• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research progress on aromatization of n-alkanes

    2023-11-21 12:23:18ZHOUQiumingWANGSenQINZhangfengDONGMeiWANGJianguoFANWeibin
    燃料化學(xué)學(xué)報(bào) 2023年11期

    ZHOU Qiu-ming,WANG Sen,QIN Zhang-feng,DONG Mei,WANG Jian-guo,F(xiàn)AN Wei-bin

    (1.State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: Conversion of saturated straight-chain alkanes generated in the deep desulfurization process of fluid catalytic cracking (FCC) gasoline and the coal-to-oil processes into aromatics via alkane aromatization is an important non-petroleum route for the preparation of aromatics that effectively improves the quality of oil.The aromatization technology of C2-C5 light hydrocarbons is relatively mature and has been used in industry.However,for the aromatization of n-alkanes,the aromatics yield is still very low due to the complex reaction process and the competition of various elemental reactions.In addition,the catalysts usually suffer from rapid deactivation.In this work,we summarize the recent advances in the aromatization of n-alkanes.The reaction mechanism of aromatization of alkanes and the effects of the dispersion of metal sites,electronic state,and acidity,morphology and pore structure of the support on the catalytic performance are discussed in detail.

    Key words: n-alkane aromatization;reaction mechanism;single-(bi-) functional catalyst;metal sites;supports

    Aromatics,especially light aromatics BTX(benzene,toluene and xylene),are the basic raw materials in the preparation of rubbers[1,2],plastics[3-5],adhesives[6-8]and chemical fibers[9,10],and they are also important components to improve the octane number of oil products.Nowadays,aromatics are mainly prepared through catalytic reforming process in petrochemical industry[11].The shortage of oil resources and the energy structure of “rich coal,lack of oil and gas” in China greatly limited the production of aromatics[12].

    In addition,there are two major sources of gasoline in China.One is fluid catalytic cracking(FCC) gasoline,which contains high sulfur content and plenty of olefins.Although the sulfur impurity can be eliminated through deep hydrodesulfurization process,this process also leads to the conversion of olefins into saturated paraffins,thus,reducing the octane number of oil[13,14].The second is coal based catalytic synthesis oil,which yields liquid fuel from non-petroleum organic species.The Fischer-Tropsch (F-T) synthetic oil technology developed by Institute of Coal Chemistry,Chinese Academy of Sciences,has been successfully applied to several million-ton coal liquefaction industrial projects[15,16].However,this type of oil contains lots of straight chain alkanes[17,18],resulting in the decrease of octane number.Therefore,optimization and improvement of alkane aromatization technology is the key to improve the oil quality and enhance the economic benefits of coal to oil process.

    At present,Cyclar[19],M2Forming[20]and Alpha techn ologies[21]have been developedforlightparaffins(C2-C5) aromatization.However,these technologies exhibit low selectivity and yield of aromatics in long chain alkanes () aromatization.Since the aromatization ofparaffins via catalytic reforming technology is mainly carried out at harsh reforming conditions,it requires the catalysts have high stability during reaction.This makes the commercial Pt supported Al2O3catalysts show low activity and selectivity in the aromatization ofn-hexane,n-heptane and otherstraight chain alkanes[22-24].Therefore,design and development of highly efficientalkanes aromatization catalyst is urgent,but challenging.

    In this work,we summarize the recent research progress inn-alkanes aromatization.The reaction mechanism ofn-alkanes aromatization and the effects of metal site dispersion,electronic state,and acidity,morphology and channel structure of support on the catalytic performance are discussed.

    1 Aromatization mechanism of n-alkanes

    1.1 Mono-functional catalytic mechanism

    The mono-functional reaction mechanism means that only a kind of active site plays crucial catalytic role during reaction.The catalyst is generally fabricated by loading metals on non-acidic support (without Br?nsted acid sites),in which metal site serves as the solo active center.However,the detailed catalytic route fornalkanes aromatization over such catalysts is still controversial.The main point of contention is the order of dehydrogenation and cyclization.

    As early as 1936,Kazanskii et al.[25]found that C6alkanes can be converted to aromatics on the monofunctional Pt/C catalyst.Their mechanism investigation indicated that C6alkanes were first dehydro-cyclized to six membered ring species,and then to aromatics via successive dehydrogenations.Subsequently,Davis et al.[26]employed isotope labeling method to study the reaction pathway ofn-heptane aromatization on Pt/Al2O3.14C isotope was labelled at the end and fourth carbon atoms ofn-heptane.The content of isotope labeled14C in the branch chain and benzene ring of toluene reached 80%,indicating that then-heptane aromatization was carried out through 1,6-ring cyclization pathway,as shown in Figure 1(a).Similar results were also obtained on Pt-Re and Pt-Sn bimetallic supported Al2O3catalysts[27].

    Figure 1 Reaction mechanism of (a) isotope-labeled heptane to toluene[27];(b) heptatriene to toluene[28](with permission from Elsevier)

    Another possible route for heptane aromatization is thatn-heptane was first dehydrogenated to heptatriene,then cyclized to cycloolefins through 1,6 or 2,7 cyclization,and finally dehydrogenated to toluene,as shown in Figure 1(b)[28].Paál et al.[29]confirmed the existence of this pathway inn-hexane aromatization at low total pressure and low hydrogen pressure.

