• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active disturbance rejection control for precise position tracking of piezoelectric actuators①

    2015-04-17 06:27:07ZhengZhaoying鄭兆瑛LuQishuaiZhangSijiong
    High Technology Letters 2015年3期

    Zheng Zhaoying (鄭兆瑛), Lu Qishuai, Zhang Sijiong

    (*National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(**Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(***University of Chinese Academy of Sciences, Beijing 100049, P.R.China)

    ?

    Active disturbance rejection control for precise position tracking of piezoelectric actuators①

    Zheng Zhaoying (鄭兆瑛)******, Lu Qishuai***, Zhang Sijiong②

    (*National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(**Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(***University of Chinese Academy of Sciences, Beijing 100049, P.R.China)

    Positioning with high precision piezoelectric actuators is widely used. To overcome positioning inaccuracy caused by hysteresis and creep of actuators, a precise tracking method for piezoelectric actuators using active disturbance rejection control (ADRC) has been proposed in this paper. This method, in real-time, actively estimates and compensates parameter uncertainties, nonlinear factors such as hysteresis, and external disturbances in the tracking system. Precise tracking of the piezoelectric actuator can be achieved without any form of feedforward compensations. The experimental results demonstrate that the active disturbance rejection controller can reduce tracking errors by over 90% comparing with those using the PID controller. Those features of the proposed control method are very suitable for applications in adaptive optics.

    active disturbance rejection control (ADRC), piezoelectric actuators, position tracking

    0 Introduction

    Piezoelectric actuators can implement micrometers and even nanometers positioning. In recent years, piezoelectric actuators are increasingly applied in scanning probe microscopes[1], atomic force microscopes[2,3], micropositioning mechanisms[4,5], aerospace applications[6]and adaptive optics systems[7,8]. However, there are some disadvantages of piezoelectric actuators such as hysteresis, creep and so on. Those disadvantages of piezoelectric actuators result in positioning inaccuracy and limiting the whole system performances in which piezoelectric actuators are used as the correcting units. The control methods to improve the accuracy for the position tracking of piezoelectric actuators are needed.

    To achieve highly precise positioning for piezoelectric actuators, a lot of researches on control algorithms for these devices have been done in recent years. In order to suppress the effect of hysteresis of piezoelectric actuators, the main nonlinear constituent, on their positioning, piezoelectric actuators can be driven by charge[9]. However, the implementation of the charge amplifier is complex and expensive. For this reason the piezoelectric actuators driven by voltage are widely chosen in many applications. For previous researches on suppressing the effect of hysteresis of piezoelectric actuators, a theoretical hysteresis model is firstly established, then the inversion of the hysteresis as a feedforward is set up in a control loop to compensate the positioning inaccuracy caused by the hysteresis[10]. Song, et al.[11]built up a classical Preisach model, and applied the inverse model and a feedback controller to eliminate the hysteresis for the micro position tracking control. However, this method only applies to low frequency input and is rate-dependent. Guo, et al.[12]proposed a real-time inverse hysteresis compensation method with a modified Prandtl-Ishlinskii model. Ru, et al.[13]applied a novel mathematical model obtained based on Prandtl-Ishlinskii operator to characterizing hysteresis and employed an adaptive inverse control algorithm to reduce hysteresis. Zhu, et al.[14]developed an ellipse-like model to describe the hysteresis of piezoelectric actuators and the accuracy of tracking control has been improved by a real-time feedforward controller with the inverse model. However, these methods are also rate-dependent. Eielsen, et al.[15]argued an online adaptive nonlinear hysteresis compensation method for certain periodic desired trajectories. However, the certain periodic trajectories are only suited for scanning applications of piezoelectric actuators, such as atomic force microscopes. Our main purpose for control piezoelectric actuators is to precisely regulate a tip/tilt mirror to achieve a high image quality. These rate-dependent control methods are not appropriate for the applications in adaptive optics. Li, et al.[16]proposed a fuzzy hysteresis model (FHM), and developed the enhanced adaptive hybrid controller to achieve high performance tracking. Although the algorithm is rate-independent, it is highly complex. Because atmospheric turbulences change rapidly, the control method must be simple and suitable for the real-time implementation in adaptive optics.

    Active disturbance rejection control (ADRC)[17-19]is a control algorithm that satisfies the requirements of adaptive optics systems aforementioned. ADRC technique has been widely applied in many fields[20-22]. The gist of the ADRC algorithm is explained as follows. Taking the second order system as an example, the system is taken as a double integrator model, and an extended state observer (ESO) built up for this system model, in which there is an extra extended state variable used for estimating modeling errors, parameter uncertainties, internal and external disturbances in the system. The control algorithm actively compensates for all the factors mentioned above in real-time with updated estimation of those by the ESO so as to achieve precise position tracking of actuators. Moreover, the advantages of the ADRC algorithm are of low complexity and requiring a little prior information of the real system. To verify the effectiveness of the ADRC algorithm on position tracking of piezoelectric actuators, several cases of trajectories are designed to track in a series of experiments.

