• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sahlqvist Correspondence Theory for Modal Logic with Quantification over Relations*

    2024-01-10 02:23:26FeiLiangZhiguangZhao
    邏輯學研究 2023年6期

    Fei Liang Zhiguang Zhao

    Abstract. Lehtinen (2008) introduced a new concept of validity of modal formulas,where quantification over binary relations is allowed for the so called “helper modalities”,and the “boss modalities” are similar to ordinary modalities in modal logic in the sense that they are interpreted as a fixed binary relation in a Kripke frame.In the present paper,we study the correspondence theory for this validity notion.We define the class of Sahlqvist formulas for this validity notion,each formula of which has a first-order frame correspondent,and define the algorithm ALBARQ to compute the first-order correspondents of this class.

    1 Introduction

    Lehtinen ([6]) introduced a new concept of validity of modal formulas,which allows,from the perspective of second-order logic,quantification over binary relations.In this definition of validity,if the modal similarity type isτ={◇1,...,◇n},then we say that the modal formulaφisτ-valid in a setW(notationW?τ φ) iff it is valid in each frame F=(W,R1,...,Rn).With the help of the standard translation,assume that onlyp1,...,pkoccur inφ,then theτ-validity in a setWcan be equivalently written as:

    As is shown in[6,Example 5.1.2,5.1.3],this notion of validity can be used to define the size of the domain.Indeed,takeτ={◇},

    In this definition,set validity allows us to talk about the size of a domain,but we lose the possibility to talk about relations.Therefore,Lehtinen proposes a more general perspective by allowing some relations to behelpersand others to bebosses,such that we only quantify over the helpers and keep the bosses similar to the standard Kripke frame validity.

    In the new definition,the similarity typeτis defined to be the disjoint union ofτHandτB,where modalities inare calledhelpers,and modalities inare calledbosses.

    We say that a formula isτH-validin a frame(W,R1,...,Rn),if

    for all helper relationsH1,...,Hm.With the help of the standard translation,theτH-validityin F=(W,R1,...,Rn)can be reformulated as

    With the notion ofτH-validity,we can use modal formulas to define first-order properties of Kripke frames that cannot be defined using standard validity notion.

    Example 1(Example 5.1.7 in[6]).LetτB={◇},τH={◇H},and F=(W,R).Then we have

    In the present paper,we study the Sahlqvist correspondence theory of this validity notion,namely,we define a class of Sahlqvist formulas in the modal language of helpers and bosses,and define an Ackermann Lemma Based Algorithm ALBARQ1Here RQ stands for “relation quantifier”.to compute the first-order correspondents of Sahlqvist formulas.

    The structure of the paper is organized as follows: Section 2 presents preliminaries on modal logic of helpers and bosses.Section 3 defines Sahlqvist formulas and inequalities.Section 4 defines the expanded modal language,the first-order correspondence language and the standard translation,which will be used in the algorithm.Section 5 defines the Ackermann Lemma Based Algorithm ALBARQ.Section 6 proves the soundness of the algorithm.Section 7 shows that ALBARQsucceeds on Sahlqvist formulas.Section 8 gives some examples.Section 9 gives conclusions.

    2 Preliminaries

    In the present section,we collect the preliminaries on modal logic with helpers and bosses.For more details,see[6,Section 5].

    2.1 Language and Syntax

    Definition 1.Given a set Prop of propositional variables,a finite setτH={,...,},a finite setsuch thatτH ∩τB=?,the modal language with helpers and bosses is defined recursively as follows:

    wherep ∈Prop,◇∈τH ∪τB. □and?are defined in the standard way.We call a formulapureif it contains no propositional variables.We useτ:=(τH,τB) to denote thesimilarity typeof the language.Throughout the article,we will also make substantial use of the following expressions:

    (1) Aninequalityis of the formφ ≤ψ,whereφandψare formulas.

    (2) Aquasi-inequalityis of the formφ1≤ψ1& ...&φn ≤ψn ?φ ≤ψ.

    We will find it easy to work with inequalitiesφ ≤ψin place of implicative formulasφψin Section 3.

    2.2 Semantics

    Definition 2.Given a similarity typeτ=(τH,τB),aτ-Kripke frameis a tuple F=(W,R1,...,Rn,H1,...,Hm)whereW≠ ?is thedomainof F,R1,...,Rn,H1,...,Hmareaccessibility relationswhich are binary relations onW,and eachRicorresponds to,eachHicorresponds to.The underlyingτB-Kripke frameof aτ-Kripke frame is a tuple F=(W,R1,...,Rn)where eachRicorresponds torespectively and no relations forare there.τB-Kripke frames are used to define validity.Aτ-Kripke modelis a pair M=(F,V)where F is aτ-Kripke frame andV: Prop(W) is avaluationon F.Now the satisfaction relation is defined as follows2The basic case and the Boolean cases are defined as usual,and here we only give the clauses for the modalities.: given anyτ-Kripke model M=(W,R1,...,Rn,H1,...,Hm,V),anyw ∈W,

    For any formulaφ,we let?φ?M={w ∈W|M,w?φ}denote thetruth setofφin M.The formulaφisglobally trueon M(notation:M ?φ)if?φ?M=W.The crucial difference between modal logic with helpers and bosses and ordinary modal logic is the definition of validity.Validity in the former is only defined onτB-Kripke frames:Aτ-formulaφisvalidon aτB-Kripke frame F=(W,R1,...,Rn)(notation:F ?φ)ifφis globally true on(F,H1,...,Hm,V)for all helper relationsH1,...,Hmand all valuationsV.The semantics of inequalities and quasi-inequalities are given as follows:

    The definitions of validity are similar to formulas.It is easy to see thatt M ?φ ≤ψiff M ?φψ.

    3 Sahlqvist Formulas and Inequalities

    In this section,we define Sahlqvist formulas and inequalities in the similarity typeτ,in the style of unified correspondence[2].We collect preliminaries here.

