• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research progress on aromatization of n-alkanes

    2023-11-21 12:23:18ZHOUQiumingWANGSenQINZhangfengDONGMeiWANGJianguoFANWeibin
    燃料化學(xué)學(xué)報(bào) 2023年11期

    ZHOU Qiu-ming,WANG Sen,QIN Zhang-feng,DONG Mei,WANG Jian-guo,F(xiàn)AN Wei-bin

    (1.State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: Conversion of saturated straight-chain alkanes generated in the deep desulfurization process of fluid catalytic cracking (FCC) gasoline and the coal-to-oil processes into aromatics via alkane aromatization is an important non-petroleum route for the preparation of aromatics that effectively improves the quality of oil.The aromatization technology of C2-C5 light hydrocarbons is relatively mature and has been used in industry.However,for the aromatization of n-alkanes,the aromatics yield is still very low due to the complex reaction process and the competition of various elemental reactions.In addition,the catalysts usually suffer from rapid deactivation.In this work,we summarize the recent advances in the aromatization of n-alkanes.The reaction mechanism of aromatization of alkanes and the effects of the dispersion of metal sites,electronic state,and acidity,morphology and pore structure of the support on the catalytic performance are discussed in detail.

    Key words: n-alkane aromatization;reaction mechanism;single-(bi-) functional catalyst;metal sites;supports

    Aromatics,especially light aromatics BTX(benzene,toluene and xylene),are the basic raw materials in the preparation of rubbers[1,2],plastics[3-5],adhesives[6-8]and chemical fibers[9,10],and they are also important components to improve the octane number of oil products.Nowadays,aromatics are mainly prepared through catalytic reforming process in petrochemical industry[11].The shortage of oil resources and the energy structure of “rich coal,lack of oil and gas” in China greatly limited the production of aromatics[12].

    In addition,there are two major sources of gasoline in China.One is fluid catalytic cracking(FCC) gasoline,which contains high sulfur content and plenty of olefins.Although the sulfur impurity can be eliminated through deep hydrodesulfurization process,this process also leads to the conversion of olefins into saturated paraffins,thus,reducing the octane number of oil[13,14].The second is coal based catalytic synthesis oil,which yields liquid fuel from non-petroleum organic species.The Fischer-Tropsch (F-T) synthetic oil technology developed by Institute of Coal Chemistry,Chinese Academy of Sciences,has been successfully applied to several million-ton coal liquefaction industrial projects[15,16].However,this type of oil contains lots of straight chain alkanes[17,18],resulting in the decrease of octane number.Therefore,optimization and improvement of alkane aromatization technology is the key to improve the oil quality and enhance the economic benefits of coal to oil process.

    At present,Cyclar[19],M2Forming[20]and Alpha techn ologies[21]have been developedforlightparaffins(C2-C5) aromatization.However,these technologies exhibit low selectivity and yield of aromatics in long chain alkanes () aromatization.Since the aromatization ofparaffins via catalytic reforming technology is mainly carried out at harsh reforming conditions,it requires the catalysts have high stability during reaction.This makes the commercial Pt supported Al2O3catalysts show low activity and selectivity in the aromatization ofn-hexane,n-heptane and otherstraight chain alkanes[22-24].Therefore,design and development of highly efficientalkanes aromatization catalyst is urgent,but challenging.

    In this work,we summarize the recent research progress inn-alkanes aromatization.The reaction mechanism ofn-alkanes aromatization and the effects of metal site dispersion,electronic state,and acidity,morphology and channel structure of support on the catalytic performance are discussed.

    1 Aromatization mechanism of n-alkanes

    1.1 Mono-functional catalytic mechanism

    The mono-functional reaction mechanism means that only a kind of active site plays crucial catalytic role during reaction.The catalyst is generally fabricated by loading metals on non-acidic support (without Br?nsted acid sites),in which metal site serves as the solo active center.However,the detailed catalytic route fornalkanes aromatization over such catalysts is still controversial.The main point of contention is the order of dehydrogenation and cyclization.

    As early as 1936,Kazanskii et al.[25]found that C6alkanes can be converted to aromatics on the monofunctional Pt/C catalyst.Their mechanism investigation indicated that C6alkanes were first dehydro-cyclized to six membered ring species,and then to aromatics via successive dehydrogenations.Subsequently,Davis et al.[26]employed isotope labeling method to study the reaction pathway ofn-heptane aromatization on Pt/Al2O3.14C isotope was labelled at the end and fourth carbon atoms ofn-heptane.The content of isotope labeled14C in the branch chain and benzene ring of toluene reached 80%,indicating that then-heptane aromatization was carried out through 1,6-ring cyclization pathway,as shown in Figure 1(a).Similar results were also obtained on Pt-Re and Pt-Sn bimetallic supported Al2O3catalysts[27].

    Figure 1 Reaction mechanism of (a) isotope-labeled heptane to toluene[27];(b) heptatriene to toluene[28](with permission from Elsevier)

    Another possible route for heptane aromatization is thatn-heptane was first dehydrogenated to heptatriene,then cyclized to cycloolefins through 1,6 or 2,7 cyclization,and finally dehydrogenated to toluene,as shown in Figure 1(b)[28].Paál et al.[29]confirmed the existence of this pathway inn-hexane aromatization at low total pressure and low hydrogen pressure.