    This paper is arranged as follows. In the first section, an experimental system is described in detail and a simple model of piezo platform is given. The second section presents the ADRC method. The experimental results are provided in Section 3. Finally, this paper ends with conclusions in Section 4.

    1 System description

    1.1 Experimental setup

    An experimental system, as shown in Fig.1, has been established for the investigation of the ADRC control algorithm. The architecture of the experimental system is depicted in the sketch as shown in Fig.2. It consists of a piezo tip/tilt platform with inbuilt strain gauge sensors to measure its angle changes, a servo controller card, voltage amplifiers, a sensor processing module, and Zynq-7000 with a digital-to-analogue (D/A) board and an analog-to-digital (A/D) board.

    Fig.1 Experimental platform

    Fig.2 Sketch of the experimental architecture

    The piezo tip/tilt platform employed is from PI (Physik Instrumente), which has the nominal 2 mrads angular displacement range corresponding to a range of operating voltage from 0 to 100V. The servo controller card can be switched servo status on and off. When the servo status is in the off mode, there’s only a slew rate limiter active. Voltage amplifiers with a fixed gain of 10 provide voltage ranging from -20V to +120V. The sensor processing module is connected with both the platform and Zynq-7000. The voltage conversion ranges of the D/A and A/D boards are from 0V to 3.3V with 12-bit resolution. Zynq-7000 includes the programmable logic (PL) and the processing system (PS). The D/A and A/D cards are driven by PL, and the real-time control algorithm is run on PS. In these experiments, the sampling frequency of the control loop is set at 5kHz.

    1.2 Piezo tip/tilt platform

    As shown in Fig.3, when control input voltage changes, the voltage of one PZT (Piezoelectric Ceramic Transducer) actuator of each pair increases and the voltage of the other decreases by the exact same magnitude. It may be simply modeled as a lightly damped second order system. The angular displacement of platform in tip axis is modeled as

    (1)

    M(t)=nU(t)+φ(U,t)

    (2)

    where n is the proportional coefficient between moment M(t) and the control voltage U(t), φ(U,t) is the moment caused by nonlinear factors such as hysteresis of piezoelectric actuators, uncertain disturbances and so on.

    Fig.3 Working principle of one axis motion (from PI user manual)

    2 Active disturbance rejection control (ADRC)

    In this paper, linear active disturbance rejection control (ADRC) is applied to control the piezo tip/tilt platform. The dynamics of the platform in tip axis can be regarded as

    (3)

    where b=n/J.

    Fig.4 Block diagram of the control system

    2.1 ESO design

    (4)

    The Luenberger observer of this system expressed by Eq.(4) in state-form space is designed as

    (5)

    λ(s)=s3+l1s2+l2s+l3=(s+ω0)3

    (6)

    So the observer poles are all placed at -ωoin Laplace s-plane. This design can let the observer gain vector L of ESO be easily tuned by just changing the observer bandwidth ωo. Thus only adjusting the observer bandwidth ωo, the three components of the observer gain vector L can be tuned. The larger the ωois, the faster and the more accurate the observer is. However, a larger ωoalso increases noise sensitivity, and is limited by hardware constraints. Hence a proper ωoshould be tuned between the tracking performance and hardware constraints.

    2.2 Control Algorithm

    (7)

    Disregarding the estimation error, the model of the platform in tip axis is reduced to a double integrator,

    (8)

    The original problem is simplified to a much simpler one, which can be dealt by a proportional-derivative (PD) controller

    U0(t)=kp[θd(t)-z1(t)]-kdz2(t)

    (9)

    (10)

    where ωcis the bandwidth of the controller. Obviously, the larger it is, the faster the response speed is. However, like ωo, ωcis tuned based on the competing requirements of tracking performance, noise sensitivity and stability margin.

    3 Experimental results

    3.1 Single frequency triangular trajectory

    The frequency of the desired triangular trajectory in this experiment is 10Hz and the amplitude of that is 50μrad. To show the characteristics of the ADRC algorithm, the tracking results using ADRC are compared with ones using PID and hybrid controllers[16], shown in Fig.5. The hybrid control algorithm takes more than 1ms. Even if FHM is identified at first, the hybrid controller without updating FHM online still takes about 20μs. ADRC just takes less than 1μs. As shown in Fig.5, because of the precise position tracking of ADRC algorithm, the trajectory tracked by ADRC controller (the blue dash curve) nearly coincides with the desired one (the black solid curve). ADRC controller can obtain 1.01μrad maximum tracking error, and the root mean square (RMS) error is 0.29μrad, which is about the noise level. The RMS error with the PID controller is 3.29μrad, and that with hybrid controller is 1.14μrad. Compared with PID controller, the ADRC controller reduces RMS error by 91.2%. And ADRC controller reduces time cost significantly.