    Definition 3(Order-type).(cf.[4,p.346])For ann-tuple(p1,...,pn)of propositional variables,an order-typeεis an element in{1,?}n.We say thatpihas ordertype 1(resp.?)with respect toεifεi=1(resp.εi=?),and denoteε(pi)=1(resp.ε(pi)=?).We useε?to denote the order-type whereε?(pi)=1(resp.ε?(pi)=?)iffε(pi)=?(resp.ε(pi)=1).

    Definition 4(Signed generation tree).(cf.[5,Definition 4])Thepositive(resp.negative)generation treeof anyτ-formulaφis defined by first labelling the root of the generation tree ofφwith+(resp.-)and then labelling the children nodes as follows:

    · Assign the same sign to the children nodes of any node labelled with ∨,∧,,

    · Assign the opposite sign to the child node of any node labelled with ?;

    · Assign the opposite sign to the first child node and the same sign to the second child node of any node labelled with;

    Nodes in signed generation trees are calledpositive(resp.negative)if they are signed+(resp.-).

    We give an example of signed generation tree in Figure 1.

    Figure 1: Positive generation tree for (p ∨?□q)◇q

    For anyτ-formulaφ(p1,...pn),any order-typeεovern,and anyi=1,...,n,anε-critical nodein a signed generation tree ofφis a leaf node +piwhenεi=1 or -piwhenεi=?.Anε-critical branchin a signed generation tree is a branch from anε-critical node.Theε-critical occurrences are intended to be those which the algorithm ALBARQwill solve for.

    We use+p?+φ(resp.-p?+φ)to indicate that an occurrence of a propositional variablepinherits the positive(resp.negative)sign from the positive generation tree+φ,and say thatpispositive(resp.negative)inφif+p?+φ(resp.-p?+φ)for all occurrences ofpinφ.

    Definition 5.(cf.[5,Definition 5])Nodes in signed generation trees are calledouternodesandinner nodes,according to Table 1.Here □stands for,◇stands for

    Table 1: Outer and Inner nodes.

    A branch in a signed generation tree isexcellentif it is the concatenation of two pathsP1andP2,one of which might be of length 0,such thatP1is a path from the leaf consisting(apart from variable nodes)of inner nodes only,andP2consists(apart from variable nodes)of outer nodes only.

    Definition 6(Sahlqvist inequalities).(cf.[5,Definition 6]) For any order-typeε,the signed generation tree?φ(where?∈{+,-}) of a formulaφ(p1,...pn) isε-Sahlqvistif

    · for all 1≤i ≤n,everyε-critical branch with leafpiis excellent;

    · for every branch(notice that here it might not beε-critical)with occurrences of+◇Hor-□H,every node from the root to this occurrence of+◇Hor-□Hin the signed generation tree is an outer node.

    An inequalityφ ≤ψisε-Sahlqvistif the signed generation trees+φand-ψareε-Sahlqvist.An inequalityφ ≤ψisSahlqvistif it isε-Sahlqvist for someε.A formulaφψis Sahlqvist if the inequalityφ ≤ψis a Sahlqvist inequality.

    Example 2.An example of Sahlqvist formula in our language is ◇H□Bp □B◇Hp,which is similar to the Geach formula in ordinary modal logic.Notice that here we have position restrictions on the first occurrence of ◇H.

    The classification of outer nodes and inner nodes is based on how different connectives behave in the algorithm.When the input inequality is a Sahlqvist inequality,the algorithm first decompose the outer part of the formula,and then decompose the inner part of the formula,which will be shown in the success proof of the algorithm in Section 7.

    The difference between the present setting and ordinary modal logic is that we have additional requirement of the positions of helper modalities,which will be clear from the execution of the algorithm.

    4 The Expanded Modal Language,First-Order Correspondence Language and Standard Translation

    4.1 The Expanded Modal Language

    In the present subsection,we define the expanded modal language,which will be used in the execution of the algorithm:

    where i∈Nom arenominalsas in hybrid logic which are interpreted as singleton sets,∈τH,∈τB,S={(i1,j1),...,(ik,jk)}for some pairs(i1,j1),...,(ik,jk).

    The reason for introducing the nominals and S-modalities is to compute the minimal valuations for propositional variables and for the H-modalities(which are essentially quantified by second-order quantifiers in the validity definition),therefore we can eliminate them to get a quasi-inequality which is essentially quantified by firstorder quantifiers.

    □Sand ◇Sare interpreted on the relationS:={(V(i1),V(j1)),...,(V(ik),V(jk))}.For ■and ◆,they are interpreted as the box and diamond modality on the inverse relation,S-1,according to the superscipt and subscript,respectively.TheS-modalities are interpreted as the computation result of the minimal relations for the helper modalities,which is similar to the minimal valuations of propositional variables in the algorithm ALBARQ.

    For the semantics of the expanded modal language,the valuation is defined asV: Prop ∪NomP(W)whereV(i)is defined as a singleton as in hybrid logic,and the additional semantic clauses can be given as follows:

    4.2 The first-order correspondence language and the standard translation

    In the first-order correspondence language,we have a binary predicate symbolHicorresponding to the binary relationHi,a binary predicate symbolRjcorresponding to the binary relationRj,a set of constant symbolsicorresponding to each nominal i,a set of unary predicate symbolsPcorresponding to each propositional variablep.Notice that we do not have binary predicate symbols for theSrelations.

    Definition 7.For the standard translation of the expanded modal language,the basic propositional cases and the Boolean cases as well as the modal cases for boss modalities are defined as usual and hence omitted,the other cases are defined as follows:

    It is easy to see that this translation is correct:

    Proposition 1(Folklore.).For any Kripke modelM,any w ∈W and any expanded modal formula φ,

    For inequalities,quasi-inequalities,the standard translation is given in a global way:

    Definition 8.·ST(φ ≤ψ):=?x(STx(φ)STx(ψ));

    ·ST(φ1≤ψ1&...&φn ≤ψn ?φ ≤ψ):=ST(φ1≤ψ1)∧...∧ST(φn ≤ψn)ST(φ ≤ψ).

