• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid simulation of q=1 high-order harmonics driven by passing energetic particles in tokamak plasmas

    2023-12-18 03:54:34ShengLIU劉勝ZhenzhenREN任珍珍WeihuaWANG汪衛(wèi)華WeiSHEN申偉JinhongYANG楊錦宏andHongweiNING寧洪偉
    Plasma Science and Technology 2023年12期
    關鍵詞:劉勝

    Sheng LIU (劉勝) ,Zhenzhen REN (任珍珍) ,Weihua WANG (汪衛(wèi)華),* ,Wei SHEN(申偉) ,Jinhong YANG(楊錦宏) and Hongwei NING(寧洪偉)

    1 Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,People’s Republic of China

    2 School of Physics and Optoelectronic Engineering,Anhui University,Hefei 230601,People’s Republic of China

    3 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract High-order harmonics q(ψs)=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs’effects on high mode-number harmonics(q(ψs)=m/n=2/2,3/3,4/4) instability are more obvious than the q(ψs)=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angle Λ0 and beam ion pressure Phot/Ptotal on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.

    Keywords: high-order harmonics,passing energetic particles,wave-particle resonance,tokamak

    1.Introduction

    In magnetically-confined fusion devices,energetic particles(EPs) physics is a critical issue in achieving high confinement performance and steady-state operation.To increase the temperature of plasma,electron cyclotron resonance heating,ion cyclotron resonance heating and neutral beam injection(NBI) can be applied in tokamaks.In the process,a large number of EPs can be produced,which could interact with magnetohydrodynamics (MHD) activities or drive various instabilities including fishbone modes and Alfvén eigenmodes[1-6].Those instabilities can contribute to EPs loss/redistribution.In the Poloidal Divertor Experiment (PDX),fishbone instability excited by trapped particles was first observed under the perpendicular NBI[7].Subsequently,in the Princeton beta experiment (PBX) with tangential NBI,the fishbone-like internal kink modes excited by passing particles were also reported [8,9].Since then,in the last few decades,the experimental phenomenon of energetic ions acting on the q(ψs)=1/1 mode has been widely found in the tokamak experiments,for instance,Tokamak Fusion Test Reactor(TFTR) [10],Joint European Torus (JET) [11],HL-2A[12-14],and DIII-D [15].Furthermore,in comparison to q(ψs)=1/1 EPM,the instability of the high mode-number harmonics is also unstable which has been observed in MAST[16],EAST [17],ASDEX [18] and HT-7 [19] during NBI heating.Therefore,the study of high-order energetic particle modes (EPMs) excited by EPs in tokamaks is of great significance.

    Theoretically,we can better apprehend the physical mechanisms of these MHD modes[20-24],including internal kinks,sawteeth,long livedmodes,and fishbones.In particular,the past related research reports have mainly focused on m=1,n=1 mode,which is resonantly excited by energetic ions generated from perpendicular or tangential NBI[25-29].When trapped particles excite the q(ψs)=1/1 mode,and the wave-particle resonance can be specifically expressed as ω=ωφ.When passing particles drive the q(ψs)=1/1 mode,and the wave-particle resonance can be specifically expressed as ω=ωφor ω=ωφ-ωθ[23,29-33],where ωφand ωθare the toroidal transit frequency and the poloidal transit frequency,respectively.m=n >1 EPMs are studied in recent years based on the experimental observations of these modes [34,35].Zhang et al numerically investigated q(ψs)=1/1,2/2 EPMs driven by trapped particles in tokamak[36].Up to now,the simulation results of the trapped particles affecting the high-order harmonics EPMs have been well reported[37].Nevertheless,it should be stressed that the impact of the passing EPs on the q(ψs)=1(n ≥1)harmonics were similarly observed in some experiments [38,39],and few simulation studies have been taken into account so far.The physical process of these n >1 EPMs can reduce the core plasma confinement,causing significant energetic-ion redistribution.To effectively achieve steady-state operation in tokamak plasmas,investigating the physical mechanism of high order harmonics driven by passing EPs is essential.

    In this work,we concentrate our attention on the characteristics of the high-order harmonics EPMs,and numerically analyze the passing EPs impact on the mode excitation via M3D-K code [40].The rest of this work is organized as follows.In section 2,the simulation code and associated parameters are briefly introduced.In sections 3 and 4,the linear and nonlinear numerical results with passing EPs are presented,respectively.Ultimately,the summary and discussion are in section 5.

    2.Numerical model and basic parameters

    2.1.Physical analytical model

    M3D-K is a global hybrid kinetic-magnetohydrodynamic(MHD) code,we mainly apply this code to numerically calculate the extended MHD equations and the drift-kinetic equations,respectively,which can better simulate the physical phenomenon of q(ψs)=1 EPMs in toroidal plasmas[25].The plasmas in this code are composed of the EPs and the background plasma.The EPs are demonstrated by driftkinetic equations,whose solution is δ? particle-in-cell method.The background plasma contains electrons and ions,which is considered as a solitary fluid in the MHD equations.The finite element method is used to calculate these equations.Up to now,M3D-K code was widely used to simulate MHD instabilities excited by EPs,such as fishbone mode,RSAE,EPM and TAE [41-47].

    Figure1.(a) The pressure p equilibrium profiles and (b) q profile.