    Adolfo et al.[30]studied then-heptane aromatization mechanism on the Pt/BaKL catalyst.They found that there were two pathways during reaction.One was that the heptene generated fromnheptane dehydrogenation is first converted into methylcyclohexane through 1,6 cyclization,and then gradually dehydrogenated to aromatics.Another was that the formed heptene gradually dehydrogenated to heptatriene,which is then cyclized to aromatics.In addition,the hydrogenolysis,isomerization and other side reactions simultaneously existed in aromatization process (Figure 2).

    Figure 2 Pathways of n-heptane reforming over Pt/BaKL catalyst[30](with permission from Elsevier)

    1.2 Bi-functional catalytic mechanism

    The bi-functional catalytic mechanism means that there are two kinds of active sites synergistically catalyzing the aromatization reaction.Generally,then-alkanes are first dehydrogenated to form active olefin intermediate species at the metal active sites,followed by the transformation of alkenes into cycloalkanes through 1,5 or 1,6 cyclization on Br?nsted acid sites.Finally,the generated cyclohexane species via 1,6 cyclization can directly dehydrogenated on metal sites to produce aromatics,whereas for the cyclopentane species formed via 1,5 cyclization,it needs to first convert into cyclohexane species on Br?nsted acid sites through ring expansion.

    Mills et al.[31]first proposed the bi-functional catalytic mechanism on Pt/acid-treated Al2O3,in which the isomerization and cyclization mainly take place on acid sites,while metal sites are the dominant active centers for dehydrogenation.They also pointed out that conversion of alkenes to aromatics mainly follows the 1,5 cyclization plus ring expansion pathway.The reaction network was subsequently supplemented by Parera et al.[32].They indicated that cyclohexane and methyl-cyclopentane can produce corresponding alkanes through ring opening reaction on metal sites.Besides,the route of methyl-cyclopentadiene to cyclohexadiene were also proposed,as shown in Figure 3.

    Figure 3 Bifunctional reaction scheme for reforming of C6 hydrocarbons[32](with permission from Elsevier)

    Recently,Zhou et al.[33]reported two concurrent reaction pathways ofn-heptane aromatization on a highly efficient bi-functional Pt/Kβ catalyst.As depicted in Figure 4,then-heptane is first dehydrogenated to 1-and 2-heptenes on metal Pt sites,which are then cyclized to methyl-cyclohexane (MCH)and ethyl-cyclopentane (ECP) via 1,6-and 1,5-ring closure on Br?nsted acid sites,respectively.The generated MCH and ECP are subsequently transformed into toluene and benzene by successive dehydrogenation,ring-expansion and dealkylation reactions.

    Figure 4 Reaction pathways for aromatization (a),hydroisomerization (b) and cracking (c) of n-heptane on Pt/meso-Kβ-0.05-4 catalyst[33](with permission from Elsevier)

    Metal supported catalysts are widely used in the aromatization ofstraight chain alkanes.The metal site,including transition metals,alkali (earth) metals and La series metals,is the main active center of dehydrogenation.The catalyst supports can be divided into amorphous metal oxides and zeolites with specific pore structures and acidic properties,which play some roles in the cracking,dehydrogenation,oligomerization,hydrogen transfer,cyclization and isomerization.

    2.1 Metal components of n-alkanes aromatization catalysts

    The metal components like K,Mg,Ca,Co,Ni,Ga,Zn,Pt,Mo,etc.are widely used in aromatization reaction.In general,alkaline earth metal such as Mg and Ba can promote alkenes generation,Ga,Zn and Pt are beneficial to increase the selectivity of aromatics,while introduction of Ge,Sn,Ir,etc.can elevate the catalyst activity and stability.

    The loading,dispersion degree,and states of metal sites have great influence on the catalyst performance ofn-alkanes aromatization.Smieskova et al.[34]found that decrease of the metal particle size of Zn/ZSM-5 was conducive to elevating the catalytic activity of n-hexane aromatization and the selectivity of aromatics.This is because decrease of metal particle size considerably improves the dispersion of metal sites.Wan et al.[35]compared the influence of Pd doping manner on the catalytic performance of Pt/KL innhexane aromatization.They introduced Pd into Pt/KL catalyst by impregnation (Pd-Pt/KL-IM) and hydrothermal synthesis method (Pd-Pt/KL-HD)respectively,and found that Pd-Pt/KL-IM catalyst had higher aromatics selectivity and sulfur resistance.According to the characterization results,the lower reduction temperature of Pt in Pd-Pt/KL-IM,originated from the strong electronic interaction between Pt and Pd,was benefit to improve the dehydrocyclization capacity;however,higher acidity of Pd-Pt/KL-HD catalyst resulted in serious cracking reactions.