    Adolfo et al.[30]studied then-heptane aromatization mechanism on the Pt/BaKL catalyst.They found that there were two pathways during reaction.One was that the heptene generated fromnheptane dehydrogenation is first converted into methylcyclohexane through 1,6 cyclization,and then gradually dehydrogenated to aromatics.Another was that the formed heptene gradually dehydrogenated to heptatriene,which is then cyclized to aromatics.In addition,the hydrogenolysis,isomerization and other side reactions simultaneously existed in aromatization process (Figure 2).

    Figure 2 Pathways of n-heptane reforming over Pt/BaKL catalyst[30](with permission from Elsevier)

    1.2 Bi-functional catalytic mechanism

    The bi-functional catalytic mechanism means that there are two kinds of active sites synergistically catalyzing the aromatization reaction.Generally,then-alkanes are first dehydrogenated to form active olefin intermediate species at the metal active sites,followed by the transformation of alkenes into cycloalkanes through 1,5 or 1,6 cyclization on Br?nsted acid sites.Finally,the generated cyclohexane species via 1,6 cyclization can directly dehydrogenated on metal sites to produce aromatics,whereas for the cyclopentane species formed via 1,5 cyclization,it needs to first convert into cyclohexane species on Br?nsted acid sites through ring expansion.

    Mills et al.[31]first proposed the bi-functional catalytic mechanism on Pt/acid-treated Al2O3,in which the isomerization and cyclization mainly take place on acid sites,while metal sites are the dominant active centers for dehydrogenation.They also pointed out that conversion of alkenes to aromatics mainly follows the 1,5 cyclization plus ring expansion pathway.The reaction network was subsequently supplemented by Parera et al.[32].They indicated that cyclohexane and methyl-cyclopentane can produce corresponding alkanes through ring opening reaction on metal sites.Besides,the route of methyl-cyclopentadiene to cyclohexadiene were also proposed,as shown in Figure 3.

    Figure 3 Bifunctional reaction scheme for reforming of C6 hydrocarbons[32](with permission from Elsevier)

    Recently,Zhou et al.[33]reported two concurrent reaction pathways ofn-heptane aromatization on a highly efficient bi-functional Pt/Kβ catalyst.As depicted in Figure 4,then-heptane is first dehydrogenated to 1-and 2-heptenes on metal Pt sites,which are then cyclized to methyl-cyclohexane (MCH)and ethyl-cyclopentane (ECP) via 1,6-and 1,5-ring closure on Br?nsted acid sites,respectively.The generated MCH and ECP are subsequently transformed into toluene and benzene by successive dehydrogenation,ring-expansion and dealkylation reactions.

    Figure 4 Reaction pathways for aromatization (a),hydroisomerization (b) and cracking (c) of n-heptane on Pt/meso-Kβ-0.05-4 catalyst[33](with permission from Elsevier)

    Metal supported catalysts are widely used in the aromatization ofstraight chain alkanes.The metal site,including transition metals,alkali (earth) metals and La series metals,is the main active center of dehydrogenation.The catalyst supports can be divided into amorphous metal oxides and zeolites with specific pore structures and acidic properties,which play some roles in the cracking,dehydrogenation,oligomerization,hydrogen transfer,cyclization and isomerization.

    2.1 Metal components of n-alkanes aromatization catalysts

    The metal components like K,Mg,Ca,Co,Ni,Ga,Zn,Pt,Mo,etc.are widely used in aromatization reaction.In general,alkaline earth metal such as Mg and Ba can promote alkenes generation,Ga,Zn and Pt are beneficial to increase the selectivity of aromatics,while introduction of Ge,Sn,Ir,etc.can elevate the catalyst activity and stability.

    The loading,dispersion degree,and states of metal sites have great influence on the catalyst performance ofn-alkanes aromatization.Smieskova et al.[34]found that decrease of the metal particle size of Zn/ZSM-5 was conducive to elevating the catalytic activity of n-hexane aromatization and the selectivity of aromatics.This is because decrease of metal particle size considerably improves the dispersion of metal sites.Wan et al.[35]compared the influence of Pd doping manner on the catalytic performance of Pt/KL innhexane aromatization.They introduced Pd into Pt/KL catalyst by impregnation (Pd-Pt/KL-IM) and hydrothermal synthesis method (Pd-Pt/KL-HD)respectively,and found that Pd-Pt/KL-IM catalyst had higher aromatics selectivity and sulfur resistance.According to the characterization results,the lower reduction temperature of Pt in Pd-Pt/KL-IM,originated from the strong electronic interaction between Pt and Pd,was benefit to improve the dehydrocyclization capacity;however,higher acidity of Pd-Pt/KL-HD catalyst resulted in serious cracking reactions.

    Introduction of second metal promoter can modulate the structure and electronic state of metal sites,thus,improving the catalytic activity and stability.Hoang et al.[36]suggested that incorporation of Sn into Pt/ZrO2system prevented the catalyst deactivation and enhanced then-octane dehydrocyclization (DHC) activity.This is because the formed Pt-Sn alloy reduced the reduction temperature of Pt cluster (Figure 5(A)),thus,hindering the formation of Pt-C and suppressing coke deposition(Figure 5(B)).Similarly,the rapid aggregation of Pt was inhibited by introducing Ge into Pt/Al2O3to form Pt-Ge alloy phase,which showed higher catalytic stability and aromatics selectivity inn-octane aromatization[37].He et al.[38]systematically studied the effects of preparation methods of Pt-Zn/UZSM-5 on the catalytic performance forn-octane aromatization.They indicated that the Pt-Zn/UZSM-5-II prepared by a strong electrostatic adsorption (SEA) method displayed higher activity and aromatics selectivity than the samples synthesized by traditional co-impregnation method (Pt-Zn/UZSM-5-I),as shown in Figure 6(a).This can be rationalized that using SEA method induced the occupation of Zn atoms in the inner pore sites,thus,driving more Pt clusters to deposit on external surface of UZSM-5 support and enhancing the activity of octane dehydrogenation (Figure 6(b)).