    2.2.Equilibrium profiles and parameters setup

    In this simulation,the main parameters are listed as follows based on HL-2A like conditions:circular cross-section,?-1=R0/a=3.6667,elongation κ=1,triangularity δ=0,B0=1.37 T,βhot/βtotal=0.5,the central total beta is fixed at βtotal=1.2%including the beta of both bulk plasma and EPs,E0=37.78 keV,where vA=B0/(μ0ρ0)1/2is Alfvén speed,τA=R0/vAis Alfvén time and ωA=vA/R0is Alfvén frequency.

    Figure 1(a) shows the radial profile of total pressure,which is as follows:

    where P0is pressure at the magnetic axis,the magnetic poloidal flux Ψ is a radial variable,the edge of the plasma Ψ=1,the center of the plasma Ψ=0.Correspondingly,for the q(Ψs)=1 EPMs,figure 1(b) is the spatial profiles of the safety factor with q0=0.9814.

    The beam ion is a slowing down distribution in velocity space and Gaussian distribution in pitch angle space(Λ=μB0/E).The EPs distribution is as follows:

    where ΔΨ=0.4,ΔΛ=0.3,Λ0=0.7,c is a normalization factor,H is the step function,vc=0.962vAis the critical velocity,which is as follows:

    Figure2.(a)Growth rate from toroidal mode number n=1 to n=4 and (b) corresponding mode frequency.

    3.Linear simulation results

    3.1.Features of the high-order harmonics

    In the linear simulation part of this work,Λ0=0.7 is chosen for analyzing the high-order harmonics,and the width of the pitch angle is set to be ΔΛ=0.3.Due to the impact of the pitch angle width,the distribution of pitch angle has a certain variation range,and the energy particles include passing particles and trapped particles in the beam ion distribution.In addition,according to wave-particle resonant interaction,we found that the high-order harmonics are driven by passing particles with Λ0=0.7,as shown in figure 4.These are the reasons why passing particles are analyzed with near perpendicular neutral beam injection in our work.

    In the following the numerical results of the EPMs driven by passing EPs are presented.Initially,the numerical simulations without NBI are carried out,that is,MHD simulations are firstly performed,and these results show that MHD mode presents a steady state.Secondly,when NBI heating is included,according to the analysis of perturbed distribution δE,we find that the high order EPMs will become more unstable under the effects of passing EPs.As is shown in figure 2,passing EPs’effects on the q(ψs)=2/2,3/3,4/4 harmonics instability are more significant than those on the q(ψs)=1/1 mode,indicating that these high n component instabilities become more dominant.Furthermore,the mode frequency becomes higher when the toroidal mode number n increases.

    It is shown in figure 3 that linear mode numbers of q(ψs)=1 EPMs are n=1,2,3,4,separately.U is the velocity stream function,which is associated with the plasma velocityν=R2??⊥U× ??+?χ+ν???,where the variables such as toroidal angle ? and compressible component χ are included.Due to the energetic ions’effect,the mode structures for these high order harmonics show slightly twisted feature,which is different from the typical internal kink mode.The mode structures are inside the q(ψs)=1 rational surfaces,which are denoted by the black circles.

    Due to wave-particle resonant interaction,generally,the free energy of the radial variation of the EPs distribution excites the EPMs instability.For passing particles,the resonant condition expression is as follows [48]:

    where p is an integer.Previous analyzes have initially focused on the q(ψs)=1/1 mode,satisfying the primary resonances with p=-1 for the EPMs branch of low-frequency or p=0 for the EPMs branch of high-frequency[31].In this work,we find that high frequency branch resonances can also be applied to high n harmonics.Figure 4 shows the perturbed fast ion energy δE in the phase space P?-E.The pitch angle parameter is fixed when we plot resonant conditions of different harmonics,where Λ is defined as Λ=μB0/E.When Λ is fixed,the resonance curves of the different harmonics are fitted and plotted in figure 4.To track the resonant locations,the significant changes of particle energy in the linear phase are investigated in figure 4,which shows the phase space locations of the particles with∣δE∣>0.125Emax,whereδEis the particle energy change,Emaxis the maximum particle energy change.As a result,there are many particles with significant energy changes located along the resonant curves in figure 4.The magnetic moment values of these resonant particles vary in figure 4 with different energies.In addition,figure 4 shows that trapped particles are mainly centered in the regions of larger P?,while passing EPs are mainly centered in the regions of smaller P?.For the passing and trapped particles,we use the horizontal dashed lines as the dividing line of the different types of particles in figure 4.Significantly,the different harmonics with q(ψs)=1/1,2/2,3/3,4/4 modes have only one branch of resonance condition,with the resonance corresponding to p=0,-1,-2,-3 respectively.Furthermore,we observe that large δE for different harmonic modes are all located below the dashed line.Therefore,these simulations show that the resonance of waves and particles is caused by the passing EPs when Λ0=0.7.Because toroidal angular momentum can be expressed asP?=eψ+mDν‖RB?B,which is related to ψ.Compared to the q(ψs)=1/1 mode,n=2,3,4 components have a slightly smaller toroidal angular momentum P?,which indicates that locations of passing particle resonances are nearer to the core region of the tokamak plasmas.Generally,for energetic particle driven instabilities,the correlative growth rate expression isγ∝+[36],where P?is canonical toroidal angular momentum.This formula shows that the drive related to the special gradient of distribution is proportional to toroidal mode number n,which partially explains why n=2,3,4 components instabilities are more unstable compared to the n=1 component.Furthermore,it is shown in the following that the excitation of high order harmonics depends on the shape of q profile and various related parameters.