    Fig.5 Tracking performances of ADRC comparing with those of servo card at 10Hz with 50μrad triangular waveform trajectory

    3.2 Single frequency sinusoidal trajectory

    Fig.6 shows the experimental result of the desired single sinusoidal trajectory, whose frequency is 50Hz and amplitude is 50μrad. The maximum error decreased from 23.60μrad with PID controller to 1.84μrad with ADRC controller, and reduced by 92%. The reduction of RMS error of angular displacement tracking is approximately 98% for the ADRC controller compared with that of the PID controller. More experimental results of the desired trajectories with other different frequencies and amplitudes are shown in Table 1.

    Fig.6 Tracking performances of ADRC comparing with those of servo card at 50Hz with 50μrad sinusoidal waveform trajectory

    Table 1 Tracking errors using ADRC and servo card as to several sinusoidal trajectories with different frequencies and amplitudes

    Desiredtrajectory(μrad)ErrorMAX(μrad)PIDADRCErrorRMS(μrad)PIDADRC50@50Hz23.601.8415.400.3225@50Hz12.041.507.670.29100@50Hz45.563.8430.610.4850@100Hz40.213.6627.430.6050@30Hz15.551.489.990.3950@10Hz6.320.973.600.28

    3.3 Multiple frequencies sinusoidal trajectory

    To further demonstrate the advantages of ADRC controller method, the tracking experiment with a multiple frequencies sinusoidal trajectory is implemented. The desired trajectory is 300+60sin(40πt)+40sin(100πt)+20sin(200πt)μrad. The experimental result is shown in Fig.7. Using the PID controller, the maximum tracking error of angular displacement is 36.12μrad, and the RMS tracking error is 18.16μrad. However, the ADRC controller can obtain 3.48μrad maximum error, decreased by 90.37%, and 0.45μrad RMS error, decreased by 97.52%.

    Fig.7 Tracking performances of ADRC comparing with those of servo card for multiple frequency sinusoidal trajectory

    4 Conclusions

    In this paper, a control algorithm, active disturbance rejection control, has been developed for piezoelectric actuators. The control algorithm is model independent and more tolerant to uncertain dynamics and unknown disturbances. The hysteresis and creep of piezoelectric actuators can be treated as parts of the unknown disturbances. The ADRC control algorithm actively estimates and compensates disturbances to control systems in real-time, such that precise tracking of the piezoelectric actuators without any hysteresis models can be implemented. This algorithm is of low complexity, and takes less than 1μs on the Zynq-7000 platform. So ADRC suits for real-time implementation. The experimental results clearly show the effectiveness of this algorithm. It provides a reduction of more than 90% tracking error compared with that of PID controller card. ADRC is suitable for controlling requirements of adaptive optics and other areas for precise positioning.

    Acknowledgement

    Many thanks to Dr. Li Changwei at Nanjing Institute of Astronomical Optics & Technology.

    [ 1] Yeh H C, Ni W T, Pan S S. Digital closed-loop nanopositioning using rectilinear flexure stage and laser interferometry. Control Engineering Practice, 2005, 13(5): 559-566

    [ 2] Habibullah, Pota H R, Petersen I R, et al. Creep, hysteresis, and cross-coupling reduction in the high-precision positioning of the piezoelectric scanner stage of an atomic force microscope. IEEE Transactions on Nanotechnology, 2013, 12(6): 1125-1134

    [ 3] Leang K K, Zou Q Z, Devasia S. Feedforward control of piezoactuators in atomic force microscope systems. IEEE Control Systems Magazine, 2009, 29(1): 70-82

    [ 4] Hwang D, Byun J, Jeong J, et al. Robust design and performance verification of an in-plane XY theta micropositioning stage. IEEE Transactions on Nanotechnology, 2011, 10(6): 1412-1423

    [ 5] Li Y M, Xu Q S. Design and robust repetitive control of a new parallel-kinematic XY piezostage for micro/nanomanipulation. IEEE-Asme Transactions on Mechatronics, 2012, 17(6): 1120-1132

    [ 6] Sente P A, Labrique F M, Alexandre P J. Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1971-1979

    [ 7] Kanno I, Kunisawa T, Suzuki T, et al. Development of deformable mirror composed of piezoelectric thin films for adaptive optics. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(2): 155-161