    Proposition 2(Folklore.).For any Kripke modelM,any inequalityIneq,any quasiinequalityQuasi,

    5 The Algorithm ALBARQ

    In this section,we define the algorithm ALBARQwhich computes the firstorder correspondents of input Sahlqvist formulas,in the style of[3,4].The algorithm receives an input formulaφψand transforms it into an inequalityφ ≤ψ.Then the algorithm goes in three steps.

    1.Preprocessing and first approximation:

    In the generation tree of+φand-ψ3The discussion below relies on the definition of signed generation tree in Section 3.In what follows,we identify a formula with its signed generation tree.,

    (a) Apply the distribution rules:

    (b) Apply the splitting rules: rewriteα ≤β ∧γasα ≤βandα ≤γ;rewriteα ∨β ≤γasα ≤γandβ ≤γ;

    (c) Apply the monotone and antitone variable-elimination rules:

    forβ(p)positive inpandα(p)negative inp.

    We denote by Preprocess(φψ)the finite set{φi ≤ψi}i∈Iof inequalities obtained after the exhaustive application of the previous rules.Then we apply the following first approximation rule to every inequality in Preprocess(φψ):

    Here,i0and i1are special fresh nominals.Now we get a set of inequalities{i0≤φi,ψi ≤?i1}i∈I.

    2.The reduction stage:

    In this stage,for each{i0≤φi,ψi ≤?i1},we apply the following rules to prepare for eliminating all the propositional variables and helper modalities:

    (a) Splitting rules(similar to the splitting rules in Stage 1);

    (b) Approximation rules:

    The nominals introduced by the approximation rules must not occur in the system before applying the rule,and ◇stands for,or ◇S,□stands for,or □S.

    (c) Residuation rules:

    (d) Ackermann rules:

    By the Ackermann rules,we compute the minimal/maximal valuation for propositional variables and minimal valuation for helper modalities and use the Ackermann rules to eliminate all the propositional variables and helper modalities.These three rules are the core of ALBARQ,since their application eliminates propositional variables and helper modalities.In fact,all the preceding steps are aimed at reaching a shape in which the Ackermann rules can be applied.Notice that an important feature of these rules is that they are executed on the whole set of inequalities,and not on a single inequality.

    The right-handed Ackermann rule for propositional variables:

    where:

    i.Eachβiis positive inp,and eachγinegative inp,for 1≤i ≤m;

    ii.Eachαiis pure.

    The left-handed Ackermann rule for propositional variables:

    where:

    i.Eachβiis negative inp,and eachγipositive inp,for 1≤i ≤m;

    ii.Eachαiis pure.

    The right-handed Ackermann rule for helper modalities:

    where:

    3.Output:If in the previous stage,for some{i0≤φi,ψi ≤?i1},the algorithm gets stuck,i.e.some propositional variables or helper modalities cannot be eliminated by the application of the reduction rules,then the algorithm halts and output “failure”.Otherwise,each initial tuple{i0≤φi,ψi ≤?i1}of inequalities after the first approximation has been reduced to a set of pure inequalities Reduce(φi ≤ψi)without helper modalities,and then the output is a set of quasi-inequalities{&Reduce(φi ≤ψi)?i0≤?i1:φi ≤ψi ∈Preprocess(φψ)}without helper modalities,where &is the big metaconjunction in quasi-inequalities.Then the algorithm use the standard translation to transform the quasi-inequalities into first-order formulas.

    6 Soundness of ALBARQ

    In the present section,we will prove the soundness of the algorithm ALBARQwith respect to Kripke frames.The basic proof structure is similar to[7].

    Theorem 3(Soundness).IfALBARQruns successfully on φψ and outputsFO(φψ),then for any τB-Kripke frameF=(W,R1,...,Rn),

    Proof.The proof goes similarly to [4,Theorem 8.1].Letφi ≤ψi,1≤i ≤ndenote the inequalities produced by preprocessingφψafter Stage 1,and{i0≤φi,ψi ≤?i1}denote the inequalities after the first-approximation rule,Reduce(φi ≤ψi) denote the set of pure inequalities after Stage 2,and FO(φ ■ψ) denote the standard translation of the quasi-inequalities into first-order formulas,then we have the following chain of equivalences:

    · The equivalence between(1)and(2)follows from Proposition 4;

    · the equivalence between(2)and(3)follows from Proposition 5;

    · the equivalence between(3)and(4)follows from Propositions 6,7 and 8;

    · the equivalence between(4)and(5)follows from Proposition 2.□

    In the remainder of this section,we prove the soundness of the rules in Stage 1,2 and 3.

    Proposition 4(Soundness of the rules in Stage 1).For the distribution rules,the splitting rules and the monotone and antitone variable-elimination rules,they are sound in both directions inF,i.e.the inequality before the rule is valid inFiff the inequality(-ies)after the rule is(are)valid inF.

    Proof.The proof is the same as[7,Proposition 6.2].□

    Proposition 5.(2)and(3)are equivalent,i.e.the first-approximation rule is sound inF.

    Proof.The proof is the same as[7,Proposition 6.3].□

    The next step is to show the soundness of each rule of Stage 2.For each rule,before the application of this rule we have a set of inequalitiesS(which we call thesystem),after applying the rule we get a set of inequalitiesS′,the soundness of Stage 2 is then the equivalence of the following two conditions:

    · F ?&S ?i0≤?i1;

    · F ?&S′?i0≤?i1;

    where&Sdenote the meta-conjunction of inequalities ofS.It suffices to show the following property:

    · For anyτB-Kripke frame F=(W,R1,...,Rn),any binary relationsH1,...,Hm,any valuationVon it,if(F,H1,...,Hm,V)?S,then there is a valuationV′and binary relations,...,such thatV′(i0)=V(i0),V′(i1)=V(i1)and(F,,...,,V′)?S′;

    · For anyτB-Kripke frame F=(W,R1,...,Rn),any binary relations,...,,any valuationV′on it,if(F,,...,H′m,V′) ?S′,then there is a valuationVand binary relationsH1,...,Hmsuch thatV(i0)=V′(i0),V(i1)=V′(i1)and(F,H1,...,Hm,V)?S.

