張其奧,王子路,李佩波,謝建平,
綜 述
USP18介導(dǎo)的蛋白質(zhì)去ISG化及其在結(jié)核病等傳染病中的作用
張其奧1,王子路1,李佩波2,謝建平1,2
1. 西南大學(xué)生命科學(xué)學(xué)院現(xiàn)代生物醫(yī)藥研究所,重慶 400715 2. 重慶市公共衛(wèi)生醫(yī)療救治中心,重慶 400036
干擾素誘導(dǎo)基因15 (interferon-stimulated gene 15,)的表達(dá)受Ⅰ型干擾素誘導(dǎo),該基因編碼的蛋白ISG15可以分別通過E1、E2和E3酶的作用共價修飾靶蛋白,此過程被稱為ISG化(ISGylation)。宿主蛋白的ISG化廣泛參與天然免疫例如宿主的抗病毒過程。泛素特異性蛋白酶18 (ubiquitin-specific protease 18,USP18)作為一種去泛素化酶(deubiquitinase,DUB)可以去除靶蛋白偶聯(lián)的ISG15,并通過抑制Ⅰ型干擾素信號通路來抑制宿主的免疫應(yīng)答。ISG15介導(dǎo)的ISG化和USP18介導(dǎo)的去ISG化(deISGylation)建立的動態(tài)平衡對結(jié)核病的發(fā)生、發(fā)展和轉(zhuǎn)歸有重要影響。此外,同ISG15一樣,USP18也廣泛參與病毒感染和宿主細(xì)胞抗病毒反應(yīng),多種先天性免疫疾病和免疫信號通路都受到USP18的調(diào)節(jié)。本文綜述了ISG15和USP18相關(guān)的研究進(jìn)展,重點(diǎn)介紹了ISG15介導(dǎo)的ISGylation和USP18介導(dǎo)的去ISG化在結(jié)核病及其他重要疾病中的調(diào)控作用,以期為靶向宿主蛋白的結(jié)核病等重要疾病防治提供新的策略。
USP18;ISG15;結(jié)核病;干擾素
泛素特異性蛋白酶18 (ubiquitin-specific protease 18,USP18)和干擾素誘導(dǎo)基因15 (interferon- stimulated gene 15,)介導(dǎo)的ISG化修飾是機(jī)體參與抗病原微生物感染的重要組分。越來越多的研究發(fā)現(xiàn),靶向ISG15和USP18及其底物的蛋白質(zhì)翻譯后修飾有望開發(fā)成為新型抗感染治療的策略之一。USP18是一個大小約43 kDa的特異性蛋白酶,ISG15和USP18均可被干擾素(interferon,IFN)誘導(dǎo)。通過比較人類()、家鼠()、家牛()、野豬()、羅伯羅夫斯基倉鼠()、綠頭鴨()等物種中USP18的氨基酸序列,發(fā)現(xiàn)不同物種中的USP18具有高度的同源性。USP18在不同物種中都含有高度保守的序列,該保守序列包括半胱氨酸殘基和組氨酸殘基位于USP18的活性中心,這也是USP家族蛋白酶所特有的結(jié)構(gòu)(圖1)。ISG15能夠參與并激活多種信號通路,發(fā)揮抗病毒免疫的功能,與之相反,USP18會限制NF-κB、JNK和NFAT等通路的激活,負(fù)調(diào)節(jié)炎癥反應(yīng),調(diào)節(jié)T淋巴細(xì)胞和輔助性T細(xì)胞的活化。USP18在Ⅰ型IFN中的作用下依賴于α/β干擾素受體2 (interferon alpha/beta receptor 2,IFNAR2),并負(fù)調(diào)控Ⅰ型IFN信號通路。USP18可以切割I(lǐng)SG15與靶蛋白之間的異肽鍵,還能在結(jié)合后立即切割I(lǐng)SG15的LRLRGG序列,在由ISG15前體加工為成熟的ISG15過程中發(fā)揮重要作用。鑒于ISG15和USP18在介導(dǎo)宿主蛋白泛素化和去泛素化以及免疫應(yīng)答中的重要作用,本文主要關(guān)注ISG15和USP18及其突變體在結(jié)核分枝桿菌(,Mtb)等感染免疫應(yīng)答中的作用及其作為治療靶點(diǎn)的潛力。
蛋白去泛素化是由一組去泛素酶(deubiquitinase,DUB)介導(dǎo)的泛素化的反向過程。DUB家族有90多個成員[1]。泛素特異性蛋白酶USP18和USP20屬于DUBs的USP亞家族,并介導(dǎo)靶蛋白的去泛素化。USP20靶向多種蛋白質(zhì)底物,包括HIF1α、β-腎上腺素能受體、TNF受體關(guān)聯(lián)因子6(TNF receptor associated factor 6,TRAF6)和Claspin,通過去泛素化調(diào)節(jié)Toll樣受體4(toll-like receptor 4,TLR4)信號轉(zhuǎn)導(dǎo)和DNA損傷修復(fù)[2-6]。USP18最初被鑒定為DUB,后來被發(fā)現(xiàn)也具有去ISG化酶活性[7,8],因?yàn)樾∈笾腥笔Щ蚍腔钚酝蛔凅wusp18會導(dǎo)致高水平的ISG化[9,10]。此外,USP18在ISG15前體加工產(chǎn)生成熟的ISG15分子過程中也發(fā)揮作用[11],但在缺陷小鼠中,ISG15前體也能被加工成其成熟形式[12],重組ISG15前體可以被II型肺泡上皮細(xì)胞A549的一種大小100 kDa的酶正確加工,且該酶是酵母泛素特異性肽酶1(ubiquitin-specific protease,USP1)同源物,活性不受I型IFN刺激的影響[12]。