    Figure 5 (A) H2-TPR profiles of virous samples;(B) n-octane conversion in n-octane dehydrocyclization (DHC) at 823 K on (e) ZrO2 in water vapor-hydrogen (WVH2) atmosphere,(f) ZrO2 in H2 atmosphere,(g) Pt/ZrO2 in H2 atmosphere,(h) Pt/ZrO2 in WVH2 atmosphere,(i) Pt-Sn/ZrO2 in H2 atmosphere and (j) Pt-Sn/ZrO2 in WVH2 atmosphere[36](with permission from Elsevier)

    Figure 6 (a) Selectivity of aromatics and C6-C8 alkanes in octane conversion over various Pt/ZSM-5 catalysts; (b) Energy profiles for n-octane dissociation to form 1-C8H16 and H2 on the Pt(111) surface and Pt8 clusters distributing in the inner pores of the catalyst[38](with permission from American Chemical Society)

    2.2 Supports of n-alkanes aromatization catalyst

    2.2.1 Metal oxide support

    Metal oxides,such as Al2O3and ZrO2,are widely used as supports in aromatization reaction due to their high mechanical strength and structural stability.Davis et al.[39,40]reported that after chlorination,the acidic Pt/Al2O3bifunctional catalyst shows higher aromatic formation rate and selectivity than those of non-acidic Pt/Al2O3monofunctional catalyst inn-octane aromatization.However,high reaction temperature easily induces the phase transformation of Al2O3that decreases the specific surface area and leads to the aggregation of loaded metal sites[41].Therefore,SiO2,TiO2,ZrO2and rare earth oxides are generally used as promoters to enhance the thermal stability of Al2O3support. For example, Pt/ZrO2-γ-Al2O3showed higher toluene yield (33.0%) than those of unmodified Pt/γ-Al2O3(24.1%). This is because the addition of Zr species can improve the stability of Al2O3support,thereby increasing the dispersion of Pt and the aromatization performance[42].

    ZrO2carrier has also attracted extensive attention due to its high thermal stability, suitable acid-base and oxidation-reduction properties. It has been proved that the formed Zr3+species on ZrO2support is important Lewis acid center in aromatization process[43].Trunschke et al.[44]prepared a La2O3-modified CrOx/ZrO2catalyst, which obviously increased the aromatics yield inn-octane aromatization (Figure 7).They suggested that introduction of La2O3promoted the dispersion of free Cr3+centers and reduced the acidity of catalyst support, thus facilitating the dehydrogenation and inhibiting cracking side reaction.

    Figure 7 Aromatization of n-octane over CZ (CrOx/ZrO2) and CLZ (CrOx/La2O3-ZrO2) catalyst at 823 K, W/F = 58 and TOS = 90 min[44](with permission from Elsevier)

    2.2.2 Zeolite support

    Zeolites with specific pore structure and tunable acidic properties have excellent catalytic performance in olefin/alkane aromatization. At present, ZSM-5 and L-type zeolites are the most widely used supports forn-alkanes aromatization.

    The three-dimensional framework structure of ZSM-5 zeolite with two intersecting ten-membered ring channels results in its unique shape selective confinementeffect onaromatizationof light hydrocarbons (C2-C5)[45-47].However,metalsupported HZSM-5 catalyst (M/HZSM-5) has strong acidity,easily leading to over-cracking ofn-alkanes.Moreover, the medium-pore structure (0.54 nm × 0.56 nm for straight channel; 0.52 nm × 0.58 nm for sinusoidal channel) of ZSM-5 restricts the diffusion of long-chain alkane reactants and their corresponding aromatization products. Therefore, the aromatization performance ofstraight chain alkanes on M/HZSM-5 catalyst is not as high as expected. Further improvement of the diffusion ability and adjustment of the acidity of M/HZSM-5 are necessary.

    Increasing the silicon to aluminum ratio (Si/Al) of the synthesis solution and using acid-alkali posttreatment can regulate the acidity of HZSM-5 zeolite.Sahoo et al.[48]prepared a series of dealuminated ZSM-5 catalysts by adjusting the steam treatment temperature (300-600 °C) forn-heptane aromatization.It was found that the acid content of dealuminated ZSM-5 (ZSM-5-DA) decreased with the increase of steam treatment temperature. Among them, the ZSM-5-DA prepared at 400 °C (ZSM-5-DA-400) had the highest aromatic selectivity of 35.6%.Viswanadham et al.[49]confirmed that ZSM-5-DA-400 catalyst also performed excellent aromatics selectivity inn-hexane andn-octane aromatization.In addition,introduction of mesopores and macropores into microporous ZSM-5 zeolite can reduce the diffusion resistance and enhance the catalytic stability.Li et al.[50]synthetized mesoporous HZSM-5 catalyst through KOH posttreatment method,which exhibits higher catalytic activity and aromatics selectivity than traditional microporous HZSM-5 onn-hexene aromatization.