    Introduction of second metal promoter can modulate the structure and electronic state of metal sites,thus,improving the catalytic activity and stability.Hoang et al.[36]suggested that incorporation of Sn into Pt/ZrO2system prevented the catalyst deactivation and enhanced then-octane dehydrocyclization (DHC) activity.This is because the formed Pt-Sn alloy reduced the reduction temperature of Pt cluster (Figure 5(A)),thus,hindering the formation of Pt-C and suppressing coke deposition(Figure 5(B)).Similarly,the rapid aggregation of Pt was inhibited by introducing Ge into Pt/Al2O3to form Pt-Ge alloy phase,which showed higher catalytic stability and aromatics selectivity inn-octane aromatization[37].He et al.[38]systematically studied the effects of preparation methods of Pt-Zn/UZSM-5 on the catalytic performance forn-octane aromatization.They indicated that the Pt-Zn/UZSM-5-II prepared by a strong electrostatic adsorption (SEA) method displayed higher activity and aromatics selectivity than the samples synthesized by traditional co-impregnation method (Pt-Zn/UZSM-5-I),as shown in Figure 6(a).This can be rationalized that using SEA method induced the occupation of Zn atoms in the inner pore sites,thus,driving more Pt clusters to deposit on external surface of UZSM-5 support and enhancing the activity of octane dehydrogenation (Figure 6(b)).

    Figure 5 (A) H2-TPR profiles of virous samples;(B) n-octane conversion in n-octane dehydrocyclization (DHC) at 823 K on (e) ZrO2 in water vapor-hydrogen (WVH2) atmosphere,(f) ZrO2 in H2 atmosphere,(g) Pt/ZrO2 in H2 atmosphere,(h) Pt/ZrO2 in WVH2 atmosphere,(i) Pt-Sn/ZrO2 in H2 atmosphere and (j) Pt-Sn/ZrO2 in WVH2 atmosphere[36](with permission from Elsevier)

    Figure 6 (a) Selectivity of aromatics and C6-C8 alkanes in octane conversion over various Pt/ZSM-5 catalysts; (b) Energy profiles for n-octane dissociation to form 1-C8H16 and H2 on the Pt(111) surface and Pt8 clusters distributing in the inner pores of the catalyst[38](with permission from American Chemical Society)

    2.2 Supports of n-alkanes aromatization catalyst

    2.2.1 Metal oxide support

    Metal oxides,such as Al2O3and ZrO2,are widely used as supports in aromatization reaction due to their high mechanical strength and structural stability.Davis et al.[39,40]reported that after chlorination,the acidic Pt/Al2O3bifunctional catalyst shows higher aromatic formation rate and selectivity than those of non-acidic Pt/Al2O3monofunctional catalyst inn-octane aromatization.However,high reaction temperature easily induces the phase transformation of Al2O3that decreases the specific surface area and leads to the aggregation of loaded metal sites[41].Therefore,SiO2,TiO2,ZrO2and rare earth oxides are generally used as promoters to enhance the thermal stability of Al2O3support. For example, Pt/ZrO2-γ-Al2O3showed higher toluene yield (33.0%) than those of unmodified Pt/γ-Al2O3(24.1%). This is because the addition of Zr species can improve the stability of Al2O3support,thereby increasing the dispersion of Pt and the aromatization performance[42].

    ZrO2carrier has also attracted extensive attention due to its high thermal stability, suitable acid-base and oxidation-reduction properties. It has been proved that the formed Zr3+species on ZrO2support is important Lewis acid center in aromatization process[43].Trunschke et al.[44]prepared a La2O3-modified CrOx/ZrO2catalyst, which obviously increased the aromatics yield inn-octane aromatization (Figure 7).They suggested that introduction of La2O3promoted the dispersion of free Cr3+centers and reduced the acidity of catalyst support, thus facilitating the dehydrogenation and inhibiting cracking side reaction.

    Figure 7 Aromatization of n-octane over CZ (CrOx/ZrO2) and CLZ (CrOx/La2O3-ZrO2) catalyst at 823 K, W/F = 58 and TOS = 90 min[44](with permission from Elsevier)

    2.2.2 Zeolite support

    Zeolites with specific pore structure and tunable acidic properties have excellent catalytic performance in olefin/alkane aromatization. At present, ZSM-5 and L-type zeolites are the most widely used supports forn-alkanes aromatization.

    The three-dimensional framework structure of ZSM-5 zeolite with two intersecting ten-membered ring channels results in its unique shape selective confinementeffect onaromatizationof light hydrocarbons (C2-C5)[45-47].However,metalsupported HZSM-5 catalyst (M/HZSM-5) has strong acidity,easily leading to over-cracking ofn-alkanes.Moreover, the medium-pore structure (0.54 nm × 0.56 nm for straight channel; 0.52 nm × 0.58 nm for sinusoidal channel) of ZSM-5 restricts the diffusion of long-chain alkane reactants and their corresponding aromatization products. Therefore, the aromatization performance ofstraight chain alkanes on M/HZSM-5 catalyst is not as high as expected. Further improvement of the diffusion ability and adjustment of the acidity of M/HZSM-5 are necessary.

    Increasing the silicon to aluminum ratio (Si/Al) of the synthesis solution and using acid-alkali posttreatment can regulate the acidity of HZSM-5 zeolite.Sahoo et al.[48]prepared a series of dealuminated ZSM-5 catalysts by adjusting the steam treatment temperature (300-600 °C) forn-heptane aromatization.It was found that the acid content of dealuminated ZSM-5 (ZSM-5-DA) decreased with the increase of steam treatment temperature. Among them, the ZSM-5-DA prepared at 400 °C (ZSM-5-DA-400) had the highest aromatic selectivity of 35.6%.Viswanadham et al.[49]confirmed that ZSM-5-DA-400 catalyst also performed excellent aromatics selectivity inn-hexane andn-octane aromatization.In addition,introduction of mesopores and macropores into microporous ZSM-5 zeolite can reduce the diffusion resistance and enhance the catalytic stability.Li et al.[50]synthetized mesoporous HZSM-5 catalyst through KOH posttreatment method,which exhibits higher catalytic activity and aromatics selectivity than traditional microporous HZSM-5 onn-hexene aromatization.