這提示除USP18之外,還有其他ISG15特異性蛋白酶。一些E2和E3酶在ISG15化和泛素化過程中的功能具有重疊,也意味著存在可以作為ISG15特異性蛋白酶的多功能DUB[13],包括USP2、USP5、USP13和USP14在內(nèi)的幾種DUB都被認(rèn)為是ISG15特異性蛋白酶的候選物[8]。但是,小鼠中基因的缺失會導(dǎo)致組織中ISG15結(jié)合物大量增加,而不會影響泛素結(jié)合物的水平,這表明USP18是ISG15特異性蛋白酶,可將ISG15從靶蛋白上去除(圖2)。
圖1 USP18蛋白在不同物種中保守
圖2 ISGylation過程
ISG15前體經(jīng)ISG15加工酶變成ISG15,分別與E1、E2、E3泛素酶結(jié)合,將ISG15結(jié)合在靶蛋白上,USP18能夠從靶蛋白上去除ISG15,發(fā)揮去ISG化功能。
USP18的表達(dá)主要受I型IFN誘導(dǎo),而這種誘導(dǎo)需要通過JAK/STAT信號通路的作用[8,14]。干擾素β (interferon-beta,IFN-β)比干擾素α (interferon-alpha,IFN-α)和雙鏈RNA (double strand RNA,dsRNA)誘導(dǎo)USP18的作用更強(qiáng),但干擾素γ (interferon-gamma,IFN-γ)幾乎沒有誘導(dǎo)作用[13]。USP18也可被脂多糖(lipopolysaccharide,LPS)誘導(dǎo)。干擾素調(diào)節(jié)因子2 (interferon regulatory factor 2,IRF2)和干擾素調(diào)節(jié)因子3 (interferon regulatory factor 3,IRF3)都是LPS應(yīng)答所必需的,LPS通過IRF3上調(diào)USP18,而IRF2可將其降至基礎(chǔ)水平。在各種造血細(xì)胞系中,單核細(xì)胞和巨噬細(xì)胞系能夠高水平表達(dá)USP18[15]。Skp2 (S-phase kinase associated protein 2)是S期激酶相關(guān)蛋白,屬于F-box蛋白家族,在蛋白泛素化降解過程中可作為Skp1-Cul1-F-box(SCF)蛋白復(fù)合物的重要成分識別底物蛋白,通過降解細(xì)胞周期調(diào)節(jié)蛋白而調(diào)控細(xì)胞周期。USP18是Skp2的底物,Skp2促進(jìn)USP18的泛素化和隨后的蛋白酶體降解。這表明SCF-Skp2可能通過控制USP18的穩(wěn)定性,調(diào)節(jié)I型IFN信號轉(zhuǎn)導(dǎo)[16]。然而,有大量基因例如急性髓系白血病(acute myeloid leukemia,AML)融合基因誘導(dǎo)USP18上調(diào)的機(jī)制尚待研究。
ISG15和USP18在宿主對病毒感染的反應(yīng)中起著重要作用。在I型IFN處理后,與野生型細(xì)胞相比,usp18細(xì)胞對B型流感病毒感染有更強(qiáng)的抵抗力,而病毒在缺失的usp18細(xì)胞中可完全恢復(fù)復(fù)制能力[10]。除了其酶功能外,USP18還負(fù)調(diào)控I型IFN信號轉(zhuǎn)導(dǎo),與Janus激酶(janus kinase,JAK)競爭結(jié)合IFNAR2[17]。因此,與野生型細(xì)胞相比,用I型IFN處理細(xì)胞導(dǎo)致信號轉(zhuǎn)導(dǎo)轉(zhuǎn)錄激活因子(signal transducers and activators of transcription 1,STAT1)磷酸化增加且持續(xù)時間延長,增強(qiáng)ISG化,并促進(jìn)細(xì)胞凋亡[11]。這與抑制USP18可增強(qiáng)HepG2.2.15細(xì)胞中IFN-α的抗乙型肝炎病毒(hepatitis B virus,HBV)活性這一結(jié)論相吻合。接下來文章將重點(diǎn)闡述USP18作為先天免疫反應(yīng)負(fù)調(diào)節(jié)劑所參與的經(jīng)典信號通路及機(jī)制(圖3)。
模式識別受體如RIG-I在先天免疫細(xì)胞中表達(dá),招募接頭分子IPS-1,進(jìn)而觸發(fā)MAVS-TBK1-IRF3通路等信號通路的激活,ISG15能夠靶向并參與修飾一系列重要的抗病毒蛋白,如STAT1、IRF3、RIG-I等,病毒感染過程中ISG15介導(dǎo)的ISGylation以及與底物的結(jié)合能夠使宿主發(fā)揮抗病毒反應(yīng),同時USP18將負(fù)調(diào)控某些抗病毒蛋白的表達(dá)。