    [ 8] Sato M, Tsuda S, Kanno I, et al. Development of piezoelectric MEMS deformable mirror. Microsystem Technologies Micro and Nano systems Information Storage and Processing Systems, 2011, 17(5-7): 931-935

    [ 9] Zhang J, Zhang L S, Feng Z H. Integration of strain feedback and charge drive for high-performance of piezoelectric actuators. Review of Scientific Instruments, 2013, 84(5): 54705-54705

    [10] Qin Y D, Tian Y L, Zhang D W, et al. A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications. IEEE-ASME Transactions on Mechatronics, 2013, 18(3): 981-989

    [11] Song G, Zhao J Q, Zhou X Q, et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE-ASME Transactions on Mechatronics, 2005, 10(2): 198-209

    [12] Gu G Y, Yang M J, Zhu L M. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Review of Scientific Instruments, 2012, 83(6): 65106-65106

    [13] Ru C H, Chen L G, Shao B, et al. A hysteresis compensation method of piezoelectric actuator: Model, identification and control. Control Engineering Practice, 2009, 17(9): 1107-1114

    [14] Gu G Y, Zhu L M. Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sensors and Actuators a-Physical, 2011, 165(2): 303-309

    [15] Eielsen A A, Gravdahl J T, Pettersen K Y. Adaptive feed-forward hysteresis compensation for piezoelectric actuators. Review of Scientific Instruments, 2012, 83(8): 85001-85001

    [16] Li P Z, Yan F, Ge C, et al. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model. Review of Scientific Instruments, 2012, 83(8): 85114-85114

    [17] Gao Z. Active disturbance rejection control: A paradigm shift in feedback control system design. In: Proceedings of the 2006 American Control Conference, Minneapolis, United States, 2006. 2399-2405

    [18] Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906

    [19] Gao Z. Scaling and bandwidth parameterization based controller tuning. In: Proceedings of the 2003 American Control Conference, Denver, United States, 2003. 4989-4996

    [20] Sun B S, Gao Z Q. A DSP-based active disturbance rejection control design for a 1-kW H-bridge dc-dc power converter. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1271-1277

    [21] Zheng Q, Dong L, Dae H L, et al. Active disturbance rejection control for MEMS gyroscopes. In: Proceedings of the 2008 American Control Conference, Seattle, United States, 2008. 4425-4430

    [22] Gao Z, Hu S, Jiang F. A novel motion control design approach based on active disturbance rejection. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, United States, 2001. 4877-4882

    [23] Ljung L. System identification. City: Wiley Online Library, 1999

    Zheng Zhaoying, born in 1984, received his Ph.D. degree from the University of Chinese Academy of Sciences. Now he works in the Nanjing Institute of Astronomical Optics & Technology. His research focuses on high performance control in adaptive optics.

    10.3772/j.issn.1006-6748.2015.03.014

    ①Supported by the National Natural Science Foundation of China (No. 11373048).

    ②To whom correspondence should be addressed. E-mail: sjzhang@niaot.ac.cn Received on Feb. 27, 2014***