    Zhou et al.[51]prepared a Pt/KZSM-5(deAl)catalyst,which is modified by ammonium hexafluorosilicate (AHFS) combined with potassium carbonate (K2CO3) post-treatment method to controllably regulate the pore structure and acidic property of ZSM-5 zeolite support.In comparison to the unmodified Pt/HZSM-5 sample,the Pt/KZSM-5(deAl) exhibited much higher aromatics selectivity(>75%) and catalytic stability (>80 h) onn-heptane,noctane andn-nonane aromatization,as shown in Figure 8(A).The characterization results indicated that using AHFS and K2CO3modifications can generate more mesoporous and reduce strong acid sites of HZSM-5 (Figure 8(B)).This not only facilitated the diffusion of aromatic products,but also inhibited the over-cracking reaction.

    Figure 8 (A) Conversion and products distribution for n-heptane aromatization over different Pt/ZSM-5 catalysts at TOS of 12 h (a),catalytic stability of Pt/KZSM-5(deAl) catalyst for the aromatization of n-heptane (b),n-octane (c) and n-nonane (d);(B) pore size distributions (a) and NH3-TPD profiles (b) of various Pt/ZSM-5 catalysts[51](with permission from Royal Society of Chemistry)

    L zeolite has one-dimensional twelve-membered ring straight channel structure with the pore diameter of 0.71 nm.Bernard et al.[52]identified that Pt supported KL(Pt/KL) catalyst had higher activity and selectivity fornhexane aromatization than that of the Pt/Al2O3.Unlike the traditional bifunctional aromatization mechanism,the Br?nsted acid center is not essential for aromatics formation on Pt/KL.On the contrary,increase of the acid content of Pt/KL usually results in the decrease of aromatic yield.This may be because of the interaction between alkaline KL zeolite support and metal sites,altering the electronic properties of Pt and the catalytic performance[53].Derouane et al.[54]believed that the specific pore structure L-type zeolite can promote the formation of aromatics.Moreover,regulation of the dispersion,distribution and electronic properties of Pt active sites is regarded as effective method to enhance the catalytic performance of Pt/KL in aromatization.

    The F-modified Pt/FKL catalyst was prepared for catalyzing the aromatization of C6-C7hydrocarbons[55].It was found that the aromatics yield was increased from 74.6% of unmodified Pt/KL to 81.5% of Fmodified Pt/FKL.This is because the introduced F can reduce the Pt clusters particle size and increase the dispersion of Pt,thus,promoting the dehydrogenation and aromatization activity.Xu et al.[56]fabricated a series of Pt/KL catalysts using atomic layer deposition(ALD) technique.The results suggested that Pt sites distributed in the channel of KL zeolite were more conducive to producing aromatics inn-heptane aromatization.Moreover,doping proper amount of Co on Pt/KL (Pt-Co/KL) can also promote the dispersion of Pt due to formation of Pt-Co bimetallic clusters,which increases the aromatics selectivity from 60% to 89.1% (Figure 9)[57].Although Pt/KL catalysts give higher aromatic selectivity,the poor thermal and hydrothermal stability of KL zeolite make such catalysts show low catalytic stability.Moreover,the one-dimensional straight channel structure of KL zeolite also leads to the rapid coke deposition[58-60].

    Figure 9 (A) Schematic process for the synthesis of bimetallic PtCo-n/KL (n=1,5,and 20) and CoPt/KL catalysts;(B) Catalytic performances of the catalysts: (a) Conversion of n-heptane and product selectivity over the catalysts after 5 h test and (b) Catalytic results as a function of reaction time in the aromatization of n-heptane over PtCo-5/KL catalyst[57](with permission from Royal Society of Chemistry)

    Recently,then-heptane aromatization catalyzed by hierarchical Kβ zeolite was reported.Shi et al.[61,62]employed organic silane as the pore-enlarging agent to synthesize Hβ with micro-mesoporous structure (HBeta-HS),which was further ion-exchanged by different concentrations of KNO3aqueous solutions to form K-Beta-HS-x support.Upon loading Pt,the Pt/KBeta-0.2M showed excellentn-heptane aromatization performance.The catalyst lifetime was more than 200 h,and the aromatics selectivity was up to 80%(Table1).The results of acidic characterization revealed that incorporation of K+can shield most of acid sites of H-Beta-HS zeolite (Figure 10(A)), thus inhibiting the over-cracking reaction. In addition, the XPS results corroborated that K ++candonatesome electrons to Pt (Figure 10(B)),which enhances the dehydrogenation ability.The three-dimensional twelvemembered ring channel structure of β zeolite also facilitates the diffusion oflong chain hydrocarbons,thus increasing the coke resistance of catalyst.