    Proposition 6.The splitting rules,the approximation rules for ◇,□,■,the residuation rules for?,◇,□are sound inF.

    Proof.The proof is similar to[7,Proposition 6.4 and 6.11].□

    Proposition 7.The Ackermann rules for propositional variables are sound inF.

    Proof.The proof is similar to[7,Proposition 6.17].□

    Proposition 8.The right-handed Ackermann rule for helper modalities is sound inF.

    This rule is the key rule of the algorithm ALBARQsince it eliminates helper modalities.The proof method is similar to the soundness proof of the right-handed Ackermann rule for propositional variables.Without loss of generality,we assume thatk1=k2=m=1.To prove Proposition 8,it suffices to prove the following right-handed Ackermann lemma for helpers:

    Lemma 1.Assume that β1is positive inand negative inandγ1is negative inand positive inthen for any τB-Kripke frameF=(W,R1,...,Rn),any binary relations H1,...,Hm,any valuation V on it,thefollowing are equivalent

    (1) M:=(F,H1,...,Hm,V)?β1(S/Hi)≤γ1(S/Hi)?

    (2)there is a binary relationsuch thatM′:=(F,H1,...,Hi-1,,Hi+1,...,Hm,V)

    Since helper modalities with subscriptido not occur inβ1(S/Hi)andγ1(S/Hi),we have M ?β1(S/Hi)≤γ1(S/Hi).□

    7 Success

    In this section,we prove that ALBARQsucceeds on all Sahlqvist formulas.The proof structure is similar to[7].

    Theorem 9.ALBARQsucceeds on all Sahlqvist formulas.

    Definition 9(Definiteε-Sahlqvist inequality,similar to Definition 7.2 in[7]).Given any order-typeε,?∈{-,+},the signed generation tree?φof the termφ(p1,...,pn)isdefinite ε-Sahlqvistif there is no+∨,-∧occurring in the outer part on anε-critical branch.An inequalityφ ≤ψis definiteε-Sahlqvist if the trees+φand-ψare both definiteε-Sahlqvist.

    Lemma 2.Let {φi ≤ψi}i∈I=Preprocess(φψ)obtained by exhaustive application of the rules in Stage 1 on an input ε-Sahlqvist formula φψ.Then each φi ≤ψi is a definite ε-Sahlqvist inequality.

    Proof.Same as[7,Lemma 7.3].□

    Definition 10(Innerε-Sahlqvist signed generation tree,similar to Definition 7.4 in[7]).Given an order typeε,?∈{-,+},the signed generation tree?φof the termφ(p1,...,pn)isinner ε-Sahlqvistif its outer partP2on anε-critical branch is always empty,i.e.itsε-critical branches have inner nodes only.

    Lemma 3.Given inequalitiesi0≤φi and ψi ≤?i1obtained from Stage 1 where+φi and-ψi are definite ε-Sahlqvist,by applying the rules in Substage 1 of Stage 2 exhaustively,the inequalities that we get are in one of the following forms:

    1.pure inequalities which does not have occurrences of propositional variables?

    2.inequalities of the formi≤α where+α is inner ε-Sahlqvist?

    3.inequalities of the form β ≤?iwhere-β is inner ε-Sahlqvist.

    Proof.Similar to [7,Lemma 7.5].For the sake of the proof of the next lemma we repeat the proof here.Indeed,the rules in the Substage 1 of Stage 2 deal with outer nodes in the signed generation trees +φiand -ψiexcept +∨,-∧.For each rule,without loss of generality assume we start with an inequality of the form i≤α,then by applying the approximation rules,splitting rules and the residuation rules for negation in Stage 2,the inequalities we get are either a pure inequality without propositional variables,or an inequality where the left-hand side (resp.right-hand side) is i (resp.?i),and the other side is a formulaα′which is a subformula ofα,such thatα′has one root connective less thanα.Indeed,ifα′is on the left-hand side(resp.right-hand side)then-α′(+α′)is definiteε-Sahlqvist.

    By applying the rules in the Substage 1 of Stage 2 exhaustively,we can eliminate all the outer connectives in the critical branches,so for non-pure inequalities,they become of form 2 or form 3.□

    The next two lemmas are crucial to the success of the whole algorithm,which also justify the definition of Sahlqvist formulas and inequalities:

    Lemma 4.In Lemma 3,all the occurrences of+◇H’s and-□H’s are in the form ofi≤◇Hjand □H?j≤?i,and in form 2 and 3,+α and-β only contain positive occurrences of □H’s and negative occurrences of ◇H’s.

    Proof.As we can see from the proof of Lemma 3 and the second item of Definition 6 for Sahlqvist inequalities,during the decomposition of the outer part of the Sahlqvist signed generation trees,all occurrences of+◇H’s and-□H’s are in the outer part of the signed generation tree,hence are treated by the approximation rules.Before the application of the approximation rules,the inequalities are of the form i≤◇Hαor of the form □Hα ≤?i.By applying the approximation rules,they are in the form of i≤◇Hj and □H?j≤?i.For the rest of occurrences of ◇H’s and □H’s,they could only be in form 2 and 3,and ◇H’s occur only negatively and □H’s occur only positively.□

    Lemma 5.Assume we have inequalities of the form as described in Lemma 3 and 4,the right-handed Ackermann rule for helper modalities is applicable and therefore all helper modalities can be eliminated.

    Proof.It is easy to check that the shape of the system exactly satisfies the requirement of the application of the right-handed Ackermann rule for helper modalities.In addition,since in the result of the rule,some inequalities are deleted and the other inequalities have helper modalities replaced by the same kind of modalities(e.g.diamond by diamond,box by box,white connectives by white connectives,black connectives by black connectives),we still have pure inequalities and inequalities of the form 2 and 3 as described in Lemma 3,but now without helper modalities.□

    Lemma 6.Assume we have an inequalityi≤α or β ≤?iwhere+α and-β are inner ε-Sahlqvist,by applying the splitting rules and the residuation rules in Stage 2,we have inequalities of the following form:

    1.α ≤p,where ε(p)=1,α is pure?