    Figure3.The velocity stream function U.(a)The(1,1)harmonic,(b)the(2,2)harmonic,(c)the(3,3)harmonic and(d)the(4,4)harmonic.

    Figure4.The resonant conditions of different harmonics: including (a) the (1,1) harmonic,(b) the(2,2)harmonic,(c) the (3,3) harmonic and(d)the(4,4)harmonic.The horizontal dashed lines in figures 4(a)-(d)show the dividing line for the different types of particles.Above the dotted line is the trapped particles region,and below the line is the passing particles region.The color bar shows the amplitude of the energy change δE of energetic particles.

    3.2.Effects of important parameters on high-order harmonics

    Figure5.(a) Growth rate of the q(ψs)=1 EPMs from pitch angles Λ0=0.3 to Λ0=1.0 and (b) corresponding mode frequency.

    Figure6.Resonant condition: (a) Λ0=0.8,the mode frequency is 0.090128ωA,(b) Λ0=0.9,the mode frequency is 0.02387ωA and(c) Λ0=1.0,the mode frequency is 0.02285ωA for the q(ψs)=1/1 mode.

    Figure7.(a) Growth rate of the q(ψs)=1 harmonics from the function of Phot/Ptotal=0.2 to 0.8 and (b) corresponding mode frequency.

    Figure8.Resonant condition: (a) Phot/Ptotal=0.3,the mode frequency of the n=1 mode is 0.1092926045ωA and (b) Phot/Ptotal=0.6,the mode frequency of the n=1 mode is 0.0840079ωA for Λ0=0.7.

    To testify to the impact of the central pitch angle (Λ0),it is shown in figure 5 that the pitch angle varies from 0.3 to 1.0,which affects the mode frequency and instability of different harmonics.The q(ψs)=1(n ≥1)harmonics are stable in Λ0≤0.3.However,with Λ0increasing,the energy particles effect on the stability of these EPMs becomes more obvious.Furthermore,the linear frequency of these EPMs decreases as Λ0increases.The reason is that the transit frequency of passing EPs is determined by particle parallel velocity,associated with pitch angle Λ[49].According to the changes of the perturbed distribution δE,we mark the most prominent locations of the wave-particle resonance under different Λ0.For the n=1 component,Λ0=0.8,0.9,1.0 are chosen to analyze as the mode frequency changes significantly in this region.When Λ0=0.8,the modes are mainly excited by passing particles,while Λ0=0.9,1.0,the modes are mainly excited by trapped particles.The resonant results are shown in figures 6(a)-(c),when Λ0=0.8,the m=1,n=1 mode has only one resonant condition with p=0,and passing particles energy changes significantly below the red dashed line.However,when Λ0=0.9,the m=1,n=1 mode has two resonant conditions with p=0,1.When Λ0=1.0,the m=1,n=1 mode has also one branch resonant conditions with p=0.For both the EPMs with Λ0=0.9 and Λ0=1.0,particle energy changes are all located above the red dashed line,indicating that the impact of the trapped particles on the n=1 EPMs is dominant when Λ0≥0.9.

    Figure9.(a)Spatial profiles of safety factor varying from q0=0.82 to q0=0.9814,(b)the corresponding linear growth rate for different toroidal mode numbers and (c) corresponding mode frequency.

    As is illustrated in figure 7,with fixed total pressure,the effects of the EPs pressure fraction Phot/Ptotalon the excitation of the q(ψs)=1 (n ≥1) harmonics are examined,which become unstable when the EPs pressure over a certain threshold.As the beam ion pressure fraction Phot/Ptotalincreases,the growth rate of these EPMs gradually increases.However,the mode frequency of these EPMs decreases with the beam ion pressure increasing,which is mainly associated with the resonance locations.Taking q(ψs)=1/1 mode for instance,figures 8(a) and (b) respectively show the resonant conditions of different beam ion pressure fractions Phot/Ptotal,when Phot/Ptotalis smaller,the resonance locations of the passing particles are closer to the core.

    In the previous study,it is found that the instability of the q(ψs)=1 modes is associated with δq=|q-1| [50].To testify the dependence of the q(ψs)=1(n ≥1)harmonics on the q-profile,we change q0from 0.82 to 0.9814 in figure 9(a).Figure 9(b)shows that the stability of these EPMs is sensitive to the safety factor and the flattened region of q-profile.For a smaller q0(q0=0.82),the n=1 component grows linearly at the rate of γτA≈0.005,but the high-order EPMs are stable.With q0gradually increasing and q-profile becoming more flattened,the instability of the high mode-number harmonics becomes very unstable,which is even more dominant when q0>0.9.Furthermore,it is found that the mode frequency changes of the q(ψs)=2/2,3/3,4/4 components are different from the q(ψs)=1/1 mode in figure 9(c),whose mode frequencies with different q0are almost the same.

    Figure10.(a)Growth rate of the q(ψs)=1 harmonics with different ΔΛ=0.2 and 0.3 and (b) corresponding mode frequency.

    Figure11.Time evolution of the kinetic energy for different toroidal mode numbers.

    In some experiments in HL-2A and EAST with flat q profile in the core region,the high order harmonics do not emerge.There are two possible explanations for this puzzle.Firstly,according to the theoretical work by Hastie and Hender [50],the stability criterion for higher m modes without energetic particle effects is given bywhereδq=∣q-1 ∣,r1is the radial location of q=1 surface.As a result,the stability of higher m modes depends on various parameters including the beta value,the location of q=1 surface,and the mode number.Secondly,in the following,we show that a few parameters related to EPs can also affect the linear growth rate of high order harmonics,including Λ,Phot/Ptotal,etc.As a result,although the condition of flat q profile is satisfied,the excitation of high order harmonics still depends on various related parameters,which explains why in some experiments the high order harmonics do not dominate with flat q profile.

