• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diversity-multiplexing tradeoff of half-duplex multi-input multi-output two-way relay channel with decode-and-forward protocol①

    2015-04-17 06:27:11SuYuping蘇玉萍
    High Technology Letters 2015年3期

    Su Yuping (蘇玉萍)

    (State Key Lab of ISN, Xidian University, Xi’an 710071, P.R.China)

    ?

    Diversity-multiplexing tradeoff of half-duplex multi-input multi-output two-way relay channel with decode-and-forward protocol①

    Su Yuping (蘇玉萍)②

    (State Key Lab of ISN, Xidian University, Xi’an 710071, P.R.China)

    A multi-input multi-output (MIMO) separated two-way relay channel (STWRC) is considered, where two users exchange their messages via a relay node. When each link is quasi-static Rayleigh fading, the achievable diversity-multiplexing tradeoff (DMT) of the half-duplex STWRC is analyzed. Firstly, the achievable DMT of the STWRC with static decode-and-forward (DF) protocol is obtained. Then, a dynamic decode-and-forward (DDF) protocol for the STWRC is proposed, where the relay listening time varies dynamically with the channel qualities of the links between two users and the relay. Finally, the achievable DMT of the proposed DDF protocol is derived in a case-by-case manner. Numerical examples are also provided to verify the theoretical analysis of both protocols.

    two-way relay channel (TWRC), half-duplex, diversity-multiplexing tradeoff (DMT), decode-and-forward (DF), outage probability

    0 Introduction

    Recently, relay techniques have attracted increasing attentions due to their ability of increasing reliability and throughput of the system. For slow fading relay channels, the diversity-multiplexing tradeoff (DMT)[1]is often analyzed to describe the tradeoff between the transmission rate and the reliability at high signal-to-noise ratio (SNR) regime. Existing works related to the DMT analysis mainly focus on two kinds of relay channels: one-way relay channels[2,3]and two-way relay channels (TWRCs)[4,5]. In the one-way relay channel, a source unidirectionally transmits messages to the destination via relay node(s). On the contrary, in the TWRC, two sources exchange their messages via relay node(s) and data flows bidirectionally.

    According to whether a relay node can transmit and receive messages simultaneously, the relay channels can operate in the full-duplex mode or the half-duplex mode. For TWRC, existing works mainly focus on the DMT analysis of the full-duplex relay[4,5]. Specifically, for the separated two-way relay channel (STWRC) where two users cannot overhear each other directly, it is shown in Ref.[4] that the compress-and-forward (CF) strategy achieves the optimal DMT. Similarly, for TWRC where a direct link exist between two users, its optimal DMT is also obtained by using the CF protocol[5]. For multi-way relay channels, the optimal DMT for the full-duplex relay is studied in Ref.[6]. Recently, the finite-SNR DMT analysis of TWRC is also studied[7,8]. Besides, spatial channel pairing and beamforming for the multi-pair two-way relay networks are also investigated in Refs[9] and [10], respectively.

    To the best of our knowledge, there's no work focusing on the DMT analysis of the half-duplex STWRC. As a result, the paper focuses on the achievable DMT of the STWRC with half-duplex relay. When each link is of frequency non-selective quasi-static Rayleigh fading, the achievable DMT of the multi-input multi-output (MIMO) STWRC with decode-and-forward (DF) protocol is analyzed. Firstly, the achievable DMT of the static DF protocol is obtained by scaling the DMT curve of the full-duplex case[4]. Then, a dynamic decode-and-forward (DDF) protocol is proposed, in which the listening time of the relay varies dynamically with the channel qualities of the links from two users to the relay. Finally, the achievable DMT of the proposed DDF protocol is derived in a case-by-case manner. Numerical examples are also provided to illustrate the achievable DMT performance for both protocols.

    This paper is organized as follows. In Section 1, the channel model is introduced. In Section 2, the achievable DMT for both static and dynamic DF protocols is investigated. The paper is finally concluded in Section 3.