    Zhou et al.[51]prepared a Pt/KZSM-5(deAl)catalyst,which is modified by ammonium hexafluorosilicate (AHFS) combined with potassium carbonate (K2CO3) post-treatment method to controllably regulate the pore structure and acidic property of ZSM-5 zeolite support.In comparison to the unmodified Pt/HZSM-5 sample,the Pt/KZSM-5(deAl) exhibited much higher aromatics selectivity(>75%) and catalytic stability (>80 h) onn-heptane,noctane andn-nonane aromatization,as shown in Figure 8(A).The characterization results indicated that using AHFS and K2CO3modifications can generate more mesoporous and reduce strong acid sites of HZSM-5 (Figure 8(B)).This not only facilitated the diffusion of aromatic products,but also inhibited the over-cracking reaction.

    Figure 8 (A) Conversion and products distribution for n-heptane aromatization over different Pt/ZSM-5 catalysts at TOS of 12 h (a),catalytic stability of Pt/KZSM-5(deAl) catalyst for the aromatization of n-heptane (b),n-octane (c) and n-nonane (d);(B) pore size distributions (a) and NH3-TPD profiles (b) of various Pt/ZSM-5 catalysts[51](with permission from Royal Society of Chemistry)

    L zeolite has one-dimensional twelve-membered ring straight channel structure with the pore diameter of 0.71 nm.Bernard et al.[52]identified that Pt supported KL(Pt/KL) catalyst had higher activity and selectivity fornhexane aromatization than that of the Pt/Al2O3.Unlike the traditional bifunctional aromatization mechanism,the Br?nsted acid center is not essential for aromatics formation on Pt/KL.On the contrary,increase of the acid content of Pt/KL usually results in the decrease of aromatic yield.This may be because of the interaction between alkaline KL zeolite support and metal sites,altering the electronic properties of Pt and the catalytic performance[53].Derouane et al.[54]believed that the specific pore structure L-type zeolite can promote the formation of aromatics.Moreover,regulation of the dispersion,distribution and electronic properties of Pt active sites is regarded as effective method to enhance the catalytic performance of Pt/KL in aromatization.

    The F-modified Pt/FKL catalyst was prepared for catalyzing the aromatization of C6-C7hydrocarbons[55].It was found that the aromatics yield was increased from 74.6% of unmodified Pt/KL to 81.5% of Fmodified Pt/FKL.This is because the introduced F can reduce the Pt clusters particle size and increase the dispersion of Pt,thus,promoting the dehydrogenation and aromatization activity.Xu et al.[56]fabricated a series of Pt/KL catalysts using atomic layer deposition(ALD) technique.The results suggested that Pt sites distributed in the channel of KL zeolite were more conducive to producing aromatics inn-heptane aromatization.Moreover,doping proper amount of Co on Pt/KL (Pt-Co/KL) can also promote the dispersion of Pt due to formation of Pt-Co bimetallic clusters,which increases the aromatics selectivity from 60% to 89.1% (Figure 9)[57].Although Pt/KL catalysts give higher aromatic selectivity,the poor thermal and hydrothermal stability of KL zeolite make such catalysts show low catalytic stability.Moreover,the one-dimensional straight channel structure of KL zeolite also leads to the rapid coke deposition[58-60].

    Figure 9 (A) Schematic process for the synthesis of bimetallic PtCo-n/KL (n=1,5,and 20) and CoPt/KL catalysts;(B) Catalytic performances of the catalysts: (a) Conversion of n-heptane and product selectivity over the catalysts after 5 h test and (b) Catalytic results as a function of reaction time in the aromatization of n-heptane over PtCo-5/KL catalyst[57](with permission from Royal Society of Chemistry)

    Recently,then-heptane aromatization catalyzed by hierarchical Kβ zeolite was reported.Shi et al.[61,62]employed organic silane as the pore-enlarging agent to synthesize Hβ with micro-mesoporous structure (HBeta-HS),which was further ion-exchanged by different concentrations of KNO3aqueous solutions to form K-Beta-HS-x support.Upon loading Pt,the Pt/KBeta-0.2M showed excellentn-heptane aromatization performance.The catalyst lifetime was more than 200 h,and the aromatics selectivity was up to 80%(Table1).The results of acidic characterization revealed that incorporation of K+can shield most of acid sites of H-Beta-HS zeolite (Figure 10(A)), thus inhibiting the over-cracking reaction. In addition, the XPS results corroborated that K ++candonatesome electrons to Pt (Figure 10(B)),which enhances the dehydrogenation ability.The three-dimensional twelvemembered ring channel structure of β zeolite also facilitates the diffusion oflong chain hydrocarbons,thus increasing the coke resistance of catalyst.

    Table 1 Conversion of n-heptane,selectivity to aromatics and lifetime of various catalysts in the aromatization of n-heptane[61](with permission from Elsevier)

    Figure 10 (A) NH3-TPD profiles (I) and Py-IR spectra (II);(B) Pt 4f XPS spectra of various catalysts[61](with permission from Elsevier)

    Moreover,the morphology of zeolite may also have someinfluencesonthecatalytic performanceinalkanesaromatization.Zhao etal.[63]synthesized a nano-sized BaKL zeolite with particle size of around 200-300 nm by addition of Ba promoter.In contrast to the un-modified KL zeolite with larger size of 500 nm,the Pt/BaKL catalyst showed higher catalytic stability and C8aromatics selectivity inn-octane aromatization,because of its smaller particle size reducing the diffusion resistance to prevent the secondary reaction.Similarly,the hierarchical Pt/K-Beta-HS-1.0M sample also gave longer catalyst lifetime (205 h) than the traditional microporous Pt/K-Beta-NS-1.0M (60 h) inn-heptanearomatization(Table1),due toless diffusion resistanceofthe formerthanthelatter[61].