    Figure12.Fourier spectrogram including (a) the (1,1) mode,(b) the (2,2) mode,(c) the (3,3) mode,(d) the (4,4) mode.

    Figure13.Time evolution of 1D distribution function with (a) n=1,(b) n=2,(c) n=3,(d) n=4.

    To better explore the impact of the pitch angle width on the high-order harmonics,Λ0=0.7 is chosen for analysis.The linear growth rates and mode frequencies are shown in figure 10,for two different ΔΛ: ΔΛ=0.2 (blue dashed line)and ΔΛ=0.3 (red dashed line),and the radial width is Δψ=0.4(ψmax-ψmin).The instability of different modes decreases with increasing the width of the pitch angle (ΔΛ),and the q(ψs)=1 high mode-number harmonics are still dominant compared to the n=1 component.However,the frequencies of different modes are nearly independent of ΔΛ.

    Figure14.Time evolution of 2D distribution function with (a) n=1,(b) n=2,(c) n=3,and (d) n=4.

    4.Nonlinear simulation results

    4.1.Saturation level analysis of different modes

    In the nonlinear simulation part of this work,the kinetic energy evolution of different toroidal modes without MHD non-linearity is shown in figure 11.Here we choose Λ0=0.7,which is consistent with the linear simulations.Significantly,these high n components driven by passing EPs have larger saturation level in the nonlinear phase.Generally,the EPMs saturation is associated with the flattening of the particle distribution [25].In [37],it was proposed that the saturation levels of the q(ψs)=2/2,3/3,4/4 harmonics excited by trapped EPs are smaller than that of the q(ψs)=1/1 harmonic in the nonlinear phase.Nevertheless,the high mode-number harmonics driven by passing EPs are always dominant both in the linear and nonlinear saturation phases.These results are different from the previous work [37],in which the high mode-number harmonics driven by trapped EPs are just dominant in the linear phase.

    4.2.Characteristics of the mode frequency

    The phenomenon of frequency chirping in the nonlinear phase is caused by the wave-particle resonance.Figure 12 shows the frequency evolution of the high-order EPMs.For the q(ψs)=1/1 mode,the frequency shifts downward about δω/ω=13%.Nevertheless,the frequency of the high-order EPMs shifts upward.For the q(ψs)=2/2 mode,the frequency starts to stay around a constant value with no significant change,and then shifts upward about δω/ω=20% at around t ≈2500τA,and nearly no variation afterwards.Furthermore,the frequency evolution of the n=3 and n=4 parts is similar,where the chirping range is even larger,and shifts upward about δω/ω=41%at around t ≈1500τAand δω/ω=40%at around t ≈1200τArespectively.These physical phenomena of frequency chirping are due to the radial flattening of the EPs distribution,which may induce the resonance island shift in the phase space and cause the loss of energetic ions.

    4.3.Evolution of energetic particles’distribution function

    Due to the high-order harmonics instability,EPs generate redistribution in phase space.Figures 13(a)-(d) show the 1D distribution function ?(P?) of passing EPs.Firstly,in comparison with the nonlinear later phase,the redistribution levels are relatively small in the early initial saturation phase.Then,with the nonlinear time evolution of these EPMs,the redistribution of the beam ions expands outwards/inwards radially and has a large flattening region,located nearer the core region in the radial direction.Moreover,figures 13(b)-(d)show that the redistribution regions of the q(ψs)=2/2,3/3,4/4 harmonics are relatively larger than that of the q(ψs)=1/1 mode.There are two possible explanations for these results:(1)the ratios of the linear growth rate to the mode frequency are relative larger for the high n components.For instance,the n=1 component is γ/ω=0.093 while the n=3 component is γ/ω=0.175;(2)the saturation levels of the high mode-number harmonics are much higher,especially for the saturation peak of kinetic energy when n=3,which reaches the highest level.Consequently,the high mode-number harmonics can induce a more obvious redistribution of energetic ions.

    Figures 14(a)-(d) show the 2D distribution function ?(P?) of passing EPs at E ≈0.3,0.4,0.46,0.5,which is marked by the horizontal black dashed.In addition,we plot the vertical black dashed at P?=0.4 in order to better observe redistribution.The movements of these particles in the phase space P?-E are determined by the formula[28].Here,the redistribution of EPs includes the first saturated phase and the later nonlinear phase.It is found that EPs have migrated from the core to the edge in the tokamak experiment.Especially with the nonlinear evolution of these EPMs,the levels of redistribution for the n=2,3,4 modes are further enhanced.Thus,the significant redistribution of energetic ions for the q(ψs)=1/1 mode is relatively smaller.As a result,energetic ions are transported in the phase space P?-E,indicating that the high-order EPMs can induce the redistribution of energy ions.

    5.Summary and discussion

    In summary,the linear and nonlinear evolutions of the q(ψs)=1 high mode-number harmonics driven by passing EPs have been systematically studied via the global kinetic-MHD code M3D-K.In the linear phase,the impacts of the important parameters are first analyzed in this work.With the central pitch angle or the energetic particle pressure increasing,the instability of these EPMs becomes stronger.Specifically,the transition of the wave-particle resonance condition from passing particles dominant to trapped particles dominant is observed when the central pitch angle exceeds a certain range.Furthermore,numerical results show that passing EPs’ effects on high mode-number harmonics instability are more significant than that on the q(ψs)=1/1 mode.The high-order EPMs driven by passing EPs satisfy different resonant conditions under different pitch angles.