    1 Channel model

    The STWRC model, where two users exchange messages with the assistance of a single relay, is shown in Fig.1. User i, i∈A={1,2}, is equipped with Miantennas and the relay is equipped with N antennas. A channel such as (M1, N, M2)-STWRC system is refered. It is assumed the channel operates in the time-division duplex (TDD) mode and all the nodes are of half-duplex. Let the codeword of each user consisting of L symbols and t (t∈(0,1)) be the time fraction of the relay to listen. During the first tL symbol intervals, the relay only listens to the users transmission (listening phase) and during the remaining (1-t)L symbol intervals, the relay transmits its own codeword to two users (transmission phase). All the links in the STWRC are assumed to be frequency non-selective quasi-static fading and the codeword length L is assumed to be sufficiently long so that the error probability is dominated by the channel outage probability.

    Fig.1 Channel model of separated two-way relay channel

    During the listening phase, the received signal at the relay node is

    During the transmission phase, the received signal at user i is

    where Xi∈Mi×1,i∈A, and Xr∈N×1are the transmitted signal vectors at user i and the relay, respectively. Vectors Wr∈N×1and Wi∈Mi×1, i∈A, are the additive noise, whose entries are independent and identically distributed (i.i.d.) complex Gaussian CN(0,1) random variables. Matrices Hi∈N×Miand Gi∈Mi×N, i∈A, are the channel matrices with i.i.d. CN(0,1) entries. Due to the reciprocity of channel matrices in the TDD mode, we have, where (·)Hdenotes the matrix conjugate transpose. SNR is the average signal-to-noise ratio at each receive antenna.

    2 Achievable DMT of MIMO STWRC

    In this section, the achievable DMT of the MIMO STWRC with DF protocols is derived, including both static and dynamic cases.

    Before proceeding, first some definitions are given as in Ref.[1]. a scheme is considered as a sequence of codes {C(SNR)}, where for each SNR, the corresponding code C(SNR) consists of 2LR1(SNR)×2LR2(SNR) codewords and the code rate for user i is Ri(SNR), i∈A.

    For this sequence of codes, multiplexing gain of user i is riif

    holds. Symbol “?” is used to denote exponential equality, i.e., the equality f(SNR)?SNRbto denote

    2.1 DMT of MIMO STWRC with static DF protocol

    For the static DF protocol, the time allocation between the listening phase and the transmission phase is fixed and independent of the channel realization. Such a protocol is referred to as DF with fixed time allocation (fDF). For the DF protocols, due to the decoding requirement of both messages at the relay, the DMT analysis for different diversity requirement becomes very difficult[11]. Thus, it is assumed that two users have the same diversity gain requirement d. The achievable DMT of the fDF protocol is given as follows.

    Proposition 1: The achievable DMT of the half-duplex STWRC with fDF protocol is

    (1)

    Proof: The achievable DMT of a half-duplex STWRC with fDF protocol can be directly obtained by scaling the DMT curve of the full-duplex case[4]with time division coefficients.

    When r1=r2=r, the achievable symmetric DMT is got as

    (2)

    Fig.2 Achievable symmetric DMT for a (4,2,3)-STWRC system

    2.2 DDF Protocol for MIMO STWRC

    In Ref.[13], the DDF protocol for the cooperative relay channel with single antenna is proposed. In DDF for the relay channel, the relay listens until the accumulated mutual information over the source-relay channel is sufficient for the transmission rate. Here, DDF is considered for the MIMO STWRC. During the listening phase, the message transmission from two users to the relay is a multiple-access channel (MAC), and its instantaneous capacity region is characterized as[12]

    RS≤I(XS; Yr|XSc)IS,R, S?A

    (3)

    where RS=∑i∈SRi, XS={Xi:i∈S} and Scis the complement of S in A. To ensure that the relay can decode two users' messages successfully, accumulated mutual information tLIS,Rmust exceed LRSfor each S?A. Therefore, time fraction t is chosen as

    (4)

    where RS/IS,Ris the ratio between the real transmission rate and the corresponding mutual information (referred to as rate-to-mutual information ratio (RMR)).