    2.p ≤β,where ε(p)=?,β is pure?

    3.α ≤γ,where α is pure and+γ is ε?-uniform?

    4.γ ≤β,where β is pure and-γ is ε?-uniform.

    Proof.The proof is similar to[7,Lemma 7.6].Notice that for each input inequality,it is of the form i≤αorβ ≤?i,where+αand-βare innerε-Sahlqvist.By applying the splitting rules and the residuation rules,it is easy to check that the inequality will have one side pure,and the other side still innerε-Sahlqvist.By applying these rules exhaustively,one will either havepas the non-pure side (with thispon a critical branch),or have an innerε-Sahlqvist signed generation tree with no critical branch,i.e.,ε?-uniform.□

    Lemma 7.Assume we have inequalities of the form as described in Lemma 6,the Ackermann rules for propositional variables are applicable and therefore all propositional variables can be eliminated.

    Proof.Immediate observation from the requirements of the Ackermann rules.□

    Proof of Theorem 9Assume we have an Sahlqvist formulaas input.By Lemma 2,we get a set of definiteε-Sahlqvist inequalities.Then by Lemma 3,we get inequalities as described in Lemma 3 and 4.By Lemma 5,all helper modalities are eliminated.By Lemma 6,we get the inequalities as described.Finally by Lemma 7,the inequalities are in the right shape to apply the Ackermann rules for propositional variables,and thus we can eliminate all the propositional variables and the algorithm succeeds on the input.□

    8 Examples

    In this section we show how to run the algorithm ALBARQon some examples that we give in the introduction.By the Goldblatt-Thomason theorem [1,Theorem 3.19],a first-order definable class of Kripke frames is modally definable iff it is closed under taking bounded morphic images,generated subframes,disjoint unions and reflects ultrafilter extensions.Since|W|≤1 andR=W×Ware not closed under taking disjoint unions,they are not definable by ordinary modal formulas,so our results go beyond Sahlqvist theorem in ordinary modal logic.

    Example 3.We have input formula ◇Hp□Hp.To make the validity quantification pattern clear,we add quantifiers for the propositional variables,nominals and helper modalities:

    First we transform the input formula into inequality:

    Stage 1:By first approximation,we have:

    Stage 2:By the approximation rule for ◇H,we have:

    By the approximation rule for □H,we have:

    By the right-handed Ackermann rule for ◇Hand □H,we have(notice that there is no receiving inequalities,so we just eliminate the inequalities i≤◇Hk and □H?k′≤?j):

    By the right-handed Ackermann rule forp,we have:

    Stage 3:

    By standard translation,we have:

    By first-order logic,we have:

    By first-order logic,we have:

    which is:

    which is:

    Example 4.We have input formula □Bp□Hp.To make the validity quantification pattern clear,we add quantifiers for the propositional variables,nominals and helper modalities:

    First we transform the input formula into inequality:

    Stage 1:

    By first approximation,we have:

    Stage 2:

    By the approximation rule for □H,we have:

    By the right-handed Ackermann rule for □H,we have(notice that there is no receiving inequalities,so we just eliminate the inequality □H?k≤?j):

    By the left-handed Ackermann rule forp,we have:

    The following are not really obtained by rules in ALBARQ,but they are soundly obtained:

    Stage 3:

    By standard translation we have:

    which is:

    9 Conclusion

    In the present paper,we develop the correspondence theory for modal logic with helpers and bosses,define the Sahlqvist formulas in this setting,give an algorithm ALBARQwhich transforms input Sahlqvist formulas into their first-order correspondents.

    There is one issue remains to be dealt with.In the algorithm ALBARQ,we have the right-handed Ackermann rule for the helper modalities.It seems plausible to also have the left-handed Ackermann rule for the helper modalities,which is more difficult since+□H’s and-◇H’s do not occur in the outer part of the signed generation tree,they cannot be in the form of i ≤◇Hj or □H?j≤?i,which makes it more difficult to compute the corresponding minimal/maximal relation.Therefore we leave it to future work.