    亚洲美女搞黄在线观看| 蜜臀久久99精品久久宅男| 久久久a久久爽久久v久久| 能在线免费看毛片的网站| 久久欧美精品欧美久久欧美| 亚洲天堂国产精品一区在线| 深爱激情五月婷婷| 国产高潮美女av| 亚洲精品456在线播放app| 国产视频首页在线观看| 你懂的网址亚洲精品在线观看 | 国产精品一及| 成年版毛片免费区| 亚洲久久久久久中文字幕| 亚洲婷婷狠狠爱综合网| 婷婷六月久久综合丁香| av专区在线播放| 高清av免费在线| 精华霜和精华液先用哪个| 建设人人有责人人尽责人人享有的 | 亚洲av男天堂| 亚洲精品成人久久久久久| 日本免费一区二区三区高清不卡| 夜夜看夜夜爽夜夜摸| 一级毛片久久久久久久久女| 国产精品不卡视频一区二区| 婷婷色av中文字幕| 欧美成人a在线观看| 激情 狠狠 欧美| 亚洲国产精品sss在线观看| 特级一级黄色大片| 成人特级av手机在线观看| 国产成年人精品一区二区| 男的添女的下面高潮视频| 精品国产一区二区三区久久久樱花 | 亚洲av.av天堂| 亚洲精品乱久久久久久| 中文天堂在线官网| 高清午夜精品一区二区三区| 欧美三级亚洲精品| 色网站视频免费| 久久久久国产网址| 日本熟妇午夜| 日本熟妇午夜| 国产高清不卡午夜福利| 日本-黄色视频高清免费观看| 欧美日本视频| 国产色爽女视频免费观看| 观看免费一级毛片| 97超视频在线观看视频| 国产 一区精品| 免费av不卡在线播放| 伦理电影大哥的女人| 国产精品福利在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品三级大全| 岛国在线免费视频观看| 亚洲最大成人手机在线| 欧美色视频一区免费| 在线观看av片永久免费下载| 少妇高潮的动态图| 九九久久精品国产亚洲av麻豆| 国产精品一区二区性色av| 中文亚洲av片在线观看爽| 精品国产露脸久久av麻豆 | 久久精品影院6| 亚洲av福利一区| 亚洲av男天堂| 国内揄拍国产精品人妻在线| 九九在线视频观看精品| 最近中文字幕2019免费版| 国产精品乱码一区二三区的特点| 亚洲,欧美,日韩| 国产精品乱码一区二三区的特点| 99视频精品全部免费 在线| 成人一区二区视频在线观看| 人人妻人人看人人澡| 国产激情偷乱视频一区二区| 99久久精品一区二区三区| 国产高清三级在线| 国产又黄又爽又无遮挡在线| 亚洲精品乱码久久久v下载方式| 在线免费观看不下载黄p国产| 草草在线视频免费看| 国产伦在线观看视频一区| 麻豆av噜噜一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 国产av在哪里看| 真实男女啪啪啪动态图| 亚洲18禁久久av| 又爽又黄无遮挡网站| 欧美三级亚洲精品| 天天躁日日操中文字幕| 亚洲av中文字字幕乱码综合| 欧美一级a爱片免费观看看| 久久99热这里只频精品6学生 | 3wmmmm亚洲av在线观看| 亚洲av男天堂| 亚洲精品国产成人久久av| 18禁在线无遮挡免费观看视频| 麻豆乱淫一区二区| 久久久久久久亚洲中文字幕| 精品少妇黑人巨大在线播放 | 国产片特级美女逼逼视频| 国产v大片淫在线免费观看| 欧美一级a爱片免费观看看| 波多野结衣巨乳人妻| 精品久久久噜噜| 亚洲精品一区蜜桃| 亚洲欧美精品综合久久99| 一级黄片播放器| 1024手机看黄色片| 丰满少妇做爰视频| 69av精品久久久久久| 中国国产av一级| 国产亚洲午夜精品一区二区久久 | 成人鲁丝片一二三区免费| 水蜜桃什么品种好| 国产精品嫩草影院av在线观看| 97热精品久久久久久| 91精品伊人久久大香线蕉| 狂野欧美白嫩少妇大欣赏| 国产又黄又爽又无遮挡在线| 99热这里只有是精品50| 亚洲av中文字字幕乱码综合| 尾随美女入室| 黄色配什么色好看| av.在线天堂| 久久热精品热| 国产三级在线视频| 亚洲av成人精品一二三区| 国产精品av视频在线免费观看| 欧美日韩精品成人综合77777| 国产精品av视频在线免费观看| 99久久中文字幕三级久久日本| 精品午夜福利在线看| 舔av片在线| 99久久无色码亚洲精品果冻| 亚洲精品影视一区二区三区av| 性色avwww在线观看| 久久久国产成人免费| 一区二区三区免费毛片| av女优亚洲男人天堂| 97在线视频观看| 久久午夜福利片| 国产伦精品一区二区三区视频9| 久久久精品94久久精品| 国产男人的电影天堂91| 国产亚洲午夜精品一区二区久久 | 乱人视频在线观看| 少妇猛男粗大的猛烈进出视频 | 日韩成人av中文字幕在线观看| 最后的刺客免费高清国语| 