    In Eq.(4), each term (i.e.,RS/IS,R) in the bracket is a random variable that depends on the channel state between users and the relay. Time fraction t is the maximum of such three random variables. As a result, t is also a random variable depending on the channel state. Unfortunately, the probability density function (p.d.f) of each RMR is very complex and they are not independent with each other, so p.d.f of t is very difficult to obtain. As an alternative method,some simulation results of the percentage are given that t is equal to each RMR in Eq.(4). The simulation result is obtained in the following way. Given multiplexing gain r1, r2and the end step numstop. For each SNR, Rayleigh fading matrices H1, H2are generated to compute the values of three RMRs. At each SNR, that is done for numstoptimes and finally the percentage is computed when each RS/IS,Ris the maximum among the three RMRs.

    For the (4, 2, 3) and (5, 8, 7)-STWRC system, the percentage of each RMR is illustrated when it is the maximum among the three RMRs in Fig.3~Fig.6. It is shown in Fig.3~Fig.5 that if r1≥r2when M1≥M2, the percentage of (R1+R2)/IA,Rwhen it is the maximum among the three approaches 1 with the increase of SNR. Intuitively, the real transmission rate

    Fig.3 Percentage of each RMR when it is the maximum among the three RMRs for a (4, 2, 3)-STWRC system with r1=0.6, r2=0.4

    Fig.4 Percentage of each RMR when it is the maximum among the three RMRs for a (4, 2, 3)-STWRC system with r1=0.1, r2=0.1

    Fig.5 Percentage of each RMR when it is the maximum among the three RMRs for a (5, 8, 7)-STWRC system with r1=0.3, r2=0.6

    Fig.6 Percentage of each RMR when it is the maximum among the three RMRs for a (5, 8, 7)-STWRC system with r1=0.5, r2=0.3

    which has the form of rlog SNR increases faster with SNR than the corresponding instantaneous mutual information. Therefore, the term (R1+R2)/IA,Rincreases faster since the sum transmission rate has the largest multiplexing gain. If user’s real transmission rate is inversely proportional to its number of antenna, just as shown in Fig.6, time allocation fraction t is determined with a large probability by RMR which corresponds to higher transmission rate but smaller mutual information.

    When t≥1, the channel is in outage during the MAC phase. When t<1, the relay decodes two users' messages and transmits them to both users. This message transmitting from the relay to two users is in fact a broadcast channel (BC) with receiver side information. For the BC phase transmission, if the transmission rate pair (R1, R2) does not lie in the corresponding achievable rate region, the channel is also in outage.

    2.3 DMT of MIMO STWRC with DDF protocol

    Since the p.d.f of t is difficult to obtain, a case-by-case method is developed to analyze the achievable DMT of the DDF relay protocol. The main result of this subsection is given in the following theorem.

    Theorem 1: For the (M1, N, M2)-STWRC system with given multiplexing gain pair (r1, r2), the achievable DMT of the DDF protocol is given as follows.

    Case 1: If R1/I1,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=min{dN,M*(2r1),dN,M1(r1+r2)}

    (5)

    Case 2: If R2/I2,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=min{dN,M*(2r2),dN,M2(r1+r2)}

    (6)

    Case 3: If (R1+R2)/IA,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=dM*,N(2(r1+r2))

    (7)

    Proof: The proof is given in the Appendix.

    Symmetric Tradeoff: Assuming that each user has symmetric multiplexing gain, i.e., R1=R2=R=rlogSNR, the tradeoff region can be further simplified.

    Theorem 2: For the (M1, N, M2)-STWRC system and given common multiplexing gain r, the achievable diversity gain of DDF protocol is given as follows.

    Case 1: If R/I1,R=max{|S|R/IS,R,S?A}or R/I2,R=max{|S|R/IS,R,S?A}, the achievable diversity gain satisfies

    (8)

    Case 2: If 2R/IA,R=max{|S|R/IS,R,S?A}, the achievable diversity gain satisfies

    (9)

    where |S| denotes the cardinality of set S.

    Proof: This theorem can be easily proved by using the similar steps as the proof of Theorem 1 by replacing R1and R2with R=r logSNR.