    国产精品一区二区免费欧美| 亚洲国产精品国产精品| 久久精品国产鲁丝片午夜精品| 国产乱人偷精品视频| 久久久久九九精品影院| 久久久久久久午夜电影| 亚洲av.av天堂| 麻豆久久精品国产亚洲av| 我的女老师完整版在线观看| 国产精品免费一区二区三区在线| 色噜噜av男人的天堂激情| 国产精品三级大全| 亚洲aⅴ乱码一区二区在线播放| 激情 狠狠 欧美| 国产精品久久久久久av不卡| 国产视频内射| 精品人妻一区二区三区麻豆 | 亚洲精品456在线播放app| 久久久久久久久久久丰满| 99热这里只有是精品50| 啦啦啦观看免费观看视频高清| 中国美白少妇内射xxxbb| 亚洲经典国产精华液单| 12—13女人毛片做爰片一| 美女大奶头视频| 97超视频在线观看视频| 少妇裸体淫交视频免费看高清| 插阴视频在线观看视频| 国产精品一区www在线观看| 久久人人爽人人片av| 国产69精品久久久久777片| 高清毛片免费看| 美女被艹到高潮喷水动态| 国产探花极品一区二区| 黄色日韩在线| 99视频精品全部免费 在线| 日韩一本色道免费dvd| 日韩中字成人| 亚洲自偷自拍三级| 日韩欧美免费精品| АⅤ资源中文在线天堂| av天堂在线播放| 欧美日韩乱码在线| 亚洲七黄色美女视频| 亚洲国产精品成人综合色| 午夜免费激情av| 最近手机中文字幕大全| 春色校园在线视频观看| 黄色一级大片看看| 久久韩国三级中文字幕| 色播亚洲综合网| 日韩强制内射视频| 亚洲国产欧美人成| 亚洲国产欧洲综合997久久,| 国产成人91sexporn| 国产三级在线视频| 成年女人看的毛片在线观看| 国产高清不卡午夜福利| 国产亚洲精品av在线| 亚洲在线观看片| 女的被弄到高潮叫床怎么办| 1024手机看黄色片| 一夜夜www| 一进一出好大好爽视频| 日韩中字成人| 精品一区二区免费观看| 色综合站精品国产| 国产精华一区二区三区| 精品日产1卡2卡| 午夜视频国产福利| av在线蜜桃| 91麻豆精品激情在线观看国产| 国产黄色小视频在线观看| 久久国内精品自在自线图片| 欧美国产日韩亚洲一区| 在线观看免费视频日本深夜| 午夜影院日韩av| 深夜精品福利| 成人无遮挡网站| 亚洲成a人片在线一区二区| 特大巨黑吊av在线直播| 真人做人爱边吃奶动态| 寂寞人妻少妇视频99o| 国产不卡一卡二| 久久久久久大精品| 男插女下体视频免费在线播放| 欧美丝袜亚洲另类| av在线老鸭窝| 波野结衣二区三区在线| 日本 av在线| 成人特级av手机在线观看| 精品久久久久久久末码| 久久久国产成人精品二区| 精品一区二区三区av网在线观看| av天堂中文字幕网| 欧美日韩精品成人综合77777| 亚洲av成人av| 国产精品久久视频播放| 最近2019中文字幕mv第一页| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 亚洲自拍偷在线| 长腿黑丝高跟| 禁无遮挡网站| 午夜福利成人在线免费观看| 欧美最黄视频在线播放免费| 亚洲欧美精品自产自拍| 亚洲精品亚洲一区二区| 精品乱码久久久久久99久播| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 尾随美女入室| 神马国产精品三级电影在线观看| 99在线人妻在线中文字幕| 久久6这里有精品| 亚洲国产色片| 国产大屁股一区二区在线视频| 赤兔流量卡办理| 最新在线观看一区二区三区| 中文字幕av在线有码专区| 午夜视频国产福利| 成人永久免费在线观看视频| 日韩av不卡免费在线播放| 午夜a级毛片| 亚洲精品粉嫩美女一区| 好男人在线观看高清免费视频| 高清毛片免费看| 国产伦在线观看视频一区| 夜夜看夜夜爽夜夜摸| 18禁黄网站禁片免费观看直播| 波多野结衣高清作品| 毛片一级片免费看久久久久| 欧美极品一区二区三区四区| 特级一级黄色大片| 日韩一本色道免费dvd| 丰满人妻一区二区三区视频av| 欧美性感艳星| 给我免费播放毛片高清在线观看| 日本爱情动作片www.在线观看 | 一本一本综合久久| 丝袜喷水一区| 日韩国内少妇激情av| 久久久久久九九精品二区国产| 久久久成人免费电影| 天美传媒精品一区二区| 国产欧美日韩一区二区精品| 青春草视频在线免费观看| 网址你懂的国产日韩在线| 最好的美女福利视频网| 成人特级av手机在线观看| 老司机影院成人| 成年女人毛片免费观看观看9| 亚洲成av人片在线播放无| 欧美绝顶高潮抽搐喷水| 久久国产乱子免费精品| 狂野欧美激情性xxxx在线观看| 一边摸一边抽搐一进一小说| 亚洲国产精品国产精品| 99视频精品全部免费 在线| 久久九九热精品免费| 校园春色视频在线观看| 国产午夜精品论理片| 亚洲av中文av极速乱| 色哟哟·www| 久久久色成人| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 国产精品免费一区二区三区在线| 性色avwww在线观看| 精品99又大又爽又粗少妇毛片| 亚洲,欧美,日韩| 日韩精品青青久久久久久| 国产精品国产三级国产av玫瑰| 女人十人毛片免费观看3o分钟| 成人二区视频| 97超碰精品成人国产| 欧美激情久久久久久爽电影| 97人妻精品一区二区三区麻豆| 久久久久久久午夜电影| 午夜激情欧美在线| 可以在线观看毛片的网站| 高清午夜精品一区二区三区 | 男人舔奶头视频| 我的女老师完整版在线观看| 99久久精品国产国产毛片| 老司机影院成人| 老师上课跳d突然被开到最大视频| 亚洲国产精品合色在线| 日本色播在线视频| 我要搜黄色片| 性欧美人与动物交配| 小蜜桃在线观看免费完整版高清| 在线观看av片永久免费下载| 床上黄色一级片| 99久久精品国产国产毛片| 日本在线视频免费播放| 高清午夜精品一区二区三区 | 黄片wwwwww| 欧美性猛交╳xxx乱大交人| 中文字幕精品亚洲无线码一区| 十八禁国产超污无遮挡网站| 日韩人妻高清精品专区| 深爱激情五月婷婷| 美女高潮的动态| 人人妻人人看人人澡| 成人毛片a级毛片在线播放| 亚洲国产精品sss在线观看| 听说在线观看完整版免费高清| 一进一出抽搐动态| 赤兔流量卡办理| 久久精品人妻少妇| 久久久久久大精品| 美女 人体艺术 