亚洲国产精品成人久久小说| 狂野欧美白嫩少妇大欣赏| 国产片特级美女逼逼视频| 欧美成人免费av一区二区三区| 国产黄片美女视频| 舔av片在线| 久久精品影院6| 国产精品无大码| 日韩欧美精品v在线| 欧美bdsm另类| 国产私拍福利视频在线观看| 亚洲一级一片aⅴ在线观看| 亚洲成人精品中文字幕电影| 最近2019中文字幕mv第一页| 两个人视频免费观看高清| 91在线精品国自产拍蜜月| 亚洲国产欧美人成| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 久久久久久久久大av| 久久99蜜桃精品久久| 国产av在哪里看| 最新中文字幕久久久久| 变态另类丝袜制服| 97热精品久久久久久| 一级黄片播放器| 国产一级毛片在线| 久久精品国产鲁丝片午夜精品| 最近最新中文字幕大全电影3| 赤兔流量卡办理| 尾随美女入室| 夫妻性生交免费视频一级片| 亚洲国产高清在线一区二区三| 日韩精品青青久久久久久| 久久精品人妻少妇| kizo精华| 特级一级黄色大片| 亚洲自拍偷在线| 亚洲成av人片在线播放无| 免费搜索国产男女视频| 亚洲欧美成人精品一区二区| 国产色婷婷99| 99热网站在线观看| 国产欧美日韩精品一区二区| 成年女人永久免费观看视频| 久久亚洲精品不卡| 乱人视频在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲国产日韩欧美精品在线观看| 亚洲国产成人一精品久久久| 老司机福利观看| 亚洲av成人精品一区久久| 国产探花极品一区二区| av卡一久久| 少妇人妻一区二区三区视频| 日本-黄色视频高清免费观看| 极品教师在线视频| 18禁动态无遮挡网站| 亚洲国产精品久久男人天堂| 麻豆一二三区av精品| 免费看光身美女| 全区人妻精品视频| 神马国产精品三级电影在线观看| 久久99蜜桃精品久久| 亚洲精品乱码久久久久久按摩| eeuss影院久久| 国产 一区精品| 精品久久国产蜜桃| 国产精品久久久久久av不卡| 最近2019中文字幕mv第一页| 亚洲人成网站在线播| 国产高清三级在线| 黄色配什么色好看| 亚洲精品日韩在线中文字幕| 亚洲av.av天堂| 69人妻影院| 亚洲欧美中文字幕日韩二区| 亚洲av不卡在线观看| 成人漫画全彩无遮挡| 少妇裸体淫交视频免费看高清| 亚州av有码| a级毛片免费高清观看在线播放| 一区二区三区四区激情视频| 性色avwww在线观看| 亚洲天堂国产精品一区在线| 岛国毛片在线播放| 亚洲国产高清在线一区二区三| 国产高清三级在线| 大香蕉久久网| 2022亚洲国产成人精品| 国产高清国产精品国产三级 | 亚洲欧美日韩无卡精品| 边亲边吃奶的免费视频| 欧美一区二区国产精品久久精品| 免费搜索国产男女视频| 久久精品国产亚洲网站| 有码 亚洲区| 久久久久九九精品影院| 韩国高清视频一区二区三区| 好男人在线观看高清免费视频| 人妻系列 视频| 国产在线一区二区三区精 | kizo精华| 欧美日本亚洲视频在线播放| 国产成人福利小说| 欧美xxxx性猛交bbbb| 色视频www国产| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 啦啦啦韩国在线观看视频| 成人毛片a级毛片在线播放| 男女国产视频网站| 美女cb高潮喷水在线观看| 九九爱精品视频在线观看| 免费看光身美女| 精华霜和精华液先用哪个| 国产老妇伦熟女老妇高清| 熟妇人妻久久中文字幕3abv| 久久久午夜欧美精品| 麻豆国产97在线/欧美| 亚洲av一区综合| 乱人视频在线观看| 日日干狠狠操夜夜爽| 亚洲精品影视一区二区三区av| 91精品国产九色| 中文字幕免费在线视频6| 精品人妻一区二区三区麻豆| 国产亚洲精品av在线| 国产精品久久久久久久电影| 欧美精品国产亚洲| 精品久久久久久久末码| 成年免费大片在线观看| 伦精品一区二区三区| 国内精品美女久久久久久| 床上黄色一级片| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 亚洲欧美日韩无卡精品| 免费观看人在逋| a级毛色黄片| 黄色日韩在线| 国产亚洲5aaaaa淫片| 国产黄a三级三级三级人| 熟女人妻精品中文字幕| 亚洲av不卡在线观看| 夫妻性生交免费视频一级片| 91aial.com中文字幕在线观看| 亚洲怡红院男人天堂| 免费观看性生交大片5| 久久午夜福利片| 成人午夜精彩视频在线观看| 村上凉子中文字幕在线| 久久精品综合一区二区三区| 久久6这里有精品| 久久久久网色| 