與ISG15一樣,USP18在宿主先天免疫中發(fā)揮重要作用。這種作用分別通過ISG15蛋白酶依賴性和非依賴性方式介導(dǎo)。USP18由IFN、LPS和病毒感染誘導(dǎo),并可調(diào)節(jié)I型IFN應(yīng)答[18]。小鼠中基因的缺失導(dǎo)致IFN超敏反應(yīng)[11]。小鼠對多種病毒(包括淋巴細(xì)胞脈絡(luò)叢腦膜炎病毒(virus,LCMV)、水皰性口炎病毒(virus,VSV)和辛德比斯病毒(virus,SINV))感染引起的細(xì)胞病變效應(yīng)也具有更強(qiáng)的抵抗力[11]。缺陷小鼠在腦內(nèi)接種LCMV和VSV后,未見致命性淋巴細(xì)胞脈絡(luò)叢腦膜炎和脊髓腦炎[19]。此外,LCMV感染小鼠后,LCMV復(fù)制被嚴(yán)重抑制,大腦中ISG15化水平增加,小鼠的存活率大大提高。的小鼠感染LCMV后第11天都沒有死亡或出現(xiàn)臨床癥狀,而所有LCMV感染的野生型小鼠在第7天死亡。這些發(fā)現(xiàn)表明,缺失不利于LCMV復(fù)制[20]。
USP18可負(fù)調(diào)節(jié)針對病毒感染的先天免疫應(yīng)答。小鼠胚胎成纖維(mouse embryonic fibroblast,MEF)細(xì)胞I型IFN介導(dǎo)的免疫反應(yīng)增強(qiáng),對VSV和SINV感染產(chǎn)生抗性,使STAT1信號失調(diào)。然而,在/isg15或/ube1l雙敲除小鼠中,上述表型依舊沒有改變,這表明與ISG15的蛋白質(zhì)修飾無關(guān)。因此,USP18也受到ISG15外其他蛋白的調(diào)控,具有異肽酶活性。這些功能未必需要ISG15蛋白酶活性來介導(dǎo),否則usp18小鼠的表型將被逆轉(zhuǎn),或至少受到ISG15或其E1激活酶UBE1L的敲降的影響,但事實(shí)上兩者都沒有影響[20,21]。USP18可能通過與參與免疫調(diào)節(jié)的蛋白質(zhì)直接相互作用來影響免疫功能。比如USP18與IFN受體(IFNAR2)結(jié)合,并通過破壞IFNAR2-JAK結(jié)合來阻斷IFN信號傳遞[18]。這些數(shù)據(jù)表明,USP18可以結(jié)合并調(diào)節(jié)蛋白的活性,而不依賴于其ISG15蛋白酶功能。
usp18細(xì)胞對I型IFN敏感,這與JAK/STAT信號通路的增強(qiáng)與延長有關(guān)。USP18除了具有催化活性,還可通過與IFNAR2 (I型IFN受體的亞基)之間的直接相互作用實(shí)現(xiàn)對I型IFN信號通路的負(fù)調(diào)控。IFNAR2與USP18的結(jié)合干擾JAK蛋白與受體之間的相互作用,導(dǎo)致下游磷酸化級聯(lián)和其他信號的抑制。此外,在usp18細(xì)胞中通過siRNA敲降,其STAT2磷酸化與在usp18細(xì)胞幾乎一致。這表明USP18抑制I型IFN信號通路不需要其去ISG化活性。這進(jìn)一步證實(shí)了usp18表型的改變不受缺失的影響[22]。
cGAS-STING_(cyclic GMP-AMP synthase- stimu-lator of interferon response CGAMP interactor,cGAS-STING )通路廣泛參與細(xì)菌感染導(dǎo)致的疾病,例如結(jié)核病和敗血癥[23]。STING招募TANK結(jié)合激酶1(TANK-binding kinase 1,TBK1)和IRF3。TBK1首先被磷酸化,然后磷酸化的TBK1再磷酸化IRF3,IRF3進(jìn)一步轉(zhuǎn)移到細(xì)胞核中,誘導(dǎo)IFN-I和許多其他炎性細(xì)胞因子的表達(dá)。線粒體代謝酶ACOD1 (aconitate decarboxylase 1;也稱為immune-respon-sive gene 1 protein homolog,IRG1)在巨噬細(xì)胞激活后被迅速誘導(dǎo),催化順烏頭酸脫羧并產(chǎn)生高濃度衣康酸(itaconate,ITA),Mtb誘導(dǎo)的IRG1反應(yīng)高度依賴于細(xì)菌ESX-1分泌系統(tǒng)以及宿主STING和I型IFN受體信號轉(zhuǎn)導(dǎo)[24],USP18參與STING的調(diào)節(jié)[25]。
cGAS對于宿主防御細(xì)胞中的DNA病毒至關(guān)重要。USP18是STING的相互作用蛋白,作用于蛋白N端跨膜結(jié)構(gòu)域[26]。導(dǎo)致單純皰疹病毒1 (virus 1,HSV-1)或細(xì)胞質(zhì)DNA受損,從而觸發(fā)IRF3和核轉(zhuǎn)錄因子κB (nuclear factor kappa-B,NF-κB)的激活,隨后在IFNAR1存在或不存在的情況下誘導(dǎo)產(chǎn)生I型IFN和促炎細(xì)胞因子。USP18與STING相互作用并招募USP20,USP20介導(dǎo)STING的K48-多聚泛素鏈的去泛素化。的缺失或的敲降導(dǎo)致的泛素化增強(qiáng)和STING的降解,增強(qiáng)了HSV-1病毒的復(fù)制,使usp18小鼠更易感染HSV-1,說明USP18是病毒感染后誘導(dǎo)I型IFN和促炎細(xì)胞因子所必需的,并且在DNA病毒觸發(fā)的信號轉(zhuǎn)導(dǎo)中起主要作用。USP18也被證明能直接充當(dāng)DUB,并去除TAK1(transforming growth factor-beta-activated kinase 1,TAK1)的K63連接的多泛素鏈[27]。與此同時,USP18也能夠獨(dú)立于IFN-I活性或其DUB活性,進(jìn)而介導(dǎo)抗病毒信號轉(zhuǎn)導(dǎo)[26]。以上說明USP18通過依賴或獨(dú)立于IFN和其酶活性的方式與不同的信號通路相互作用。