    3 Conclusions

    In summary,clarification of reaction mechanism and design of catalysts with high activity,high aromatic yield and long catalytic stability are the key forn-alkane aromatization process.The aromatization ofn-alkanes can be carried out through mono-functional and bi-functional pathways,which depend on the structure and composition of catalysts.For mono-functional pathway,metal site is the dominant active center for dehydrogenation and cyclization reactions.Increase of the metal dispersion,regulation of the electronic state of metal sites and introduction of secondary metal promoter are regarded as effective method to improve the resistance of metal to sintering.For bifunctional pathway,dehydrogenation is still mainly performed on metal sites,whereas for cyclization,acid sites play more vital role.Except for metal modification,regulation of acidity,morphology and pore structure of supports is also essential.Excessive acid sites of zeolite support will induce serious side reactions,such as cracking and isomerization,which decrease the aromatics yield.Therefore,it is necessary to decrease the catalyst strong acidity through altering the Si/Al ratio,and using dealumination or alkali metal ion-exchange posttreatment method.In addition,modulation of zeolite morphology and channel structure by reducing particle size and introducing hierarchical pore can effectively reduce the diffusion resistance and further elevate catalyst stability.

    久久天堂一区二区三区四区| 高清黄色对白视频在线免费看| 美女主播在线视频| 色综合欧美亚洲国产小说| 国产精品一区二区在线不卡| 一本综合久久免费| 蜜桃国产av成人99| 国产91精品成人一区二区三区 | 操出白浆在线播放| 国产高清videossex| 女性被躁到高潮视频| 狠狠精品人妻久久久久久综合| 人人妻,人人澡人人爽秒播| 日韩制服丝袜自拍偷拍| 久久久久国产精品人妻一区二区| 黑人巨大精品欧美一区二区mp4| 丝袜脚勾引网站| 我要看黄色一级片免费的| 成年人午夜在线观看视频| 夜夜骑夜夜射夜夜干| 下体分泌物呈黄色| 亚洲精品第二区| 亚洲中文字幕日韩| 亚洲成人免费电影在线观看| 国产亚洲一区二区精品| 婷婷成人精品国产| 十八禁高潮呻吟视频| 亚洲第一青青草原| 免费看十八禁软件| 亚洲欧洲日产国产| 五月天丁香电影| 精品亚洲成a人片在线观看| 亚洲av电影在线进入| 免费在线观看黄色视频的| 50天的宝宝边吃奶边哭怎么回事| 动漫黄色视频在线观看| 久久中文看片网| 久久精品成人免费网站| √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 99精国产麻豆久久婷婷| 性少妇av在线| 亚洲av片天天在线观看| 99久久人妻综合| 欧美日韩中文字幕国产精品一区二区三区 | 欧美97在线视频| 免费女性裸体啪啪无遮挡网站| 两人在一起打扑克的视频| 久久久久久久精品精品| 国产一级毛片在线| 亚洲成av片中文字幕在线观看| 久久性视频一级片| 久久久久久久久免费视频了| 麻豆乱淫一区二区| 国产不卡av网站在线观看| 男女免费视频国产| 亚洲色图 男人天堂 中文字幕| 国产精品秋霞免费鲁丝片| 99热网站在线观看| 正在播放国产对白刺激| 免费在线观看日本一区| 天堂8中文在线网| 91九色精品人成在线观看| 亚洲欧美精品综合一区二区三区| 亚洲av成人不卡在线观看播放网 | 久久精品久久久久久噜噜老黄| 国产成人欧美在线观看 | 高清视频免费观看一区二区| 成人亚洲精品一区在线观看| 一级,二级,三级黄色视频| 国产精品 欧美亚洲| 久热爱精品视频在线9| 他把我摸到了高潮在线观看 | www.