    Additionally,the nonlinear features of these EPMs have also been investigated.It is found that frequencies of the n >1 components chirp up,which is different from the classical fishbone.Ultimately,because high n components have a relatively larger saturated level,we find that strong redistribution of the passing EPs can be induced by the high-order harmonics.The instability phenomena of these EPMs driven by passing EPs can be commonly observed in HL-2A experiments.Therefore,the related discoveries in this work are conducive to guiding future tokamak experiments,especially in controlling the instability of high-order harmonics modes.

    Acknowledgments

    This work is supported by National Key R&D Program of China (Nos.2019YFE03050002,2018YFE0310400,and 2022YFE03040002),and National Natural Science Foundation of China (Nos.12005003 and 11975270),and Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences (No.DSJJ-2022-04).

    ORCID iDs

    猜你喜歡
    劉勝
    河北滿城漢墓出土的飲酒器具
    東方收藏(2024年3期)2024-05-19 10:17:33
    中山靖王,玩轉“障眼法”
    評論:用意象和象征建造當代漢詩的北方迷樓
    詩選刊(2023年1期)2023-05-30 06:19:22
    Anderson localization of a spin–orbit coupled Bose–Einstein condensate in disorder potential
    一袋棉花
    劉勝的詩
    詩選刊(2019年8期)2019-08-12 02:29:36
    職場沒有敵人
    投資
    雜文選刊(2017年9期)2017-09-06 00:44:14
    記劉勝金縷玉衣的第三次修復
    文物春秋(2015年6期)2015-05-30 10:48:04
    伴 娘
    午夜福利欧美成人| 国产男靠女视频免费网站| 日韩大尺度精品在线看网址| 亚洲国产精品久久男人天堂| 久久热在线av| 丰满人妻熟妇乱又伦精品不卡| 中文字幕久久专区| 国产精品亚洲美女久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲成人久久性| 99re在线观看精品视频| 91av网站免费观看| 日韩有码中文字幕| 黑人欧美特级aaaaaa片| 国内精品一区二区在线观看| 神马国产精品三级电影在线观看 | 一个人观看的视频www高清免费观看 | 免费在线观看完整版高清| 美女高潮喷水抽搐中文字幕| 我要搜黄色片| 桃红色精品国产亚洲av| 欧美一级a爱片免费观看看 | 亚洲五月天丁香| 可以在线观看的亚洲视频| 法律面前人人平等表现在哪些方面| 亚洲在线自拍视频| 精品少妇一区二区三区视频日本电影| 成人av一区二区三区在线看| 免费在线观看完整版高清| 精品久久久久久久毛片微露脸| 日韩大码丰满熟妇| 可以免费在线观看a视频的电影网站| 黑人欧美特级aaaaaa片| 亚洲中文字幕日韩| 在线永久观看黄色视频| 亚洲黑人精品在线| 日韩精品免费视频一区二区三区| 免费无遮挡裸体视频| 国产v大片淫在线免费观看| 国产精品自产拍在线观看55亚洲| 美女大奶头视频| 少妇熟女aⅴ在线视频| 又爽又黄无遮挡网站| cao死你这个sao货| 国产精品一及| 好男人电影高清在线观看| 欧美激情久久久久久爽电影| 国产激情欧美一区二区| 久久久久性生活片| 丝袜人妻中文字幕| 制服丝袜大香蕉在线| 女生性感内裤真人,穿戴方法视频| 日韩精品免费视频一区二区三区| 亚洲成人中文字幕在线播放| 国产亚洲欧美在线一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 日本一本二区三区精品| 亚洲熟女毛片儿| 美女午夜性视频免费| 亚洲av日韩精品久久久久久密| 这个男人来自地球电影免费观看| 久久午夜综合久久蜜桃| 欧美成人午夜精品| 国产精品久久久久久精品电影| 黄频高清免费视频| 狂野欧美激情性xxxx| 精品高清国产在线一区| 欧美+亚洲+日韩+国产| 日本精品一区二区三区蜜桃| 成人手机av| 人妻久久中文字幕网| 99久久99久久久精品蜜桃| 