線粒體抗病毒信號蛋白(mitochondrial antiviral signaling protein,MAVS)是一種線粒體錨定蛋白[28],在RIG-I樣受體(rig-I-like receptors,RLRs)激活后指導(dǎo)對RNA病毒感染的先天免疫反應(yīng),最終通過IRF3觸發(fā)I型IFN誘導(dǎo)并通過NF-κB引起炎癥反應(yīng),分泌細(xì)胞因子[29-31]。許多E3泛素連接酶參與MAVs信號轉(zhuǎn)導(dǎo),例如TRAF6[32]、ITCH和RNF11[29],但對結(jié)核病中參與MAVS信號通路的USP18分子研究甚少。
USP18可以顯著促進(jìn)MAVS的多泛素化。病毒感染后增強(qiáng)USP18和MAVS之間的相互作用,這表明USP18可能調(diào)節(jié)MAVS活性。此外,USP18促進(jìn)K63相關(guān)的多泛素化和隨后的MAVS聚集。因此,巨噬細(xì)胞或成纖維細(xì)胞中導(dǎo)致病毒感染后I型IFN反應(yīng)受損。小鼠更容易感染病毒。USP18對MAVS的影響與其酶活性無關(guān),但取決于三部分基序蛋白31 (tripartite motif containing 31,TRIM31)。在病毒感染后,USP18對于TRIM31從細(xì)胞質(zhì)轉(zhuǎn)移到線粒體以及TRIM31和MAVS之間的相互作用至關(guān)重要[33]。
當(dāng)宿主感染病原體后,人體刺激自身免疫系統(tǒng)抑制病原體的入侵和復(fù)制。其中抵抗病毒最有效的方法是產(chǎn)生IFN,它可以刺激人體免疫細(xì)胞(如巨噬細(xì)胞和自然殺傷細(xì)胞),增強(qiáng)宿主的防御能力。IFNAR1和IFNAR2被激活后,它們分別與下游酪氨酸激酶2 (tyrosine kinase 2,TYK2)和JAK1結(jié)合,激活的TYK2和JAK1反過來磷酸化IFNAR2相關(guān)的STAT2和STAT1,從而形成DNA結(jié)合的STAT1- STAT2-IRF9三元復(fù)合物(ISGF3)。STAT2是I型IFN信號轉(zhuǎn)導(dǎo)的特異性效應(yīng)物[34],能夠與USP18直接互作[35],IFN-I誘導(dǎo)的USP18與JAK1競爭結(jié)合IFNAR2,IFNAR2也受到STAT2的輔助,并負(fù)調(diào)控IFN-I和JAK/STAT途徑。因此除了是IFN信號轉(zhuǎn)導(dǎo)的關(guān)鍵效應(yīng)物外,STAT2對于USP18介導(dǎo)的JAK-STAT信號轉(zhuǎn)導(dǎo)抑制至關(guān)重要。
基因的缺失使細(xì)胞內(nèi)的IFN水平失調(diào),一方面可能會導(dǎo)致個體出現(xiàn)先天致死,但另一方面也能夠增強(qiáng)癌癥患者或病毒感染患者的免疫應(yīng)答,促進(jìn)癌癥治療和病毒清除。和缺失的致病機(jī)制在于IFN-I信號通路的負(fù)反饋控制受損。作為對IFN-α刺激的響應(yīng),USP18被上調(diào)表達(dá),并負(fù)責(zé)抑制IFN-I途徑,以減輕IFN-α炎癥水平[36,37]。細(xì)胞內(nèi)ISG15則與這種負(fù)反饋調(diào)節(jié)器的調(diào)控保持動態(tài)平衡[38]。因此,當(dāng)缺失時,ISG的高水平和相關(guān)表型是由于IFN-I反應(yīng)的失調(diào),而不是IFN-I誘導(dǎo)的失調(diào),類似I型IFN病中的情況。缺失的個體易患孟德爾遺傳易感性的分枝桿菌病(men-de-lian susceptibility to mycobacterial disease,MSMD),這是因?yàn)槿笔|發(fā)T細(xì)胞和自然殺傷細(xì)胞(natural killer cell,NK)產(chǎn)生過量的IFN-γ[39]。小鼠更容易感染Mtb,肺和脾臟中的細(xì)菌數(shù)量增加,炎性細(xì)胞因子升高,肺部病變更嚴(yán)重。相比之下,常染色體隱性遺傳(autosome recessive,AR)的完全缺失,大大增強(qiáng)IFN-I信號,在缺乏適當(dāng)治療的情況下,個體出生時是致命的,并且與感染易感性無關(guān)[40,41]。