    For case 1, it can be seen that its achievable symmetric DMT is the same as the outer bound of the fixed time allocation scheme and thus the DDF protocol is superior to any fDF protocol in this case. For case 2, its achievable symmetric DMT is equal to that of fDF protocol when t=0.5. The achievable symmetric diversity gain of a (2, 2, 2)-STWRC with static and dynamic protocols is illustrated in Fig. 7. Just as the analysis above, it is shown that the achievable symmetric DMT of case 1 for DDF is better than that of the fDF protocol with various time allocations (t=0.2, 0.5, 0.8). Case 2 for DDF has the same symmetric DMT performance as the fDF protocol when t=0.5.

    Fig.7 The achievable symmetric DMT of a half-duplex (2, 2, 2)-STWRC with static and dynamic protocols

    3 Conclusion

    The achievable DMT of MIMO STWRC with half-duplex relay is derived. Both static DF and DDF protocols are considered, which shows that the DDF protocol achieves better DMT performance than the static DF protocol for some cases. Besides, finding the optimal DMT performance of the half-duplex STWRC is still a challenge problem, which will be our future work.

    Appendix: Proof of Theorem 1

    In the DDF protocol, the achievable rate region of the BC phase is[14]

    Ri≤I(Xr; YA{i})IR,A{i}, i∈A

    (10)

    (11)

    (12)

    Define

    According to the outage events analysis in Section 2.2, the overall outage probability of the DDF protocol is upper bounded as

    Pout≤P{t>1}+P{t<1∩R1>(1-t)IR,2} +P{t<1∩R2>(1-t)IR,1} ≤P{t>1}+P{R1>(1-t)IR,2} +P{R2>(1-t)IR,1}

    (13)

    In the following, the proof for each case is given.

    where step (a) is due to that the constant before SNR can be ignored on the scale of DMT analysis [1] and step (b) follows from the DMT result for the MIMO point-to-point channel [1, Theorem 2].

    The second term in Eq.(13) is computed as

    where (c) follows from Lemma 3 in Ref.[2].

    Similarly, the last term in (13) is computed as

    Thus, the overall outage probability is upper bounded as

    and the achievable diversity gain for this case satisfies

    d≤min{dN,M*(2r1),dN,M1(r1+r2)}

    Using the similar steps as for case 1, the achievable diversity gain is obtained as

    d≤min{dN,M*(2r2),dN,M2(r1+r2)}

    This condition implies that

    For this case, t=(R1+R2)/IA,Ris chosen. The first term in Eq.(13) is easily computed as

    P{t≥1}?SNR-dM1+M2,N(r1+r2)

    The second term in Eq.(13) is computed as

    where (f) is due to the fact that R1≤(R1+R2)I1,R/IA,Rfrom Eq.(14) and (g) follows from the fact that IA,R≥I1,Rsince logdet(·) is a monotonically increasing function in the cone of psd matrices. The last term is similarly computed as

    By using the results obtained above, we have the achievable diversity gain for this case as

    d≤dM*,N(2(r1+r2))

    Combining the results for the three cases yields Theorem 1.

    Reference

    [ 1] Zheng L, Tse D. Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 2003, 49(4): 1073-1096

    [ 2] Yuksel M, Erkip E. Multi-antenna cooperative wireless systems: a diversity multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 2007, 53(10): 3371-3393

    [ 3] Gündüz D, Khojastepour M A, Goldsmith A, et al. Multi-hop MIMO relay networks: diversity-multiplexing trade-off analysis. IEEE Transactions on Wireless Communication, 2010, 9(5): 1738-1747

    [ 4] Gündüz D, Goldsmith A, Poor H V. MIMO two-way relay channel: diversity-multiplexing tradeoff analysis. In: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008. 1474-1478

    [ 5] Vaze R, Heath R W. On the capacity and diversity-multiplexing tradeoff of the two-way relay channel. IEEE Transactions on Information Theory, 2011, 57(7): 4219-4234

    [ 6] Su Y, Li Y. Optimal diversity-multiplexing tradeoff of MIMO multi-way relay channel. ETRI Journal, 2013, 35(5): 919-922

    [ 7] Wang L, Cai Y, Yang W. On the finite-SNR DMT of two-way AF relaying with imperfect CSI, IEEE Wireless Communications Letters, 2012, 1(3): 161-164

    [ 8] Lin X, Tao M, Xu Y, et al. Finite-SNR diversity-multiplexing tradeoff for two-way relay fading channel, IEEE Transactions on Vehicular Technology, 2013, 62(7): 3123-3136