    Table 1 Conversion of n-heptane,selectivity to aromatics and lifetime of various catalysts in the aromatization of n-heptane[61](with permission from Elsevier)

    Figure 10 (A) NH3-TPD profiles (I) and Py-IR spectra (II);(B) Pt 4f XPS spectra of various catalysts[61](with permission from Elsevier)

    Moreover,the morphology of zeolite may also have someinfluencesonthecatalytic performanceinalkanesaromatization.Zhao etal.[63]synthesized a nano-sized BaKL zeolite with particle size of around 200-300 nm by addition of Ba promoter.In contrast to the un-modified KL zeolite with larger size of 500 nm,the Pt/BaKL catalyst showed higher catalytic stability and C8aromatics selectivity inn-octane aromatization,because of its smaller particle size reducing the diffusion resistance to prevent the secondary reaction.Similarly,the hierarchical Pt/K-Beta-HS-1.0M sample also gave longer catalyst lifetime (205 h) than the traditional microporous Pt/K-Beta-NS-1.0M (60 h) inn-heptanearomatization(Table1),due toless diffusion resistanceofthe formerthanthelatter[61].

    3 Conclusions

    In summary,clarification of reaction mechanism and design of catalysts with high activity,high aromatic yield and long catalytic stability are the key forn-alkane aromatization process.The aromatization ofn-alkanes can be carried out through mono-functional and bi-functional pathways,which depend on the structure and composition of catalysts.For mono-functional pathway,metal site is the dominant active center for dehydrogenation and cyclization reactions.Increase of the metal dispersion,regulation of the electronic state of metal sites and introduction of secondary metal promoter are regarded as effective method to improve the resistance of metal to sintering.For bifunctional pathway,dehydrogenation is still mainly performed on metal sites,whereas for cyclization,acid sites play more vital role.Except for metal modification,regulation of acidity,morphology and pore structure of supports is also essential.Excessive acid sites of zeolite support will induce serious side reactions,such as cracking and isomerization,which decrease the aromatics yield.Therefore,it is necessary to decrease the catalyst strong acidity through altering the Si/Al ratio,and using dealumination or alkali metal ion-exchange posttreatment method.In addition,modulation of zeolite morphology and channel structure by reducing particle size and introducing hierarchical pore can effectively reduce the diffusion resistance and further elevate catalyst stability.