重要的是,與缺陷患者不同,usp18個體在體外全血測定中IFN-γ/IL-12軸沒有缺陷。然而,持續(xù)的IFN-I反應(yīng),特別是在髓系細(xì)胞中,降低了其IL-12和IL-23的產(chǎn)生[42]。usp18導(dǎo)致患者對分枝桿菌易感,無法有效抑制I型IFN通路,這不是因?yàn)樵摶虍a(chǎn)物本質(zhì)上有助于控制分枝桿菌感染,而是因?yàn)樵摰任换虿荒芸刂葡嚓P(guān)的IFN-I炎癥。這表明缺陷個體的BCG相關(guān)疾病可能是由IFN-I失調(diào)導(dǎo)致的。除了去ISG化外,USP18從T細(xì)胞受體(T cell receptor,TCR)或TNF信號轉(zhuǎn)導(dǎo)下游的TAK1/TAB1復(fù)合物中去除K63連接的多泛素鏈,并限制NF-κB和NFAT的過度激活[27,43],從遺傳學(xué)角度提示免疫過度活躍和免疫缺陷共存[44]。因此,USP18在不同的信號通路中發(fā)揮去ISG化、去泛素化和非酶活性。USP18是否以及如何參與病毒感染觸發(fā)的信號轉(zhuǎn)導(dǎo)還需要進(jìn)一步探索。
ISG15/USP18通路調(diào)節(jié)細(xì)胞功能,對宿主感染慢性病毒感染(如丙型肝炎病毒(hepatitis C virus,HCV))的先天免疫反應(yīng)至關(guān)重要[45]。研究表明ISG15/USP18通路在HCV感染的肝組織中發(fā)生改變,在調(diào)節(jié)HCV感染和對IFN治療的耐藥性中起重要作用。USP18的異肽酶非依賴性作用也參與HBV的復(fù)制[17]。細(xì)胞顯示出對I型IFN誘導(dǎo)ISG應(yīng)答增強(qiáng),這表明的缺失導(dǎo)致免疫應(yīng)答增強(qiáng)。同時,與小鼠相比,小鼠中HBV DNA的穩(wěn)定性顯著降低。因此,調(diào)節(jié)USP18表達(dá)水平有望治療病毒感染,特別是對I型IFN信號敏感的病毒。除了抵抗HBV外,缺陷還增加了白血病融合蛋白(breakpoint cluster region-abelson,BCR- ABL)致癌轉(zhuǎn)化的抗性。BCR-ABL是由BCR的N-末端部分與ABL酪氨酸激酶結(jié)合而成。這說明白血病的抗性在很大程度上取決于I型IFN信號通路的激活。通過IFNAR缺失阻斷I型IFN信號通路可逆轉(zhuǎn)細(xì)胞對白血病的初始抗性[46]。因此,抑制USP18對I型IFN信號通路的負(fù)調(diào)控可能會增強(qiáng)針對癌癥的先天免疫應(yīng)答[47]。
小鼠呈現(xiàn)骨質(zhì)疏松癥,這與缺陷破骨細(xì)胞前體中破骨細(xì)胞分化因子(receptor acti-vator of nuclear factor kappa-b ligand,RANKL)信號增強(qiáng)有關(guān)。在RANKL介導(dǎo)的缺陷型小鼠骨髓源巨噬細(xì)胞(bone marrow-derived macrophage,BMM)向破骨細(xì)胞分化過程中,一些細(xì)胞因子表達(dá)水平的異常增加可能觸發(fā)了破骨細(xì)胞高強(qiáng)度分化。盡管已知I型IFN會限制破骨細(xì)胞分化,但敲除小鼠中I型IFN反應(yīng)的過度激活會導(dǎo)致小鼠骨質(zhì)減少[48]。AP-002(基于鎵的抗癌口服化合物,用于骨轉(zhuǎn)移癌癥患者的新型臨床治療)可顯著逆轉(zhuǎn)RANKL誘導(dǎo)的基因表達(dá)[49]。在甲狀旁腺功能減退狀態(tài)下,甲狀旁腺激素(parathyroid hormone,PTH)低于正常值會導(dǎo)致高循環(huán)磷酸鹽,碳酸酐酶II (Carbonic anhydrase II,CA-II)和USP18表達(dá)降低。CA-II在尾狀組織中的表達(dá)減少以及隨后鈣吸收作用的喪失將使成骨分子的平衡向鈣化前狀態(tài)傾斜,導(dǎo)致基底節(jié)鈣化[50]。
蛋白質(zhì)翻譯后修飾是蛋白質(zhì)充分發(fā)揮生物活性的重要過程之一,也是疾病診療標(biāo)志物、藥物靶點(diǎn)等的重要來源。蛋白質(zhì)泛素化修飾是感染免疫的重點(diǎn)研究對象之一,去泛素酶USP18是維持細(xì)胞中被ISG15共價修飾蛋白質(zhì)的動態(tài)平衡和功能的關(guān)鍵,在DNA/RNA病毒感染期間調(diào)節(jié)病毒復(fù)制、聚集以及對宿主的易感性。ISG15作為一種類泛素蛋白也在抗病毒感染、宿主免疫應(yīng)答、細(xì)胞周期等方面發(fā)揮重要作用。細(xì)胞高水平表達(dá)ISG15,增強(qiáng)上百種ISG相關(guān)基因表達(dá)并提高了對IFN的敏感性。總之,HBV等病原可以逃避宿主模式識別受體的識別、抑制下游信號轉(zhuǎn)導(dǎo),調(diào)控宿主USP18等去泛素化酶活性而干擾IFN信號轉(zhuǎn)導(dǎo),最后逃避免疫清除。因此針對DUBs尤其是USP18在患者中的異常表達(dá)及其調(diào)控因子研發(fā)新的靶向藥物,將有助于開發(fā)新的抗感染工具。
[1] Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes., 2009, 78: 363–397.