我的老师免费观看完整版| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| www国产在线视频色| 国产1区2区3区精品| 色哟哟哟哟哟哟| 色综合亚洲欧美另类图片| 亚洲精品中文字幕一二三四区| 精品一区二区三区四区五区乱码| 亚洲国产欧美网| 一进一出抽搐gif免费好疼| 国产精品,欧美在线| 国产成人精品无人区| 国产97色在线日韩免费| 又黄又粗又硬又大视频| 亚洲国产精品999在线| 国产一区二区三区在线臀色熟女| 日本撒尿小便嘘嘘汇集6| 国产激情欧美一区二区| 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 日本一区二区免费在线视频| 韩国av一区二区三区四区| 日韩免费av在线播放| 99精品欧美一区二区三区四区| 夜夜爽天天搞| 在线播放国产精品三级| 在线a可以看的网站| 日韩 欧美 亚洲 中文字幕| 久久中文字幕人妻熟女| 国产成人欧美在线观看| 亚洲国产精品合色在线| 草草在线视频免费看| 国产精品av久久久久免费| bbb黄色大片| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| 亚洲精品一区av在线观看| 日韩三级视频一区二区三区| 久久久精品国产亚洲av高清涩受| 又黄又粗又硬又大视频| 亚洲美女视频黄频| a在线观看视频网站| svipshipincom国产片| 欧美大码av| 国产精品98久久久久久宅男小说| 国产91精品成人一区二区三区| 亚洲五月天丁香| 国产久久久一区二区三区| 亚洲一区中文字幕在线| 在线永久观看黄色视频| 欧美人与性动交α欧美精品济南到| 淫妇啪啪啪对白视频| 国产精品久久久久久久电影 | 2021天堂中文幕一二区在线观| 90打野战视频偷拍视频| 久久久久国产一级毛片高清牌| 亚洲一区二区三区不卡视频| 日韩制服骚丝袜av| 久久国内精品自在自线图片| 91久久精品电影网| 深夜a级毛片| 偷拍熟女少妇极品色| 美女高潮的动态| 91精品一卡2卡3卡4卡| 此物有八面人人有两片| 超碰av人人做人人爽久久| 亚洲成a人片在线一区二区| 18+在线观看网站| 男人舔奶头视频| 成人特级av手机在线观看| 国产片特级美女逼逼视频| 99热6这里只有精品| 亚洲av中文字字幕乱码综合| 国产探花极品一区二区| 精品人妻视频免费看| 一夜夜www| 蜜桃亚洲精品一区二区三区| 一级黄色大片毛片| 国产成人精品婷婷| 亚洲成a人片在线一区二区| 亚洲在久久综合| 97人妻精品一区二区三区麻豆| 嫩草影院新地址| 欧洲精品卡2卡3卡4卡5卡区| 看十八女毛片水多多多| 国产av不卡久久| 精品人妻熟女av久视频| 91狼人影院| 精品人妻视频免费看| 丝袜美腿在线中文| 亚洲三级黄色毛片| 国产午夜精品久久久久久一区二区三区| а√天堂www在线а√下载| a级毛色黄片| 国产精品麻豆人妻色哟哟久久 | 麻豆国产97在线/欧美| 中文精品一卡2卡3卡4更新| 床上黄色一级片| videossex国产| 韩国av在线不卡| 久久精品国产亚洲av天美| 熟妇人妻久久中文字幕3abv| 日韩欧美一区二区三区在线观看| 国产人妻一区二区三区在| 亚洲成av人片在线播放无| 亚洲成人精品中文字幕电影| 97热精品久久久久久| 国产 一区 欧美 日韩| 亚洲一区二区三区色噜噜| 床上黄色一级片| 日韩 亚洲 欧美在线| 看黄色毛片网站| 2021天堂中文幕一二区在线观| 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 精品人妻偷拍中文字幕| 天美传媒精品一区二区| 国产色爽女视频免费观看| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 少妇熟女欧美另类| 亚洲经典国产精华液单| 亚洲精品粉嫩美女一区| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av| 美女国产视频在线观看| 人妻少妇偷人精品九色| 看十八女毛片水多多多| 色综合站精品国产| 精品99又大又爽又粗少妇毛片| 国产老妇女一区| 国产成人福利小说| 成熟少妇高潮喷水视频| 成人毛片60女人毛片免费| 91久久精品国产一区二区三区| 嘟嘟电影网在线观看| 国产黄片美女视频| 成年女人永久免费观看视频| 免费黄网站久久成人精品| 亚洲中文字幕日韩| 日韩成人av中文字幕在线观看| 免费黄网站久久成人精品| 日本黄大片高清| 久久久久久国产a免费观看| 夜夜夜夜夜久久久久| 国产精品一区二区三区四区免费观看| 久久人人爽人人爽人人片va| 亚洲av不卡在线观看| 插逼视频在线观看| 天美传媒精品一区二区| 99精品在免费线老司机午夜| 欧美bdsm另类| 国产精品美女特级片免费视频播放器| 色综合色国产| a级毛片免费高清观看在线播放| 一级av片app| 全区人妻精品视频| 日本av手机在线免费观看| 尤物成人国产欧美一区二区三区| 欧美+亚洲+日韩+国产| 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 亚洲欧美日韩无卡精品| 一本一本综合久久| 国产精品.