    [ 9] Shu F, Chen Y, You X H, et al. Low-complexity optimal spatial channel pairing for AF-based multi-pair two-way relay networks, Science China Information Sciences, 2014, 57(10): 1-10

    [10] Shu F, Lu Y Z, Chen Y, et al. High-sum-rate beamformers for multi-pair two-way relay networks with amplify-and-forward relaying strategy, Science China Information Sciences, 2014, 57(2): 1-11

    [11] Tse D, Viswanath P, Zheng L. Diversity-multiplexing tradeoff in multiple access channels. IEEE Transactions on Information Theory, 2004, 50(9): 1859-1874

    [12] Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley-Interscience, 1991. 389,445

    [13] Azarian K, Gamal H E, Schniter P. On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 2005, 51(12): 4152-4172

    Su Yuping, born in 1988. She is now studying for a doctor’s degree in State Key Lab of ISN, Xidian University. She received her B.S. degree from Henan Normal University in 2009. Her research interests include cooperative users and relay systems for wireless communications.

    10.3772/j.issn.1006-6748.2015.03.018

    ①Supported by the National Basic Research Program of China (No.2012CB316100) and National Natural Science Foundation of China (No. 61072064, 61301177).

    ②To whom correspondence should be addressed. E-mail: ypsuxidian@gmail.com Received on Apr. 14, 2014, Li Ying, Liu Yang