[2] Li ZB, Wang DK, Messing EM, Wu G. VHL protein- interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha., 2005, 6(4): 373–378.
[3] Berthouze M, Venkataramanan V, Li Y, Shenoy SK. The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization., 2009, 28(12): 1684–1696.
[4] Yasunaga J, Lin FC, Lu XB, Jeang KT. Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling., 2011, 85(13): 6212–6219.
[5] Yuan J, Luo KT, Deng M, Li YH, Yin P, Gao BW, Fang Y, Wu PQ, Liu TZ, Lou ZK. HERC2-USP20 axis regulates DNA damage checkpoint through Claspin., 2014, 42(21): 13110–13121.
[6] Zhu M, Zhao HC, Liao J, Xu XZ. HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability., 2014, 42(21): 13074–13081.
[7] Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE. UBP43 (USP18) specifically removes ISG15 from conjugated proteins., 2002, 277(12): 9976–9981.
[8] Schwer H, Liu LQ, Zhou L, Little MT, Pan Z, Hetherington CJ, Zhang DE. Cloning and characterization of a novel human ubiquitin-specific protease, a homologue of murine UBP43 (Usp18)., 2000, 65(1): 44–52.
[9] Ritchie KJ, Malakhov MP, Hetherington CJ, Zhou LM, Little MT, Malakhova OA, Sipe JC, Orkin SH, Zhang DE. Dysregulation of protein modification by ISG15 results in brain cell injury., 2002, 16(17): 2207–2212.
[10] Ketscher L, Hann? R, Morales DJ, Basters A, Guerra S, Goldmann T, Hausmann A, Prinz M, Naumann R, Pekosz A, Uterm?hlen O, Lenschow DJ, Knobeloch KP. Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance., 2015, 112(5): 1577–1582.
[11] Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, Li L, de la Torre JC, Zhang DE. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection., 2004, 10(12): 1374–1378.
[12] Potter JL, Narasimhan J, Mende-Mueller L, Haas AL. Precursor processing of pro-ISG15/UCRP, an interferon- beta-induced ubiquitin-like protein., 1999, 274(35): 25061–25068.
[13] Li XL, Blackford JA, Judge CS, Liu M, Xiao W, Kalvakolanu DV, Hassel BA. RNase-L-dependent destabilization of interferon-induced mRNAs. A role for the 2-5A system in attenuation of the interferon response., 2000, 275(12): 8880–8888.
[14] Malakhova OA, Yan M, Malakhov MP, Yuan YZ, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE. Protein ISGylation modulates the JAK-STAT signaling pathway ., 2003, 17(4): 455–460.
[15] Malakhova O, Malakhov M, Hetherington C, Zhang DE. Lipopolysaccharide activates the expression of ISG15-specific protease UBP43 via interferon regulatory factor 3., 2002, 277(17): 14703–14711.
[16] Tokarz S, Berset C, La Rue J, Friedman K, Nakayama KI, Nakayama K, Zhang DE, Lanker S. The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase., 2004, 279(45): 46424–46430.
[17] Li L, Lei QS, Zhang SJ, Kong LN, Qin B. Suppression of USP18 potentiates the anti-HBV activity of interferon alpha in HepG2.2.15 cells via JAK/STAT signaling., 2016, 11(5): e0156496.
[18] Malakhova OA, Kim KI, Luo JK, Zou WG, Kumar KGS, Fuchs SY, Shuai K, Zhang DE. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity., 2006, 25(11): 2358–2367.
[19] Knobeloch KP, Uterm?hlen O, Kisser A, Prinz M, Horak I. Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice., 2005, 25(24): 11030–11034.
[20] Osiak A, Uterm?hlen O, Niendorf S, Horak I, Knobeloch KP. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus., 2005, 25(15): 6338–6345.
[21] Kim KI, Yan M, Malakhova O, Luo JK, Shen MF, Zou WG, de la Torre JC, Zhang DE. Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling., 2006, 26(2): 472–479.
[22] Arimoto KI, L?chte S, Stoner SA, Burkart C, Zhang Y, Miyauchi S, Wilmes S, Fan JB, Heinisch JJ, Li Z, Yan M, Pellegrini S, Colland F, Piehler J, Zhang DE. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling., 2017, 24(3): 279–289.