熟女人妻精品国产| 一二三四在线观看免费中文在| 午夜福利乱码中文字幕| 一级,二级,三级黄色视频| 久久久久精品国产欧美久久久 | 满18在线观看网站| 国产激情久久老熟女| 欧美日韩精品网址| 80岁老熟妇乱子伦牲交| 久久精品成人免费网站| 9色porny在线观看| 国产一级毛片在线| 色94色欧美一区二区| 少妇人妻久久综合中文| 午夜福利影视在线免费观看| tube8黄色片| 精品免费久久久久久久清纯 | 国产麻豆69| 99久久99久久久精品蜜桃| 亚洲精品一区蜜桃| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 免费观看a级毛片全部| 亚洲 欧美一区二区三区| 亚洲全国av大片| 国产免费现黄频在线看| 性少妇av在线| 国产精品熟女久久久久浪| 男人添女人高潮全过程视频| 日韩人妻精品一区2区三区| 天堂影院成人在线观看| 亚洲中文字幕一区二区三区有码在线看 | 精品国产美女av久久久久小说| 欧美zozozo另类| 给我免费播放毛片高清在线观看| 日本一本二区三区精品| 欧美最黄视频在线播放免费| 又黄又爽又免费观看的视频| 久久婷婷成人综合色麻豆| 亚洲精品一区av在线观看| 少妇被粗大的猛进出69影院| 五月玫瑰六月丁香| a级毛片在线看网站| 精品久久蜜臀av无| 窝窝影院91人妻| 亚洲va日本ⅴa欧美va伊人久久| 国产黄片美女视频| www.自偷自拍.com| 男女床上黄色一级片免费看| 在线观看午夜福利视频| 日本撒尿小便嘘嘘汇集6| 中文字幕最新亚洲高清| 女人爽到高潮嗷嗷叫在线视频| 欧美三级亚洲精品| 欧美黑人精品巨大| 国产精品自产拍在线观看55亚洲| 露出奶头的视频| 午夜免费激情av| 特大巨黑吊av在线直播| 亚洲精品av麻豆狂野| 国产精品乱码一区二三区的特点| 国产一级毛片七仙女欲春2| 久久人人精品亚洲av| 99在线人妻在线中文字幕| 一边摸一边抽搐一进一小说| 国产成人啪精品午夜网站| 久久久久性生活片| 午夜影院日韩av| 久久久久久大精品| 欧美黑人巨大hd| 99久久精品国产亚洲精品| 亚洲天堂国产精品一区在线| 亚洲av片天天在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美日本亚洲视频在线播放| АⅤ资源中文在线天堂| x7x7x7水蜜桃| 又黄又爽又免费观看的视频| 亚洲av美国av| 亚洲欧美激情综合另类| 777久久人妻少妇嫩草av网站| 国产精品一区二区三区四区久久| xxxwww97欧美| 欧美不卡视频在线免费观看 | 亚洲第一电影网av| 欧美一区二区精品小视频在线| 天天添夜夜摸| 99热这里只有精品一区 | 欧美又色又爽又黄视频| 亚洲国产精品成人综合色| 成人18禁高潮啪啪吃奶动态图| 12—13女人毛片做爰片一| 国产精品av久久久久免费| 国产激情久久老熟女| 欧美日韩黄片免| 亚洲狠狠婷婷综合久久图片| www.精华液| 999精品在线视频| 99国产综合亚洲精品| 法律面前人人平等表现在哪些方面| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 99热这里只有精品一区 | 天天躁狠狠躁夜夜躁狠狠躁| 在线观看午夜福利视频| 色综合婷婷激情| 亚洲片人在线观看| 午夜精品久久久久久毛片777| 国产伦在线观看视频一区| 丰满的人妻完整版| 欧美人与性动交α欧美精品济南到| 亚洲在线自拍视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美av亚洲av综合av国产av| 久久久精品欧美日韩精品| 狂野欧美白嫩少妇大欣赏| 色综合婷婷激情| 12—13女人毛片做爰片一| 在线永久观看黄色视频| 成人午夜高清在线视频| 两人在一起打扑克的视频| 一区二区三区国产精品乱码| 亚洲 国产 在线| 一夜夜www| 黑人欧美特级aaaaaa片| 欧美又色又爽又黄视频| 精品久久久久久久末码| 看片在线看免费视频| 国产一区在线观看成人免费| 久久香蕉激情| 日韩精品中文字幕看吧| 久久香蕉国产精品| 欧美极品一区二区三区四区| 成人av一区二区三区在线看| 国产成人精品久久二区二区91| 欧美一级a爱片免费观看看 | 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av在线| 日本 欧美在线| 中文字幕高清在线视频| 亚洲片人在线观看| bbb黄色大片| 国产精品99久久99久久久不卡| 国产三级黄色录像| 国产久久久一区二区三区| 91字幕亚洲| 国产精品久久久久久人妻精品电影| 脱女人内裤的视频| 中文字幕人成人乱码亚洲影| 久99久视频精品免费| 亚洲一区中文字幕在线| 欧美日本视频| 国内少妇人妻偷人精品xxx网站 | 美女大奶头视频| 久久中文字幕人妻熟女| 日本撒尿小便嘘嘘汇集6| 韩国av一区二区三区四区| 婷婷精品国产亚洲av在线| 亚洲av电影在线进入| 两人在一起打扑克的视频| 亚洲国产日韩欧美精品在线观看 | 亚洲 欧美一区二区三区| 精品国产超薄肉色丝袜足j| 国产精品免费一区二区三区在线| 中国美女看黄片| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 久久中文看片网| 欧美黄色淫秽网站| 12—13女人毛片做爰片一| 夜夜爽天天搞| 久久久久久久久中文| 日韩欧美一区二区三区在线观看| 国产亚洲欧美98| 日本黄大片高清| 国产成人精品无人区| 熟女少妇亚洲综合色aaa.