gogo| 联通29元200g的流量卡| 婷婷精品国产亚洲av在线| 成人特级av手机在线观看| 一进一出抽搐动态| 日韩欧美在线乱码| 18禁黄网站禁片免费观看直播| 一个人免费在线观看电影| 午夜激情福利司机影院| 成人综合一区亚洲| 大型黄色视频在线免费观看| 69人妻影院| 欧美另类亚洲清纯唯美| 亚洲最大成人中文| 成人国产麻豆网| 嫩草影院入口| 久久久久久久亚洲中文字幕| 亚洲经典国产精华液单| 亚洲真实伦在线观看| 一级毛片电影观看 | 乱人视频在线观看| 欧美3d第一页| 99热这里只有是精品50| 身体一侧抽搐| 久久久久久国产a免费观看| 可以在线观看的亚洲视频| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看 | av在线蜜桃| 床上黄色一级片| 国产中年淑女户外野战色| 国产亚洲精品综合一区在线观看| 免费观看在线日韩| 国产亚洲91精品色在线| 麻豆精品久久久久久蜜桃| 日韩一区二区视频免费看| 中文字幕av成人在线电影| 国产精品久久久久久精品电影| 国产精品爽爽va在线观看网站| 亚洲不卡免费看| av天堂中文字幕网| 久久精品影院6| 国产视频内射| 在线a可以看的网站| 日韩制服骚丝袜av| 好男人在线观看高清免费视频| 国产在线精品亚洲第一网站| 国内少妇人妻偷人精品xxx网站| 亚洲熟妇熟女久久| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 国产不卡一卡二| 在线观看午夜福利视频| 国产精品野战在线观看| 亚洲美女黄片视频| 亚洲婷婷狠狠爱综合网| 亚洲在线观看片| 日本免费一区二区三区高清不卡| 精品乱码久久久久久99久播| 国产精品女同一区二区软件| 亚洲av.av天堂| 少妇丰满av| 国产精品人妻久久久影院| 超碰av人人做人人爽久久| a级毛片a级免费在线| 精品久久国产蜜桃| 婷婷精品国产亚洲av在线| 国产成人91sexporn| av免费在线看不卡| 99久久中文字幕三级久久日本| 免费搜索国产男女视频| 久久久a久久爽久久v久久| 午夜福利在线观看免费完整高清在 | 午夜激情福利司机影院| 熟妇人妻久久中文字幕3abv| 色哟哟哟哟哟哟| a级毛片免费高清观看在线播放| 99热全是精品| 亚洲欧美日韩东京热| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 精品久久久久久久久久久久久| 熟女电影av网| 精品乱码久久久久久99久播| 色视频www国产| 成人永久免费在线观看视频| 少妇丰满av| 高清毛片免费观看视频网站| 成人美女网站在线观看视频| 亚洲美女黄片视频| 亚洲va在线va天堂va国产| 国产人妻一区二区三区在| 免费看日本二区| 国产探花极品一区二区| 97超视频在线观看视频| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品综合一区在线观看| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 麻豆一二三区av精品| 亚洲中文字幕一区二区三区有码在线看| 99在线人妻在线中文字幕| 狂野欧美白嫩少妇大欣赏| 欧美绝顶高潮抽搐喷水| 亚洲美女视频黄频| 久久久精品欧美日韩精品| aaaaa片日本免费| 天天一区二区日本电影三级| 97超视频在线观看视频| 熟女人妻精品中文字幕| 看免费成人av毛片| 免费av毛片视频| 午夜精品在线福利| 国产成人freesex在线 | 国模一区二区三区四区视频| 久久久久久久久中文| 深夜a级毛片| 性插视频无遮挡在线免费观看| 黄色欧美视频在线观看| 精华霜和精华液先用哪个| videossex国产| 人妻丰满熟妇av一区二区三区| 国产精品无大码| 亚洲精品影视一区二区三区av| 又黄又爽又刺激的免费视频.| 日本免费一区二区三区高清不卡| 可以在线观看的亚洲视频| 麻豆久久精品国产亚洲av| 国产亚洲精品久久久com| 熟女电影av网| 亚洲av免费高清在线观看| 一级黄色大片毛片| 高清毛片免费观看视频网站| 永久网站在线| 别揉我奶头~嗯~啊~动态视频| 日本黄大片高清| 久久九九热精品免费| 亚洲中文字幕日韩| 亚洲四区av| 亚洲人成网站在线播放欧美日韩| 久久国内精品自在自线图片| 色哟哟哟哟哟哟| 亚洲av免费高清在线观看| 亚洲中文字幕日韩| 老司机影院成人| 亚洲一区二区三区色噜噜| 亚洲最大成人手机在线| 国产女主播在线喷水免费视频网站 | 亚洲丝袜综合中文字幕| 国产一区二区在线av高清观看| 欧美一级a爱片免费观看看| 亚洲av美国av| 国产探花在线观看一区二区| 两个人的视频大全免费| 国产av不卡久久| 人妻少妇偷人精品九色| 看十八女毛片水多多多| 欧美性猛交╳xxx乱大交人| 国产在线精品亚洲第一网站| av.在线天堂| 亚洲内射少妇av| 直男gayav资源| 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 欧美潮喷喷水| 亚洲美女黄片视频| 别揉我奶头~嗯~啊~动态视频| 99久久九九国产精品国产免费| 五月伊人婷婷丁香| 亚洲精品国产av成人精品 | 久久亚洲精品不卡| 美女 人体艺术 gogo| 一个人看的www免费观看视频| 国产蜜桃级精品一区二区三区| 尤物成人国产欧美一区二区三区| 一级a爱片免费观看的视频| 久久午夜亚洲精品久久| 国产精品国产高清国产av| 亚洲精品色激情综合| 夜夜夜夜夜久久久久| 夜夜看夜夜爽夜夜摸| 成人漫画全彩无遮挡| 国内久久婷婷六月综合欲色啪| 1000部很黄的大片| 亚洲五月天丁香| av专区在线播放| 草草在线视频免费看| 乱系列少妇在线播放| 亚洲av二区三区四区| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 永久网站在线| 免费人成视频x8x8入口观看| 国产亚洲精品综合一区在线观看| 99久久中文字幕三级久久日本| 麻豆av噜噜一区二区三区| 精品一区二区三区视频在线观看免费| 搡老妇女老女人老熟妇| 亚洲精华国产精华液的使用体验 | 精品不卡国产一区二区三区| 超碰av人人做人人爽久久| 