[23] Liu NX, Pang XX, Zhang H, Ji P. The cGAS-STING pathway in bacterial infection and bacterial immunity., 2021, 12: 814709.
[24] Bomfim CCB, Fisher L, Amaral EP, Mittereder L, McCann K, Correa AAS, Namasivayam S, Swamydas M, Moayeri M, Weiss JM, Chari R, McVicar DW, Costa DL, D'Império Lima MR, Sher A. Mycobacterium tuberculosis induces Irg1 in murine macrophages by a pathway involving both TLR-2 and STING/IFNAR signaling and requiring bacterial phagocytosis., 2022, 12: 862582.
[25] Huijser E, Bodewes ILA, Lourens MS, van Helden- Meeuwsen CG, van den Bosch TPP, Grashof DGB, van de Werken HJG, Lopes AP, van Roon JAG, van Daele PLA, Brkic Z, Dik WA, Versnel MA. Hyperresponsive cytosolic DNA-sensing pathway in monocytes from primary Sj?gren's syndrome., 2022, 61(8): 3491–3496.
[26] Zhang M, Zhang MX, Zhang Q, Zhu GF, Yuan L, Zhang DE, Zhu QY, Yao J, Shu HB, Zhong B. USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA., 2016, 26(12): 1302–1319.
[27] Yang ZF, Xian HF, Hu JJ, Tian S, Qin YF, Wang RF, Cui J. USP18 negatively regulates NF-kappaB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms., 2015, 5: 12738.
[28] Choi YB, Shembade N, Parvatiyar K, Balachandran S, Harhaj EW. TAX1BP1 restrains virus-induced apoptosis by facilitating itch-mediated degradation of the mito-chondrial adaptor MAVS., 2017, 37(1): e00422–16.
[29] White J, Suklabaidya S, Vo MT, Choi YB, Harhaj EW. Multifaceted roles of TAX1BP1 in autophagy., 2023, 19(1): 44–53.
[30] Hou FJ, Sun LJ, Zheng H, Skaug B, Jiang QX, Chen ZJJ. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response., 2011, 146(3): 448–461.
[31] LIU BY, GAO CJ. Regulation of MAVS activation through post-translational modifications., 2018, 50: 75–81.
[32] Ling L, Goeddel DV. T6BP, a TRAF6-interacting protein involved in IL-1 signaling., 2000, 97(17): 9567–9572.
[33] Hou JX, Han LL, Zhao Z, Liu HQ, Zhang L, Ma CH, Yi F, Liu BY, Zheng Y, Gao CJ. USP18 positively regulates innate antiviral immunity by promoting K63-linked polyubiquitination of MAVS., 2021, 12(1): 2970.
[34] Zhu GF, Badonyi M, Franklin L, Seabra L, Rice GI, Anne-Boland-Auge, Deleuze JF, El-Chehadeh S, Anheim M, de Saint-Martin A, Pellegrini S, Marsh JA, Crow YJ, El-Daher MT. Type I interferonopathy due to a homo-zygous loss-of-inhibitory function mutation in STAT2., 2023, 43(4): 808–818.
[35] L?chte S, Waichman S, Beutel O, You CJ, Piehler J. Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane., 2014, 207(3): 407–418.
[36] Tsft J, Bogunovic D. The goldilocks zone of type I IFNs: lessons from human genetics., 2018, 201(12): 3479–3485.
[37] Zhang XQ, Bogunovic D, Payelle-Brogard B, Francois- Newton V, Speer SD, Yuan C, Volpi S, Li Z, Sanal O, Mansouri D, Tezcan I, Rice GI, Chen CY, Mansouri N, Mahdaviani SA, Itan Y, Boisson B, Okada S, Zeng L, Wang X, Jiang H, Liu WQ, Han TT, Liu DL, Ma T, Wang B, Liu MG, Liu JY, Wang QK, Yalnizoglu D, Radoshevich L, Uzé G, Gros P, Rozenberg F, Zhang SY, Jouanguy E, Bustamante J, García-Sastre A, Abel L, Lebon P, Notarangelo LD, Crow YJ, Boisson-Dupuis S, Casanova JL, Pellegrini S. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation., 2015, 517(7532): 89–93.
[38] Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P, Mansouri N, Okada S, Bryant VL, Kong XF, Kreins A, Velez MM, Boisson B, Khalilzadeh S, Ozcelik U, Darazam IA, Schoggins JW, Rice CM, Al-Muhsen S, Behr M, Vogt G, Puel A, Bustamante J, Gros P, Huibregtse JM, Abel L, Boisson-Dupuis S, Casanova JL. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency., 2012, 337(6102): 1684–1688.
[39] Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD, Li Z, van Unen L, Heijsman D, Goldmann T, Lequin MH, Kros JM, Stam W, Hermann M, Willemsen R, Brouwer RWW, Van IJcken WFJ, Martin-Fernandez M, de Coo I, Dudink J, de Vries FAT, Bertoli Avella A, Prinz M, Crow YJ, Verheijen FW, Pellegrini S, Bogunovic D, Mancini GMS. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome., 2016, 213(7): 1163–1174.