| 欧美不卡视频在线免费观看 | 亚洲国产精品久久男人天堂| 曰老女人黄片| 国内揄拍国产精品人妻在线| 午夜亚洲福利在线播放| 国产日本99.免费观看| 淫妇啪啪啪对白视频| 国产爱豆传媒在线观看 | 精品久久久久久久久久久久久| 久久国产精品影院| 国产精品久久久人人做人人爽| 在线观看午夜福利视频| 国内精品久久久久精免费| 成人国产一区最新在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲男人的天堂狠狠| 免费无遮挡裸体视频| 国产蜜桃级精品一区二区三区| 1024视频免费在线观看| 精品日产1卡2卡| 亚洲一区中文字幕在线| 精品乱码久久久久久99久播| 日韩高清综合在线| 国产成人av激情在线播放| 亚洲成人久久性| a级毛片a级免费在线| 成人国语在线视频| 曰老女人黄片| 久久中文字幕人妻熟女| 国产精品野战在线观看| 日韩欧美三级三区| 国产激情久久老熟女| 国产三级在线视频| 狂野欧美白嫩少妇大欣赏| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 亚洲欧美日韩东京热| 亚洲av日韩精品久久久久久密| 91大片在线观看| 国产一区二区在线观看日韩 | 一个人免费在线观看的高清视频| 免费观看精品视频网站| 免费av毛片视频| 免费看日本二区| 嫩草影视91久久| 成人手机av| 曰老女人黄片| 狠狠狠狠99中文字幕| 日韩欧美在线乱码| 久久精品影院6| 91大片在线观看| 国产高清激情床上av| 成人国语在线视频| av中文乱码字幕在线| 国产真实乱freesex| 日韩中文字幕欧美一区二区| 亚洲精华国产精华精| 免费在线观看视频国产中文字幕亚洲| 国产av不卡久久| 久久国产精品人妻蜜桃| 婷婷六月久久综合丁香| 欧美极品一区二区三区四区| 国产精品久久久av美女十八| 欧美色欧美亚洲另类二区| 18禁观看日本| 国产av又大| 熟女电影av网| 丝袜人妻中文字幕| 国产精品99久久99久久久不卡| 日本a在线网址| 亚洲国产欧美网| 久久中文看片网| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 精品午夜福利视频在线观看一区| 国产亚洲精品第一综合不卡| 日本撒尿小便嘘嘘汇集6| 日本免费一区二区三区高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区视频在线观看免费| 午夜免费激情av| 国产精品免费视频内射| 免费人成视频x8x8入口观看| 亚洲va日本ⅴa欧美va伊人久久| 久久中文字幕人妻熟女| 国产熟女xx| 亚洲狠狠婷婷综合久久图片| 欧美高清成人免费视频www| 久久久久久国产a免费观看| 国产99久久九九免费精品| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 欧美另类亚洲清纯唯美| 亚洲av成人不卡在线观看播放网| 亚洲精品久久国产高清桃花| 日日爽夜夜爽网站| 五月伊人婷婷丁香| 久久午夜亚洲精品久久| www日本在线高清视频| 免费高清视频大片| 可以免费在线观看a视频的电影网站| 日韩国内少妇激情av| 亚洲片人在线观看| 久久午夜亚洲精品久久| 久久精品亚洲精品国产色婷小说| 亚洲男人天堂网一区| 午夜老司机福利片| 欧美精品亚洲一区二区| 国产三级黄色录像| 国产精品永久免费网站| 伊人久久大香线蕉亚洲五| 欧美黑人巨大hd| 中文字幕高清在线视频| 国产高清激情床上av| 一卡2卡三卡四卡精品乱码亚洲| 国产一区在线观看成人免费| 欧美极品一区二区三区四区| 日本 av在线| 日韩欧美在线二视频| 亚洲美女视频黄频| 亚洲第一电影网av| 国产91精品成人一区二区三区| 日韩欧美国产在线观看| 久久久久久久久久黄片| 啦啦啦观看免费观看视频高清| 免费高清视频大片| 一级毛片精品| 久久久久久大精品| 搡老熟女国产l中国老女人| 色哟哟哟哟哟哟| 搡老妇女老女人老熟妇| 精品国内亚洲2022精品成人| 亚洲国产精品999在线| 一级片免费观看大全| svipshipincom国产片| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 国产激情欧美一区二区| 久久亚洲精品不卡| 久久久精品国产亚洲av高清涩受| 亚洲熟女毛片儿| 一个人免费在线观看电影 | 国产av麻豆久久久久久久| 美女高潮喷水抽搐中文字幕| 99久久综合精品五月天人人| 在线视频色国产色| 久久久国产成人精品二区| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 曰老女人黄片| 十八禁人妻一区二区| 欧美日韩瑟瑟在线播放| 亚洲人成77777在线视频| 99国产精品99久久久久| 亚洲精品国产精品久久久不卡| xxx96com| 天堂√8在线中文| 成人欧美大片| 99国产综合亚洲精品| 超碰成人久久| 久久天躁狠狠躁夜夜2o2o| 在线a可以看的网站| 又大又爽又粗| 老汉色∧v一级毛片| 国产成人aa在线观看| 波多野结衣高清无吗| 欧美黄色淫秽网站| avwww免费| 精品久久久久久久久久久久久| 岛国视频午夜一区免费看| 国产99久久九九免费精品| 90打野战视频偷拍视频| 欧美性长视频在线观看| 欧美黑人巨大hd| 熟女电影av网| 免费在线观看黄色视频的| 亚洲真实伦在线观看| 欧美一级毛片孕妇| 久久精品国产亚洲av香蕉五月| 