校园春色视频在线观看| 亚洲精品日韩av片在线观看| 亚洲一级一片aⅴ在线观看| 亚洲欧美精品综合久久99| 欧美日韩综合久久久久久| 中文字幕熟女人妻在线| 久久久a久久爽久久v久久| 精品不卡国产一区二区三区| 免费观看人在逋| 国产 一区 欧美 日韩| 成人三级黄色视频| 老司机影院成人| 91狼人影院| 色吧在线观看| 中出人妻视频一区二区| 波多野结衣高清无吗| videossex国产| 国产极品精品免费视频能看的| 日韩欧美免费精品| 99热这里只有是精品50| 少妇丰满av| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 亚洲成人中文字幕在线播放| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 日本精品一区二区三区蜜桃| 最新在线观看一区二区三区| 国产高潮美女av| 亚洲精品粉嫩美女一区| 免费黄网站久久成人精品| 又粗又爽又猛毛片免费看| 高清毛片免费观看视频网站| 亚洲国产精品合色在线| or卡值多少钱| av在线老鸭窝| 中文字幕av成人在线电影| 毛片女人毛片| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 亚洲丝袜综合中文字幕| 午夜福利在线在线| av在线播放精品| 尾随美女入室| 国国产精品蜜臀av免费| 啦啦啦观看免费观看视频高清| 热99在线观看视频| 91精品国产九色| 91久久精品电影网| 性色avwww在线观看| 特级一级黄色大片| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 国产淫片久久久久久久久| 婷婷精品国产亚洲av| 深爱激情五月婷婷| 国产精品永久免费网站| 热99在线观看视频| 美女高潮的动态| 久久欧美精品欧美久久欧美| 久久久久九九精品影院| 国内精品一区二区在线观看| 欧美性猛交╳xxx乱大交人| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄 | 卡戴珊不雅视频在线播放| 欧美日本视频| 国产精品一区二区三区四区久久| a级毛色黄片| 99久久九九国产精品国产免费| 国产高清有码在线观看视频| 黄色一级大片看看| 国产高清视频在线观看网站| 韩国av在线不卡| 欧美又色又爽又黄视频| 亚洲人成网站在线播| 少妇被粗大猛烈的视频| 欧美中文日本在线观看视频| 国产av在哪里看| 亚洲国产色片| 全区人妻精品视频| 一个人观看的视频www高清免费观看| 真人做人爱边吃奶动态| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 日韩成人av中文字幕在线观看 | 欧美+亚洲+日韩+国产| 亚洲精品国产av成人精品 | 久久天躁狠狠躁夜夜2o2o| 人妻制服诱惑在线中文字幕| 色综合站精品国产| 国产激情偷乱视频一区二区| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 久久久成人免费电影| 色尼玛亚洲综合影院| 免费av毛片视频| 老师上课跳d突然被开到最大视频| 国产成人91sexporn| 亚洲美女搞黄在线观看 | 日韩国内少妇激情av| 国产亚洲av嫩草精品影院| 最好的美女福利视频网| 国产大屁股一区二区在线视频| 久久久精品欧美日韩精品| 变态另类成人亚洲欧美熟女| 99热6这里只有精品| 久久婷婷人人爽人人干人人爱| 国产av麻豆久久久久久久| 女人十人毛片免费观看3o分钟| 三级国产精品欧美在线观看| 成年女人毛片免费观看观看9| 亚洲精品色激情综合| 欧美激情国产日韩精品一区| 亚洲va在线va天堂va国产| 婷婷精品国产亚洲av在线| 精品久久久久久久久久久久久| 综合色av麻豆| 欧美区成人在线视频| 51国产日韩欧美| 男人舔女人下体高潮全视频| 日日摸夜夜添夜夜添小说| 色播亚洲综合网| 22中文网久久字幕| 欧洲精品卡2卡3卡4卡5卡区| 女生性感内裤真人,穿戴方法视频| 婷婷亚洲欧美| 欧美xxxx性猛交bbbb| 久久精品国产亚洲av香蕉五月| 赤兔流量卡办理| 久久午夜福利片| 久久精品人妻少妇| 99久久成人亚洲精品观看| 一级毛片电影观看 | 久久久a久久爽久久v久久| 国产精品女同一区二区软件| 国产午夜福利久久久久久| 亚洲精品456在线播放app| 在线免费观看的www视频| 搡老熟女国产l中国老女人| 男插女下体视频免费在线播放| 亚洲自拍偷在线| 欧美一级a爱片免费观看看| av在线播放精品| 成人毛片a级毛片在线播放| 免费黄网站久久成人精品| 亚洲精品国产成人久久av| 女同久久另类99精品国产91| aaaaa片日本免费| 亚州av有码| 成人高潮视频无遮挡免费网站| 最近在线观看免费完整版| 亚洲成人中文字幕在线播放| av专区在线播放| 午夜福利在线观看吧| 日本与韩国留学比较| 亚洲在线自拍视频| 久久6这里有精品| 久久精品人妻少妇| 日韩欧美国产在线观看| 观看美女的网站| 麻豆久久精品国产亚洲av| 欧美高清性xxxxhd video| 噜噜噜噜噜久久久久久91| 国产精品亚洲一级av第二区| 色视频www国产| 天堂√8在线中文| 大香蕉久久网| 秋霞在线观看毛片| 国产精品国产三级国产av玫瑰| 日韩国内少妇激情av| 熟女人妻精品中文字幕| 日日撸夜夜添| 麻豆久久精品国产亚洲av| 成熟少妇高潮喷水视频| 亚洲国产欧美人成| 中文亚洲av片在线观看爽| 国产精品久久久久久久久免| 少妇的逼好多水| 亚洲专区国产一区二区| 亚洲成a人片在线一区二区| 波多野结衣高清作品| h日本视频在线播放| 麻豆av噜噜一区二区三区| 国产av不卡久久| 成人亚洲欧美一区二区av| 欧美中文日本在线观看视频| 国产精品三级大全| 亚洲人成网站在线播放欧美日韩| 极品教师在线视频| 淫秽高清视频在线观看| 午夜福利在线观看免费完整高清在 | 亚洲av不卡在线观看| 哪里可以看免费的av片| h日本视频在线播放| 国产69精品久久久久777片| 国产成人福利小说| 九九在线视频观看精品| 欧美中文日本在线观看视频| 久久久久久久午夜电影| 精品熟女少妇av免费看|