[40] Alsohime F, Martin-Fernandez M, Temsah MH, Alabdulhafid M, Le Voyer T, Alghamdi M, Qiu X, Alotaibi N, Alkahtani A, Buta S, Jouanguy E, Al-Eyadhy A, Gruber C, Hasan GM, Bashiri FA, Halwani R, Hassan HH, Al-Muhsen S, Alkhamis N, Alsum Z, Casanova JL, Bustamante J, Bogunovic D, Alangari AA. JAK inhibitor therapy in a child with inherited USP18 deficiency., 2020, 382(3): 256–265.
[41] Muglia Amancio A, Mittereder L, Carletti A, Tosh KW, Green D, Antonelli LR, Gazzinelli RT, Sher A, Jankovic D. IFNs reset the differential capacity of human monocyte subsets to produce IL-12 in response to microbial stimulation., 2021, 206(7): 1642–1652.
[42] Liu XK, Li HX, Zhong B, Blonska M, Gorjestani S, Yan M, Tian Q, Zhang DE, Lin X, Dong C. USP18 inhibits NF-kappa B and NFAT activation during Th17 differen-tiation by deubiquitinating the TAK1-TAB1 complex., 2013, 210(8): 1575–1590.
[43] Martin-Fernandez M, Buta S, Le Voyer T, Li Z, Dynesen LT, Vuillier F, Franklin L, Ailal F, Muglia Amancio A, Malle L, Gruber C, Benhsaien I, Altman J, Taft J, Deswarte C, Roynard M, Nieto-Patlan A, Moriya K, Rosain J, Boddaert N, Bousfiha A, Crow YJ, Jankovic D, Sher A, Casanova JL, Pellegrini S, Bustamante J, Bogunovic D. A partial form of inherited human USP18 deficiency underlies infection and inflammation., 2022, 219(4): e20211273.
[44] Chen LM, Li SL, McGilvray I. The ISG15/USP18 ubiquitin-like pathway (ISGylation system) in hepatitis C virus infection and resistance to interferon therapy., 2011, 43(10): 1427–1431.
[45] Yan M, Luo JK, Ritchie KJ, Sakai I, Takeuchi K, Ren R, Zhang DE. Ubp43 regulates BCR-ABL leukemogenesis via the type 1 interferon receptor signaling., 2007, 110(1): 305–312.
[46] Pinto-Fernandez A, Salio M, Partridge T, Chen JZ, Vere G, Greenwood H, Olie CS, Damianou A, Scott HC, Pegg HJ, Chiarenza A, Díaz-Saez L, Smith P, Gonzalez-Lopez C, Patel B, Anderton E, Jones N, Hammonds TR, Huber K, Muschel R, Borrow P, Cerundolo V, Kessler BM. Deletion of the deISGylating enzyme USP18 enhances tumour cell antigenicity and radiosensitivity., 2021, 124(4): 817–830.
[47] Yim HY, Park C, Lee YD, Arimoto K, Jeon R, Baek SH, Zhang DE, Kim HH, Kim KI. Elevated response to type I IFN enhances RANKL-mediated osteoclastogenesis in usp18-knockout mice., 2016, 196(9): 3887–3895.
[48] Wang YQ, Mei YX, Song YS, Bachus C, Sun CX, Sheshbaradaran H, Glogauer M. AP-002: a novel inhibitor of osteoclast differentiation and function without disruption of osteogenesis., 2020, 889: 173613.
[49] Kar P, Millo T, Saha S, Mahtab S, Agarwal S, Goswami R. Osteogenic mechanisms of basal ganglia calcification and its ex vivo model in the hypoparathyroid milieu., 2021, 162(4): bqab024.
USP18-mediated protein deISGylation and its role in tuberculosis and other infectious diseases
Qi’ao Zhang1, Zilu Wang1, Peibo Li2, Jianping Xie1,2
The transcription of interferon-stimulated gene 15 () is induced by type I interferons. ISG15 can covalently modify target proteins through the sequential action of enzymesE1, E2, and E3, a process known as ISGylation. The ISGylation of host proteins is widely involved in immune responses, such as host antiviral defence. Ubiquitin-specific protease 18 (USP18), as a deubiquitinase (DUB), can remove ISG15 conjugated to target proteins and inhibit host immune responses by suppressing the type I interferon signaling. The dynamic balance between ISGylation and deISGylation mediated by ISG15 or USP18 respectively plays a significant role in the tuberculosis. Furthermore, similar to ISG15, USP18 is extensively involved in virus-host interaction. In this review, we summarize the roles of ISGylation and deISGylation in tuberculosis and other important diseases mediated by ISG15 and USP18 respectively, underlying regulator network. Further studies in this aspect will inspire new host-targeted strategies to control important diseases such as tuberculosis.
USP18; ISG15; tuberculosis; interferon
2023-07-07;
2023-10-17;
2023-11-01
國家自然科學(xué)基金項(xiàng)目(編號:82211530059, 82072246)資助[Supported by the National Natural Science Foundation of China (Nos. 82211530059, 82072246)]
張其奧,碩士研究生,專業(yè)方向:微生物感染與免疫。E-mail: zhqiao67@icloud.com
謝建平,博士,研究員,研究方向:結(jié)核分枝桿菌等重要病原致病耐藥機(jī)理與新防控措施研發(fā)。E-mail: georgex@swu.edu.cn
10.16288/j.yczz.23-185
(責(zé)任編委: 張?zhí)煊?