中文字幕最新亚洲高清| 亚洲美女视频黄频| 亚洲欧美精品综合久久99| 国内少妇人妻偷人精品xxx网站 | 一本一本综合久久| 老司机在亚洲福利影院| 叶爱在线成人免费视频播放| 91大片在线观看| 丁香欧美五月| 国产av又大| 国产精品一区二区精品视频观看| 香蕉丝袜av| 成人一区二区视频在线观看| 亚洲国产精品999在线| 午夜老司机福利片| 色哟哟哟哟哟哟| 99riav亚洲国产免费| 欧美不卡视频在线免费观看 | 99久久99久久久精品蜜桃| 我要搜黄色片| 超碰成人久久| 我要搜黄色片| 中文字幕av在线有码专区| 十八禁网站免费在线| 欧美国产日韩亚洲一区| 美女大奶头视频| 精品无人区乱码1区二区| 国产视频一区二区在线看| 久9热在线精品视频| 搡老岳熟女国产| 精品电影一区二区在线| 一边摸一边抽搐一进一小说| 搡老熟女国产l中国老女人| 亚洲无线在线观看| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 变态另类丝袜制服| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| 变态另类丝袜制服| 天堂影院成人在线观看| 亚洲精品久久成人aⅴ小说| 99热这里只有精品一区 | 叶爱在线成人免费视频播放| 一级毛片精品| 久久中文看片网| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址| 一夜夜www| 日日夜夜操网爽| 在线观看一区二区三区| 国产日本99.免费观看| 国产99白浆流出| 日韩大码丰满熟妇| 亚洲色图av天堂| 色播亚洲综合网| 国产99久久九九免费精品| 88av欧美| 久久热在线av| 18禁国产床啪视频网站| 可以免费在线观看a视频的电影网站| 久久久久亚洲av毛片大全| 青草久久国产| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 91在线观看av| 亚洲精品美女久久av网站| 欧美日韩亚洲国产一区二区在线观看| 人人妻人人澡欧美一区二区| 制服诱惑二区| 中文亚洲av片在线观看爽| 日韩欧美免费精品| 可以在线观看毛片的网站| 亚洲精品国产精品久久久不卡| 91老司机精品| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 欧美+亚洲+日韩+国产| 亚洲欧美日韩高清专用| 日本成人三级电影网站| a级毛片在线看网站| 成人国产综合亚洲| 国产一区二区三区在线臀色熟女| 级片在线观看| 国产免费av片在线观看野外av| 在线播放国产精品三级| 色在线成人网| bbb黄色大片| 身体一侧抽搐| 久久精品91无色码中文字幕| 亚洲自偷自拍图片 自拍| a级毛片a级免费在线| 亚洲av成人精品一区久久| 男女做爰动态图高潮gif福利片| 久久久精品国产亚洲av高清涩受| 身体一侧抽搐| 男插女下体视频免费在线播放| 亚洲最大成人中文| a级毛片a级免费在线| 脱女人内裤的视频| 色综合亚洲欧美另类图片| 午夜福利成人在线免费观看| 国产黄色小视频在线观看| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 午夜福利成人在线免费观看| 色在线成人网| 特大巨黑吊av在线直播| 精品久久久久久,| 首页视频小说图片口味搜索| av国产免费在线观看| 国产激情久久老熟女| 久久99热这里只有精品18| 国产又黄又爽又无遮挡在线| 天堂动漫精品| 精品久久久久久久人妻蜜臀av| 视频区欧美日本亚洲| 国产亚洲精品一区二区www| 狠狠狠狠99中文字幕| 国产精品98久久久久久宅男小说| 亚洲人成电影免费在线| 婷婷六月久久综合丁香| 9191精品国产免费久久| 中国美女看黄片| 午夜视频精品福利| √禁漫天堂资源中文www| 亚洲av日韩精品久久久久久密| 亚洲专区国产一区二区| 97超级碰碰碰精品色视频在线观看| 国产精品免费一区二区三区在线| 熟妇人妻久久中文字幕3abv| 真人一进一出gif抽搐免费| 日韩 欧美 亚洲 中文字幕| 成人欧美大片| 午夜福利在线观看吧| av中文乱码字幕在线| 精品第一国产精品| 51午夜福利影视在线观看| 悠悠久久av| 99热这里只有精品一区 | 日韩三级视频一区二区三区| 国产精品一区二区精品视频观看| 国内精品久久久久久久电影| 精品乱码久久久久久99久播| 在线十欧美十亚洲十日本专区| 最近在线观看免费完整版| 99re在线观看精品视频| 免费一级毛片在线播放高清视频| 久久精品91无色码中文字幕| 亚洲乱码一区二区免费版| 久久热在线av| 亚洲av熟女| 男人舔女人的私密视频| 亚洲欧美精品综合久久99| 亚洲激情在线av| 黄色毛片三级朝国网站| 制服丝袜大香蕉在线| 成年版毛片免费区| 国产精华一区二区三区| 天天躁夜夜躁狠狠躁躁| 久久草成人影院| 他把我摸到了高潮在线观看| 国产精品电影一区二区三区| 精品国产乱码久久久久久男人| 国产黄片美女视频| 香蕉国产在线看| 男女下面进入的视频免费午夜| 亚洲av片天天在线观看| 青草久久国产| 国内揄拍国产精品人妻在线| 久久精品国产综合久久久| 制服诱惑二区| 久久精品国产亚洲av香蕉五月| 好看av亚洲va欧美ⅴa在| 国产熟女午夜一区二区三区| 久久99热这里只有精品18| 特级一级黄色大片| 在线观看日韩欧美| 一进一出好大好爽视频| 欧美性长视频在线观看| 午夜老司机福利片| 99精品欧美一区二区三区四区| 老司机在亚洲福利影院| 亚洲免费av在线视频|