久久久| 亚洲精品色激情综合| 色视频www国产| 夫妻性生交免费视频一级片| 国产精品女同一区二区软件| 亚洲天堂国产精品一区在线| av国产免费在线观看| 午夜福利视频1000在线观看| 黄色配什么色好看| 国产一区二区在线av高清观看| 免费看日本二区| 国产亚洲精品久久久久久毛片| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 22中文网久久字幕| 一本久久精品| 欧美激情久久久久久爽电影| 亚洲最大成人av| 久久久久久久久久久丰满| 欧美+亚洲+日韩+国产| 亚洲五月天丁香| 国产午夜精品一二区理论片| 亚洲自偷自拍三级| 亚洲国产精品久久男人天堂| 亚洲真实伦在线观看| 国产精品久久视频播放| 亚洲无线观看免费| 精品午夜福利在线看| 国产69精品久久久久777片| 女同久久另类99精品国产91| 一个人免费在线观看电影| 又黄又爽又刺激的免费视频.| 日韩欧美精品v在线| 男插女下体视频免费在线播放| 欧美日本视频| 精品久久国产蜜桃| 国产在线精品亚洲第一网站| 久久精品国产自在天天线| 99在线视频只有这里精品首页| 亚洲在久久综合| 久久人人爽人人爽人人片va| 国产av一区在线观看免费| 日韩欧美 国产精品| 亚洲最大成人av| 国产v大片淫在线免费观看| 成人毛片60女人毛片免费| 日韩av在线大香蕉| 中文字幕av在线有码专区| 日日撸夜夜添| 精品日产1卡2卡| 在线观看av片永久免费下载| 美女内射精品一级片tv| 中文资源天堂在线| 国国产精品蜜臀av免费| 国产成人a区在线观看| 深夜a级毛片| 在线免费十八禁| 伦精品一区二区三区| 91麻豆精品激情在线观看国产| 国产69精品久久久久777片| 三级国产精品欧美在线观看| 午夜福利在线观看吧| 亚洲性久久影院| 天堂√8在线中文| 国产91av在线免费观看| 精品人妻视频免费看| 午夜爱爱视频在线播放| 国产精品国产高清国产av| 长腿黑丝高跟| 国产高清三级在线| 国产精品久久久久久精品电影| 成年免费大片在线观看| 亚洲精品乱码久久久久久按摩| videossex国产| 亚洲在久久综合| 男女边吃奶边做爰视频| 国产 一区 欧美 日韩| 黄片wwwwww| 国产麻豆成人av免费视频| 精品不卡国产一区二区三区| 亚洲av熟女| 精品久久久久久久人妻蜜臀av| 日本色播在线视频| 亚洲欧美日韩高清专用| 欧美三级亚洲精品| 亚洲精品久久国产高清桃花| 大香蕉久久网| 日日干狠狠操夜夜爽| 免费av观看视频| 99热只有精品国产| 欧美另类亚洲清纯唯美| 日韩人妻高清精品专区| а√天堂www在线а√下载| 免费看av在线观看网站| 亚洲欧美日韩东京热| 国产私拍福利视频在线观看| 成年免费大片在线观看| 亚洲第一区二区三区不卡| 免费大片18禁| 精品久久久噜噜| 天天躁夜夜躁狠狠久久av| 蜜臀久久99精品久久宅男| 精品久久国产蜜桃| 秋霞在线观看毛片| 12—13女人毛片做爰片一| 免费搜索国产男女视频| 国产伦一二天堂av在线观看| 淫秽高清视频在线观看| 国内精品久久久久精免费| 婷婷色综合大香蕉| 亚洲成人久久爱视频| 在线天堂最新版资源| av在线播放精品| 久久久久免费精品人妻一区二区| 久久久精品94久久精品| 一级毛片aaaaaa免费看小| 久久久久久伊人网av| 中文字幕免费在线视频6| 黄片无遮挡物在线观看| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠久久av| 男人和女人高潮做爰伦理| 大香蕉久久网| 欧美在线一区亚洲| 日韩,欧美,国产一区二区三区 | 亚洲国产色片| 亚洲中文字幕一区二区三区有码在线看| 久久韩国三级中文字幕| 亚洲色图av天堂| 激情 狠狠 欧美| 蜜桃亚洲精品一区二区三区| 国产三级中文精品| 亚洲国产精品成人久久小说 | 99九九线精品视频在线观看视频| 中文字幕av在线有码专区| 床上黄色一级片| 成人美女网站在线观看视频| 国产精品免费一区二区三区在线| 色尼玛亚洲综合影院| 26uuu在线亚洲综合色| 欧美丝袜亚洲另类| 日韩欧美 国产精品| 99久国产av精品国产电影| 亚洲国产精品合色在线| 欧美在线一区亚洲| 网址你懂的国产日韩在线| 亚洲av熟女| 免费看光身美女| 精品久久国产蜜桃| 午夜视频国产福利| 日韩强制内射视频| 国产成人午夜福利电影在线观看| 免费不卡的大黄色大毛片视频在线观看 | 黄色视频,在线免费观看| 成人午夜精彩视频在线观看| 国产精品一区二区三区四区久久| 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 99热这里只有是精品在线观看| 在线天堂最新版资源| 日韩高清综合在线| 欧美最新免费一区二区三区| 91久久精品国产一区二区成人| 久久鲁丝午夜福利片| 免费大片18禁| 国产精品乱码一区二三区的特点| 69人妻影院| 国产精品乱码一区二三区的特点| 岛国在线免费视频观看| 黄色配什么色好看| 欧美成人a在线观看| 岛国毛片在线播放| 亚洲欧美日韩卡通动漫| 网址你懂的国产日韩在线| 卡戴珊不雅视频在线播放| 黄色一级大片看看| 国产精品久久视频播放| 在线天堂最新版资源| 最近手机中文字幕大全| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 亚洲av免费高清在线观看| 亚洲国产高清在线一区二区三| 男插女下体视频免费在线播放| 熟女电影av网| 欧美色视频一区免费| 国产精品一区二区性色av| 亚洲国产色片| 波多野结衣高清无吗| 国产麻豆成人av免费视频| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 