韩国av在线不卡| 丝袜喷水一区| 亚洲欧美日韩东京热| 99久久中文字幕三级久久日本| 乱系列少妇在线播放| 成人综合一区亚洲| 大香蕉久久网| 波多野结衣高清无吗| 欧美性猛交黑人性爽| 国产真实伦视频高清在线观看| 99在线人妻在线中文字幕| 国产精品国产三级国产专区5o | 婷婷色综合大香蕉| 国产伦精品一区二区三区视频9| 国产私拍福利视频在线观看| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜爱| 男女视频在线观看网站免费| 2021少妇久久久久久久久久久| 看片在线看免费视频| 黄片wwwwww| 午夜精品在线福利| 免费无遮挡裸体视频| 精品久久国产蜜桃| 乱码一卡2卡4卡精品| 国产免费一级a男人的天堂| 久久99热这里只频精品6学生 | 三级男女做爰猛烈吃奶摸视频| 婷婷色综合大香蕉| 麻豆成人午夜福利视频| 国产白丝娇喘喷水9色精品| 国产高清视频在线观看网站| 特大巨黑吊av在线直播| 成人亚洲欧美一区二区av| 亚洲av电影在线观看一区二区三区 | 欧美+日韩+精品| 日韩三级伦理在线观看| 99热这里只有是精品在线观看| av在线亚洲专区| 国产精品国产三级国产av玫瑰| 亚洲欧美一区二区三区国产| 免费av不卡在线播放| 国产成人精品一,二区| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 禁无遮挡网站| 亚洲人成网站在线观看播放| 午夜免费男女啪啪视频观看| 国产伦一二天堂av在线观看| 成人三级黄色视频| 有码 亚洲区| 九九热线精品视视频播放| 久久精品国产亚洲网站| 国产毛片a区久久久久| 亚洲精品色激情综合| 久久综合国产亚洲精品| 亚洲国产最新在线播放| 国产色婷婷99| 精品熟女少妇av免费看| 国产精品三级大全| 日日撸夜夜添| 成年女人永久免费观看视频| 亚洲精品乱码久久久v下载方式| 一区二区三区高清视频在线| 看非洲黑人一级黄片| 2022亚洲国产成人精品| 丰满乱子伦码专区| 国产精品久久久久久精品电影小说 | www.色视频.com| 69av精品久久久久久| 国产淫语在线视频| av免费在线看不卡| 国产精品久久视频播放| 成人美女网站在线观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 18+在线观看网站| 亚洲美女视频黄频| 精品人妻熟女av久视频| 成年版毛片免费区| 国产亚洲午夜精品一区二区久久 | 亚洲内射少妇av| 蜜桃久久精品国产亚洲av| 日韩精品青青久久久久久| 国产亚洲av嫩草精品影院| 黄色一级大片看看| 久久久久久大精品| 美女高潮的动态| 简卡轻食公司| 18+在线观看网站| 亚洲精品,欧美精品| 91精品伊人久久大香线蕉| 国产在线男女| 亚洲乱码一区二区免费版| 久久99热这里只频精品6学生 | 一卡2卡三卡四卡精品乱码亚洲| 小蜜桃在线观看免费完整版高清| 国产高潮美女av| 日本黄色视频三级网站网址| 国产成人免费观看mmmm| 中文字幕精品亚洲无线码一区| 欧美精品一区二区大全| 一个人观看的视频www高清免费观看| 日韩欧美在线乱码| 国产精品久久久久久精品电影| 好男人在线观看高清免费视频| www.av在线官网国产| 色哟哟·www| 亚洲国产精品国产精品| 国产精品国产三级专区第一集| 国产一区二区亚洲精品在线观看| 国产精品女同一区二区软件| 色尼玛亚洲综合影院| 国产午夜精品久久久久久一区二区三区| 国产黄色视频一区二区在线观看 | 成人特级av手机在线观看| 亚洲在线自拍视频| 亚洲怡红院男人天堂| 久久精品国产亚洲网站| 人体艺术视频欧美日本| 午夜亚洲福利在线播放| 夜夜爽夜夜爽视频| 久久99热这里只有精品18| 久久亚洲精品不卡| 亚洲国产精品成人综合色| 亚洲在线观看片| 亚洲精品乱码久久久久久按摩| av播播在线观看一区| av女优亚洲男人天堂| av在线蜜桃| 男人和女人高潮做爰伦理| 欧美日韩综合久久久久久| 亚洲国产欧洲综合997久久,| 最近的中文字幕免费完整| 国产高清不卡午夜福利| 欧美性感艳星| 高清在线视频一区二区三区 | 国产一区二区三区av在线| 美女大奶头视频| 色综合亚洲欧美另类图片| 人妻系列 视频| 欧美一区二区精品小视频在线| 亚洲精品影视一区二区三区av| 亚洲性久久影院| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品 | 亚洲性久久影院| 九九久久精品国产亚洲av麻豆| 亚洲精品乱久久久久久| 蜜桃亚洲精品一区二区三区| 22中文网久久字幕| 日本欧美国产在线视频| 麻豆成人av视频| 色综合站精品国产| 人体艺术视频欧美日本| 1024手机看黄色片| 三级经典国产精品| av在线播放精品| 尾随美女入室| or卡值多少钱| 久久这里有精品视频免费| 国产成人精品婷婷| 乱码一卡2卡4卡精品| 国产精品av视频在线免费观看| 水蜜桃什么品种好| 三级国产精品欧美在线观看| 免费观看的影片在线观看| 美女脱内裤让男人舔精品视频| av卡一久久| 国产精品.