.www免费av| 2021天堂中文幕一二区在线观| 天堂影院成人在线观看|