    狠狠婷婷综合久久久久久88av| 亚洲内射少妇av| 色婷婷av一区二区三区视频| 毛片一级片免费看久久久久| 在线亚洲精品国产二区图片欧美| 午夜免费观看性视频| 精品酒店卫生间| 视频在线观看一区二区三区| 国产精品一区二区在线不卡| 一级黄片播放器| 日韩电影二区| 一级毛片黄色毛片免费观看视频| 七月丁香在线播放| 亚洲国产精品一区三区| 一本大道久久a久久精品| 咕卡用的链子| 免费黄色在线免费观看| 两个人免费观看高清视频| 久久人妻熟女aⅴ| 少妇人妻 视频| 国产激情久久老熟女| 夜夜骑夜夜射夜夜干| 免费看av在线观看网站| 久久av网站| 欧美精品人与动牲交sv欧美| 久久ye,这里只有精品| 曰老女人黄片| 80岁老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| 国产一区亚洲一区在线观看| 美女国产高潮福利片在线看| 日韩欧美一区视频在线观看| 国产女主播在线喷水免费视频网站| 精品久久久久久电影网| 高清欧美精品videossex| 亚洲伊人色综图| 精品酒店卫生间| 日韩中字成人| 丰满少妇做爰视频| 国产色婷婷99| 日韩av不卡免费在线播放| 国产成人精品婷婷| 成人国产av品久久久| 欧美日韩亚洲国产一区二区在线观看 | 日韩制服丝袜自拍偷拍| 亚洲经典国产精华液单| 国产97色在线日韩免费| 国产精品嫩草影院av在线观看| 一个人免费看片子| 成年美女黄网站色视频大全免费| 午夜久久久在线观看| 国产在视频线精品| 精品一品国产午夜福利视频| 丝袜人妻中文字幕| 美女xxoo啪啪120秒动态图| 亚洲欧美精品综合一区二区三区 | 99热国产这里只有精品6| 一区二区三区四区激情视频| 高清在线视频一区二区三区| 大话2 男鬼变身卡| 欧美国产精品一级二级三级| 侵犯人妻中文字幕一二三四区| 国产淫语在线视频| 最新的欧美精品一区二区| 国产成人91sexporn| 免费久久久久久久精品成人欧美视频| 国产片内射在线| 国产成人a∨麻豆精品| 亚洲精品成人av观看孕妇| 精品人妻一区二区三区麻豆| 亚洲欧美成人精品一区二区| 亚洲经典国产精华液单| 免费人妻精品一区二区三区视频| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频| 蜜桃国产av成人99| 亚洲第一av免费看| 蜜桃在线观看..| 国产一区二区激情短视频 | 91午夜精品亚洲一区二区三区| 精品国产乱码久久久久久小说| 国产精品一国产av| 国产成人91sexporn| 国产日韩一区二区三区精品不卡| 午夜福利视频精品| av电影中文网址| 日韩一区二区三区影片| 亚洲精品一区蜜桃| 尾随美女入室| 少妇被粗大猛烈的视频| 欧美人与性动交α欧美软件| 秋霞伦理黄片| 国产精品av久久久久免费| 亚洲国产av影院在线观看| 国产成人a∨麻豆精品| 自线自在国产av| 国产一区二区激情短视频 | 九九爱精品视频在线观看| 黑丝袜美女国产一区| 亚洲精品乱久久久久久| 五月天丁香电影| 一区福利在线观看| 国产一区二区三区av在线| 日本爱情动作片www.在线观看| 天天躁夜夜躁狠狠躁躁| 边亲边吃奶的免费视频| 欧美精品av麻豆av| 婷婷色av中文字幕| 在线天堂最新版资源| av又黄又爽大尺度在线免费看| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 亚洲精品久久久久久婷婷小说| 天美传媒精品一区二区| 99久久人妻综合| 欧美激情高清一区二区三区 | 丝袜脚勾引网站| 少妇被粗大的猛进出69影院| 哪个播放器可以免费观看大片| 91精品国产国语对白视频| 久久精品国产鲁丝片午夜精品| 免费观看av网站的网址| 成人18禁高潮啪啪吃奶动态图| 亚洲av综合色区一区| www.av在线官网国产| 亚洲伊人久久精品综合| 不卡av一区二区三区| 日韩一区二区视频免费看| 婷婷色麻豆天堂久久| 最近中文字幕高清免费大全6| 老熟女久久久| 欧美精品一区二区大全| 啦啦啦中文免费视频观看日本| 伊人久久国产一区二区| 丝袜人妻中文字幕| 午夜91福利影院| 国产精品久久久av美女十八| 成人手机av| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲| a级毛片在线看网站| 欧美日韩视频高清一区二区三区二| 熟妇人妻不卡中文字幕| 日本-黄色视频高清免费观看| 欧美国产精品一级二级三级| 中文字幕亚洲精品专区| 国产福利在线免费观看视频| 丰满迷人的少妇在线观看| 三上悠亚av全集在线观看| 叶爱在线成人免费视频播放| 久久久久久久久免费视频了| 在线观看一区二区三区激情| 国产精品偷伦视频观看了| 毛片一级片免费看久久久久| 热99久久久久精品小说推荐| 日韩中字成人| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 欧美精品av麻豆av| 自线自在国产av| 满18在线观看网站| 色视频在线一区二区三区| 高清在线视频一区二区三区| 一区二区三区精品91| 精品少妇内射三级| 午夜免费男女啪啪视频观看| 国产精品国产av在线观看| 91aial.com中文字幕在线观看| 亚洲国产欧美网| 美女中出高潮动态图| 欧美精品一区二区免费开放| 好男人视频免费观看在线| 在线观看免费视频网站a站| 欧美精品一区二区免费开放| 美国免费a级毛片| 赤兔流量卡办理| 99热国产这里只有精品6| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区| 激情五月婷婷亚洲| 新久久久久国产一级毛片| 久久久亚洲精品成人影院| 天美传媒精品一区二区| 久热这里只有精品99| 亚洲人成电影观看| av不卡在线播放| 亚洲精华国产精华液的使用体验| 各种免费的搞黄视频| 三级国产精品片| 免费高清在线观看日韩| 国产日韩一区二区三区精品不卡| 亚洲国产精品国产精品| 久久精品亚洲av国产电影网| 久久午夜福利片| 欧美变态另类bdsm刘玥| 中国三级夫妇交换| 亚洲国产成人一精品久久久| 交换朋友夫妻互换小说| 午夜日韩欧美国产| 亚洲国产精品999| 亚洲av.av天堂| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| 