久久久| 欧美激情在线99| 特级一级黄色大片| 久久综合国产亚洲精品| 日日摸夜夜添夜夜添av毛片| 久久久精品94久久精品| 欧美潮喷喷水| 日本猛色少妇xxxxx猛交久久| 欧美一级a爱片免费观看看| 美女黄网站色视频| 高清在线视频一区二区三区 | 嫩草影院精品99| 日韩在线高清观看一区二区三区| 亚州av有码| 一级爰片在线观看| 亚州av有码| 国产日韩欧美在线精品| www.色视频.com| 色尼玛亚洲综合影院| 搡女人真爽免费视频火全软件| 如何舔出高潮| 久久久欧美国产精品| 免费看a级黄色片| 国产真实乱freesex| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 伊人久久精品亚洲午夜| 色综合站精品国产| 女的被弄到高潮叫床怎么办| 蜜桃亚洲精品一区二区三区| 精品熟女少妇av免费看| 一夜夜www| 国产探花在线观看一区二区| 欧美日本亚洲视频在线播放| 黄片无遮挡物在线观看| 一级黄片播放器| 国产精品一区二区三区四区免费观看| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 国产高清国产精品国产三级 | 国产淫语在线视频| 亚洲精品乱码久久久久久按摩| 亚洲欧洲国产日韩| 韩国高清视频一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久av不卡| 欧美潮喷喷水| 欧美性猛交╳xxx乱大交人| 亚洲无线观看免费| 观看美女的网站| 日韩国内少妇激情av| 国产精品久久视频播放| 高清午夜精品一区二区三区| 中文乱码字字幕精品一区二区三区 | 成人鲁丝片一二三区免费| 亚洲激情五月婷婷啪啪| 国产美女午夜福利| 久久久欧美国产精品| 91午夜精品亚洲一区二区三区| 午夜福利在线观看吧| 精品人妻一区二区三区麻豆| 搡女人真爽免费视频火全软件| 国产黄色小视频在线观看| 麻豆av噜噜一区二区三区| av天堂中文字幕网| 视频中文字幕在线观看| 亚洲欧美一区二区三区国产| 天堂av国产一区二区熟女人妻| 爱豆传媒免费全集在线观看| 日本一本二区三区精品| 精品一区二区免费观看| 婷婷色av中文字幕| 国产精品一区www在线观看| 麻豆精品久久久久久蜜桃| 免费av不卡在线播放| 国产精品久久久久久av不卡| 你懂的网址亚洲精品在线观看 | 一个人看的www免费观看视频| 亚洲四区av| 亚洲精品aⅴ在线观看| 国产视频内射| 热99在线观看视频| 亚洲三级黄色毛片| 欧美性感艳星| 老司机影院毛片| 久久久国产成人免费| 久久久午夜欧美精品| 成人鲁丝片一二三区免费| 久久亚洲精品不卡| 又黄又爽又刺激的免费视频.| 色吧在线观看| 久久人妻av系列| 国产精品,欧美在线| 国产又黄又爽又无遮挡在线| 亚洲国产欧美在线一区| 久久亚洲国产成人精品v| 嫩草影院入口| 麻豆久久精品国产亚洲av| 亚洲国产精品成人久久小说| 夜夜看夜夜爽夜夜摸| 久久久久九九精品影院| 国产极品精品免费视频能看的| 秋霞在线观看毛片| 亚洲成人精品中文字幕电影| 欧美高清性xxxxhd video| 日韩制服骚丝袜av| 国产 一区 欧美 日韩| 国产一区二区在线av高清观看| 尾随美女入室| 69av精品久久久久久| 在线天堂最新版资源| 国产片特级美女逼逼视频| 男女啪啪激烈高潮av片| 三级国产精品片| 3wmmmm亚洲av在线观看| 亚洲国产精品国产精品| 亚洲自偷自拍三级| 超碰97精品在线观看| 中文资源天堂在线| 一级毛片电影观看 | 久久久欧美国产精品| 亚洲av熟女| 你懂的网址亚洲精品在线观看 | 简卡轻食公司| 精品熟女少妇av免费看| 成人av在线播放网站| 2022亚洲国产成人精品| 麻豆成人午夜福利视频| 日韩欧美国产在线观看| 久久久久久久久久黄片| 亚洲精品乱码久久久v下载方式| 日韩大片免费观看网站 | 99国产精品一区二区蜜桃av| 国产探花极品一区二区| 91在线精品国自产拍蜜月| 成人亚洲欧美一区二区av| 国产成人aa在线观看|