成年av动漫网址| www日本黄色视频网| 欧美极品一区二区三区四区| 精品一区二区免费观看| 中文在线观看免费www的网站| av免费观看日本| 成人亚洲精品av一区二区| 日韩精品有码人妻一区| 国产精品永久免费网站| 日韩欧美一区二区三区在线观看| 国产亚洲欧美98| 夜夜看夜夜爽夜夜摸| a级毛片免费高清观看在线播放| 国产视频内射| 免费av观看视频| 久久精品国产亚洲av香蕉五月| 成人av在线播放网站| 国产极品精品免费视频能看的| 欧美色视频一区免费| 国内少妇人妻偷人精品xxx网站| 麻豆国产av国片精品| 精品人妻偷拍中文字幕| 青春草国产在线视频 | 97超碰精品成人国产| 国产极品精品免费视频能看的| 国产精品三级大全| 老司机福利观看| 91久久精品电影网| 欧美在线一区亚洲| 免费av观看视频| 黑人高潮一二区| 如何舔出高潮| 亚洲精品乱码久久久久久按摩| 久久国内精品自在自线图片| 国产精品.久久久| 一级毛片久久久久久久久女| 十八禁国产超污无遮挡网站| 日韩av不卡免费在线播放| 午夜免费激情av| 少妇熟女aⅴ在线视频| 国国产精品蜜臀av免费| 国产大屁股一区二区在线视频| 少妇人妻一区二区三区视频| 简卡轻食公司| 在线天堂最新版资源| 毛片一级片免费看久久久久| 欧美+日韩+精品| 丰满乱子伦码专区| 国产探花极品一区二区| 欧美xxxx黑人xx丫x性爽| 日本-黄色视频高清免费观看| 精品一区二区三区视频在线| 亚洲真实伦在线观看| 如何舔出高潮| 精华霜和精华液先用哪个| 久久精品久久久久久久性| 国产午夜福利久久久久久| 免费大片18禁| 国产伦精品一区二区三区四那| 亚洲综合色惰| 51国产日韩欧美| 在线天堂最新版资源| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 晚上一个人看的免费电影| 日韩精品有码人妻一区| 久久久久久久亚洲中文字幕| 狂野欧美激情性xxxx在线观看| 天天一区二区日本电影三级| 精品久久久久久久末码| 国产一级毛片七仙女欲春2| 国产精品一区www在线观看| 日本与韩国留学比较| 色视频www国产| 亚洲欧美成人综合另类久久久 | 在线天堂最新版资源| 国产精品一区www在线观看| 久久人人精品亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 国产私拍福利视频在线观看| 99热精品在线国产| 我要看日韩黄色一级片| 三级经典国产精品| 99久久精品国产国产毛片| 边亲边吃奶的免费视频| 久久久国产成人精品二区| 菩萨蛮人人尽说江南好唐韦庄 | 一区福利在线观看| 国内久久婷婷六月综合欲色啪| 亚洲av免费在线观看| 又黄又爽又刺激的免费视频.| 国产一区亚洲一区在线观看| 久久亚洲国产成人精品v| 夜夜爽天天搞| 边亲边吃奶的免费视频| 性欧美人与动物交配| 久久亚洲精品不卡| 联通29元200g的流量卡| 日本免费a在线| 在线观看免费视频日本深夜| 成人av在线播放网站| 亚洲欧美日韩无卡精品| 国产综合懂色| 嫩草影院精品99| 网址你懂的国产日韩在线| 麻豆国产av国片精品| 亚洲欧美精品专区久久| 午夜久久久久精精品| a级毛片免费高清观看在线播放| 少妇熟女aⅴ在线视频| 美女cb高潮喷水在线观看| 亚洲精品久久久久久婷婷小说 | 日韩大尺度精品在线看网址| 免费大片18禁| 全区人妻精品视频| 久久久久性生活片| 日韩制服骚丝袜av| 成人午夜精彩视频在线观看| 丝袜美腿在线中文| 一区二区三区高清视频在线| 干丝袜人妻中文字幕| 国产蜜桃级精品一区二区三区| 青春草视频在线免费观看| 日韩成人av中文字幕在线观看| 亚洲人成网站在线播放欧美日韩| 一级黄片播放器| 男女做爰动态图高潮gif福利片| 美女被艹到高潮喷水动态| 97在线视频观看| 少妇高潮的动态图| 欧美在线一区亚洲| 一个人看的www免费观看视频| 一区二区三区四区激情视频 | 久久精品影院6| 国产av麻豆久久久久久久| or卡值多少钱| 日韩大尺度精品在线看网址| 日韩三级伦理在线观看| 老女人水多毛片| 亚洲精品色激情综合| 国产综合懂色| 精品一区二区免费观看| 在线播放国产精品三级| 免费av毛片视频| 国产又黄又爽又无遮挡在线| 国产成人91sexporn| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 成人美女网站在线观看视频| 又粗又硬又长又爽又黄的视频 | 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看 | 美女大奶头视频| 成熟少妇高潮喷水视频| 草草在线视频免费看| 老女人水多毛片| av又黄又爽大尺度在线免费看 | 午夜福利成人在线免费观看| 久久亚洲精品不卡| 国产乱人偷精品视频| 久久久久久久久大av| 国产高清三级在线| 我要看日韩黄色一级片| 在线天堂最新版资源| 亚洲一区高清亚洲精品| av又黄又爽大尺度在线免费看 | 身体一侧抽搐| 女人被狂操c到高潮| 亚洲18禁久久av| 国产伦理片在线播放av一区 | 色综合色国产| 一进一出抽搐动态| 国内揄拍国产精品人妻在线| 啦啦啦韩国在线观看视频| 免费人成视频x8x8入口观看| 91午夜精品亚洲一区二区三区| 高清在线视频一区二区三区 | 性色avwww在线观看| 亚洲乱码一区二区免费版| 久久久a久久爽久久v久久| 国产精品女同一区二区软件| 国产一级毛片七仙女欲春2| 女的被弄到高潮叫床怎么办| 亚洲欧洲日产国产|