多毛熟女@视频| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 亚洲情色 制服丝袜| 久久精品国产鲁丝片午夜精品| 亚洲精品自拍成人| 亚洲四区av| 99re6热这里在线精品视频| 色吧在线观看| 晚上一个人看的免费电影| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 国产一区有黄有色的免费视频| 欧美亚洲 丝袜 人妻 在线| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| av线在线观看网站| 波多野结衣一区麻豆| 老司机亚洲免费影院| 91精品三级在线观看| 午夜激情久久久久久久| 男女午夜视频在线观看| 2022亚洲国产成人精品| 丝袜脚勾引网站| 看十八女毛片水多多多| 久久久久久久久免费视频了| 考比视频在线观看| 最近最新中文字幕免费大全7| 青春草国产在线视频| 在线天堂中文资源库| 日本wwww免费看| 人人澡人人妻人| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀 | 超碰97精品在线观看| 捣出白浆h1v1| 日韩中字成人| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频| 国产福利在线免费观看视频| 国产亚洲午夜精品一区二区久久| a 毛片基地| 国产成人午夜福利电影在线观看| av在线观看视频网站免费| 9色porny在线观看| 美女视频免费永久观看网站| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频| 午夜福利乱码中文字幕| 久久久亚洲精品成人影院| 亚洲内射少妇av| 亚洲精品第二区| 你懂的网址亚洲精品在线观看| 天堂8中文在线网| 日韩精品免费视频一区二区三区| 七月丁香在线播放| 黑人巨大精品欧美一区二区蜜桃| 日本午夜av视频| 国产 精品1| 精品国产露脸久久av麻豆| 看免费av毛片| 日韩欧美一区视频在线观看| av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 亚洲精品视频女| 美国免费a级毛片| 在线天堂中文资源库| 久久久精品94久久精品| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 亚洲成人一二三区av| 一级片免费观看大全| 亚洲精品av麻豆狂野| 亚洲少妇的诱惑av| 一级片免费观看大全| 欧美日韩视频高清一区二区三区二| 999久久久国产精品视频| av有码第一页| 日本vs欧美在线观看视频| 欧美国产精品va在线观看不卡| 久热这里只有精品99| 香蕉国产在线看| 精品卡一卡二卡四卡免费| 国产xxxxx性猛交| av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| 在线看a的网站| 亚洲欧洲精品一区二区精品久久久 | 免费在线观看黄色视频的| 99九九在线精品视频| 亚洲欧美色中文字幕在线| 交换朋友夫妻互换小说| 中文字幕最新亚洲高清| 18禁观看日本| 香蕉丝袜av| 亚洲欧洲精品一区二区精品久久久 | 少妇人妻久久综合中文| 夜夜骑夜夜射夜夜干| 宅男免费午夜| 又大又黄又爽视频免费| 久久精品国产综合久久久| 午夜免费观看性视频| 男人操女人黄网站| av电影中文网址| 蜜桃在线观看..| 少妇人妻 视频| 亚洲国产色片| 国产在线视频一区二区| 中国三级夫妇交换| 精品国产超薄肉色丝袜足j| 777久久人妻少妇嫩草av网站| 国产男女超爽视频在线观看| 男男h啪啪无遮挡| 亚洲,欧美精品.| 久久久久精品久久久久真实原创| 一区二区三区乱码不卡18| 久久毛片免费看一区二区三区| 国产精品人妻久久久影院| 久久精品国产a三级三级三级| 观看av在线不卡| 啦啦啦啦在线视频资源| 在线看a的网站| 一区二区三区乱码不卡18| 伦理电影大哥的女人| 观看美女的网站| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 亚洲天堂av无毛| 亚洲精品第二区| a级毛片在线看网站| 丝袜脚勾引网站| 日本-黄色视频高清免费观看| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 91成人精品电影| 一区二区av电影网| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆 | 色94色欧美一区二区| 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 啦啦啦在线免费观看视频4| 中文字幕人妻丝袜一区二区 | 热re99久久精品国产66热6| 亚洲精品久久久久久婷婷小说| 免费黄色在线免费观看| 亚洲精品,欧美精品| 日韩一区二区三区影片| 日本av免费视频播放| 建设人人有责人人尽责人人享有的| 亚洲激情五月婷婷啪啪| 国产精品一二三区在线看| 免费高清在线观看视频在线观看| 免费看av在线观看网站| 满18在线观看网站| 欧美日韩视频高清一区二区三区二| av在线老鸭窝| 哪个播放器可以免费观看大片| 免费日韩欧美在线观看| 满18在线观看网站| 日韩 亚洲 欧美在线| 一级片免费观看大全| 97人妻天天添夜夜摸| 边亲边吃奶的免费视频| 亚洲欧美日韩另类电影网站| 日产精品乱码卡一卡2卡三| 人妻系列 视频| 在线观看免费日韩欧美大片| 春色校园在线视频观看| 丝瓜视频免费看黄片| 亚洲图色成人| 大话2 男鬼变身卡| 黄色怎么调成土黄色| 成年女人在线观看亚洲视频| 人人妻人人澡人人看| 97精品久久久久久久久久精品| 国产高清不卡午夜福利| 性色avwww在线观看| 欧美黄色片欧美黄色片| 桃花免费在线播放| 在线观看www视频免费| 老汉色av国产亚洲站长工具| 国产精品人妻久久久影院| av在线app专区| 日日撸夜夜添| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲国产一区二区在线观看 | 69精品国产乱码久久久| 男人舔女人的私密视频| 一区二区av电影网| 亚洲欧美色中文字幕在线| 各种免费的搞黄视频| 国产精品麻豆人妻色哟哟久久| 十分钟在线观看高清视频www| 日日啪夜夜爽| av网站在线播放免费| 两个人免费观看高清视频| 国产高清国产精品国产三级| 成年人免费黄色播放视频| 最近中文字幕高清免费大全6| 亚洲久久久国产精品| 综合色丁香网| 成年人免费黄色播放视频| 男男h啪啪无遮挡| 国产av精品麻豆| 热99国产精品久久久久久7| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 欧美日韩成人在线一区二区| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| videos熟女内射| 爱豆传媒免费全集在线观看| 80岁老熟妇乱子伦牲交| 黄色怎么调成土黄色| 女性生殖器流出的白浆| 2021少妇久久久久久久久久久| 久久精品国产亚洲av高清一级| 亚洲国产精品成人久久小说| 91国产中文字幕| 中文字幕制服av| 日本vs欧美在线观看视频| 亚洲第一av免费看| 中文字幕最新亚洲高清| 国产成人精品福利久久| 春色校园在线视频观看| 一级,二级,三级黄色视频| 久久精品久久久久久久性| 亚洲精品自拍成人| 国产精品久久久久久精品电影小说| 色网站视频免费| 少妇猛男粗大的猛烈进出视频| 欧美人与善性xxx| 中文字幕最新亚洲高清| 亚洲三级黄色毛片| 亚洲国产欧美在线一区| 热99久久久久精品小说推荐| 国精品久久久久久国模美| 大陆偷拍与自拍| 久久精品国产综合久久久| 最近最新中文字幕大全免费视频 | 99热全是精品| 精品人妻偷拍中文字幕| 妹子高潮喷水视频| 日本wwww免费看| 天天影视国产精品| 久久ye,这里只有精品| 欧美日本中文国产一区发布| 亚洲欧美一区二区三区久久| 国产成人精品久久二区二区91 | 在线观看www视频免费| 亚洲人成电影观看| 少妇 在线观看| 久久99一区二区三区| 国产在视频线精品| 久久久亚洲精品成人影院| 国产精品久久久久久精品古装| 久久这里只有精品19| 美女午夜性视频免费| av天堂久久9| 亚洲中文av在线| 2021少妇久久久久久久久久久| 亚洲精品自拍成人| 18禁观看日本| av网站在线播放免费| 国产毛片在线视频| 丰满少妇做爰视频| 1024视频免费在线观看| 老司机影院成人| 日韩av在线免费看完整版不卡| 美女视频免费永久观看网站| 中国三级夫妇交换| a级片在线免费高清观看视频| 亚洲,一卡二卡三卡| 永久网站在线| 97精品久久久久久久久久精品| 日韩中字成人| 新久久久久国产一级毛片| 欧美中文综合在线视频| 捣出白浆h1v1| 不卡av一区二区三区| 久久99精品国语久久久| 亚洲少妇的诱惑av| 男女高潮啪啪啪动态图| 看十八女毛片水多多多| 午夜激情av网站| 69精品国产乱码久久久| 国产xxxxx性猛交| 黄片播放在线免费| 欧美激情高清一区二区三区 | a级片在线免费高清观看视频| 男男h啪啪无遮挡| 边亲边吃奶的免费视频| 18禁动态无遮挡网站| 国产精品人妻久久久影院| 午夜福利,免费看| 午夜91福利影院| 日韩一本色道免费dvd| 亚洲av综合色区一区| 成人国语在线视频| 免费在线观看完整版高清| 咕卡用的链子| 国产福利在线免费观看视频| 国产精品久久久久久久久免| 日韩三级伦理在线观看| 午夜免费男女啪啪视频观看| 好男人视频免费观看在线| 日韩人妻精品一区2区三区| 纯流量卡能插随身wifi吗| 精品午夜福利在线看| 欧美人与善性xxx| 又黄又粗又硬又大视频| 两性夫妻黄色片| 久久久a久久爽久久v久久| 久久久久人妻精品一区果冻| 国产成人精品在线电影| 最近的中文字幕免费完整| 搡女人真爽免费视频火全软件| 精品视频人人做人人爽| 日日摸夜夜添夜夜爱| 交换朋友夫妻互换小说| 国产爽快片一区二区三区| 亚洲欧洲日产国产| 成人免费观看视频高清| 免费黄色在线免费观看| 色婷婷av一区二区三区视频| 欧美激情 高清一区二区三区| 人妻人人澡人人爽人人| 一区二区三区精品91| 91成人精品电影| 精品第一国产精品| 免费观看av网站的网址| 黄色 视频免费看| 大片电影免费在线观看免费| 九草在线视频观看| 欧美日韩精品网址| 一级片免费观看大全| 亚洲三区欧美一区| 亚洲综合色惰| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产午夜精品一二区理论片| 热re99久久国产66热| 亚洲av中文av极速乱| 十八禁高潮呻吟视频| 在线观看国产h片| 色网站视频免费| 国产亚洲一区二区精品| 大码成人一级视频| 九草在线视频观看| 最近2019中文字幕mv第一页| 色婷婷av一区二区三区视频| a级片在线免费高清观看视频| 亚洲精品国产av成人精品| 国产一区二区三区av在线| 美女午夜性视频免费| 国产1区2区3区精品| 久久久久久久久久久久大奶| 亚洲伊人色综图| 亚洲av电影在线观看一区二区三区| av.在线天堂| 丝袜在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线视频一区二区| 777久久人妻少妇嫩草av网站| 菩萨蛮人人尽说江南好唐韦庄| 黄片小视频在线播放| 久久国内精品自在自线图片| 看非洲黑人一级黄片| 亚洲人成网站在线观看播放| 午夜福利影视在线免费观看| 日本av免费视频播放| 久久狼人影院| 精品少妇内射三级| 一区二区三区精品91| 国产色婷婷99| 黄片播放在线免费| 人成视频在线观看免费观看| 老熟女久久久| 黄片播放在线免费| 国产女主播在线喷水免费视频网站| 日韩制服丝袜自拍偷拍| 久久热在线av| 亚洲精品aⅴ在线观看| 伊人久久大香线蕉亚洲五| 精品一区在线观看国产| 欧美激情高清一区二区三区 | 黄片小视频在线播放| 人妻人人澡人人爽人人| 国产精品偷伦视频观看了| 国产成人精品一,二区| 91精品伊人久久大香线蕉| 亚洲精品,欧美精品| 男女无遮挡免费网站观看| 国产精品久久久久久av不卡| 人成视频在线观看免费观看| 韩国精品一区二区三区| av天堂久久9| 亚洲一码二码三码区别大吗| 国产爽快片一区二区三区| 黑人猛操日本美女一级片| 精品国产一区二区三区久久久樱花| 国产成人欧美| 国产片内射在线| 久久精品国产亚洲av高清一级| 亚洲图色成人|