    亚洲午夜精品一区,二区,三区| 一区二区三区精品91| 亚洲欧美日韩另类电影网站| 色视频在线一区二区三区| 亚洲国产欧美在线一区| 欧美日韩一级在线毛片| 国产成人精品无人区| 美女脱内裤让男人舔精品视频| 在线精品无人区一区二区三| h视频一区二区三区| 亚洲图色成人| 亚洲成人免费电影在线观看 | 咕卡用的链子| av天堂久久9| av又黄又爽大尺度在线免费看| 女警被强在线播放| 久久精品成人免费网站| 午夜免费观看性视频| av在线老鸭窝| 在现免费观看毛片| 水蜜桃什么品种好| 国产免费一区二区三区四区乱码| 久久午夜综合久久蜜桃| 嫁个100分男人电影在线观看 | 亚洲少妇的诱惑av| 亚洲人成电影免费在线| 老司机深夜福利视频在线观看 | 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 亚洲男人天堂网一区| 国精品久久久久久国模美| 黄色视频不卡| 女性被躁到高潮视频| 亚洲伊人久久精品综合| 久久久国产欧美日韩av| 嫩草影视91久久| 国产无遮挡羞羞视频在线观看| 秋霞在线观看毛片| 大片免费播放器 马上看| 真人做人爱边吃奶动态| 国产一区二区 视频在线| 成人三级做爰电影| 成年女人毛片免费观看观看9 | 久久av网站| 精品亚洲成a人片在线观看| 新久久久久国产一级毛片| 中文字幕亚洲精品专区| 每晚都被弄得嗷嗷叫到高潮| 午夜福利影视在线免费观看| 久久国产亚洲av麻豆专区| 亚洲欧洲精品一区二区精品久久久| 桃花免费在线播放| 人成视频在线观看免费观看| 欧美日韩综合久久久久久| 在线看a的网站| 国产高清不卡午夜福利| 91国产中文字幕| 91国产中文字幕| 国产一区二区在线观看av| 一本色道久久久久久精品综合| 少妇人妻 视频| 国产精品 欧美亚洲| 亚洲精品国产色婷婷电影| 校园人妻丝袜中文字幕| 午夜福利影视在线免费观看| 国产成人精品在线电影| 久久精品久久久久久久性| 一级毛片 在线播放| 亚洲成色77777| 一级毛片我不卡| 最近中文字幕2019免费版| 人妻 亚洲 视频| 亚洲专区中文字幕在线| 日日摸夜夜添夜夜爱| 欧美日韩福利视频一区二区| 香蕉丝袜av| 啦啦啦 在线观看视频| 亚洲成人免费av在线播放| 另类精品久久| 高清欧美精品videossex| 2018国产大陆天天弄谢| 一区二区av电影网| 母亲3免费完整高清在线观看| 国产精品二区激情视频| 天堂俺去俺来也www色官网| 国产av国产精品国产| 日韩人妻精品一区2区三区| 国产又色又爽无遮挡免| 波多野结衣av一区二区av| 咕卡用的链子| 在线观看免费高清a一片| 亚洲欧洲精品一区二区精品久久久| 免费不卡黄色视频| 亚洲av男天堂| 亚洲国产欧美一区二区综合| 中文字幕另类日韩欧美亚洲嫩草| 欧美黑人欧美精品刺激| 国产淫语在线视频| 一区二区日韩欧美中文字幕| 少妇粗大呻吟视频| 欧美 亚洲 国产 日韩一| 国产亚洲欧美精品永久| 婷婷色麻豆天堂久久| 黑丝袜美女国产一区| 国产av精品麻豆| 男女之事视频高清在线观看 | 女性生殖器流出的白浆| 老汉色av国产亚洲站长工具| 黄色视频不卡| 国产精品九九99| 国产三级黄色录像| 天天添夜夜摸| 久久精品国产亚洲av高清一级| 人成视频在线观看免费观看| 黄频高清免费视频| 国产亚洲精品久久久久5区| videosex国产| 五月开心婷婷网| 性高湖久久久久久久久免费观看| 波野结衣二区三区在线| 性高湖久久久久久久久免费观看| 久久精品人人爽人人爽视色| 大香蕉久久网| 国产一区二区三区综合在线观看| 一区福利在线观看| 亚洲成人免费av在线播放| 午夜福利视频在线观看免费| 悠悠久久av| 丝袜在线中文字幕| 男人爽女人下面视频在线观看| 亚洲av片天天在线观看| 久久午夜综合久久蜜桃| 大片电影免费在线观看免费| 日韩制服骚丝袜av| 久久九九热精品免费| 天天躁夜夜躁狠狠久久av| 午夜福利免费观看在线| 国产精品一区二区在线观看99| avwww免费| 成年动漫av网址| 国产欧美日韩一区二区三 | 99热网站在线观看| 亚洲精品久久久久久婷婷小说| 在线观看免费视频网站a站| 一区二区三区乱码不卡18| 女警被强在线播放| 久久女婷五月综合色啪小说| 嫩草影视91久久| 免费一级毛片在线播放高清视频 | 激情视频va一区二区三区| 亚洲色图综合在线观看| 中文字幕最新亚洲高清| 久久久久久久精品精品| 丰满人妻熟妇乱又伦精品不卡| 久久热在线av| 久久午夜综合久久蜜桃| 色视频在线一区二区三区| 国产成人影院久久av| 性高湖久久久久久久久免费观看| 国产午夜精品一二区理论片| 免费黄频网站在线观看国产| 嫩草影视91久久| 91麻豆精品激情在线观看国产 | 99久久精品国产亚洲精品| 777米奇影视久久| 在线av久久热| 久久热在线av| 亚洲欧洲日产国产| 一级毛片电影观看| 精品一区在线观看国产| 50天的宝宝边吃奶边哭怎么回事| 我的亚洲天堂| 一区二区三区四区激情视频| 精品第一国产精品| 久久青草综合色| 9191精品国产免费久久| 欧美性长视频在线观看| av不卡在线播放| 一级黄片播放器| 中文字幕亚洲精品专区| 久热这里只有精品99| 国产一区二区激情短视频 | kizo精华| 老汉色av国产亚洲站长工具| 精品免费久久久久久久清纯 | 日韩 欧美 亚洲 中文字幕| 国产亚洲精品第一综合不卡| 亚洲国产看品久久| avwww免费| 宅男免费午夜| 久久久国产精品麻豆| 男女之事视频高清在线观看 | 国产一区亚洲一区在线观看| xxxhd国产人妻xxx| 丰满少妇做爰视频| 国产片特级美女逼逼视频| 999久久久国产精品视频| 色播在线永久视频| 最近手机中文字幕大全| 黄网站色视频无遮挡免费观看| 乱人伦中国视频| 午夜福利一区二区在线看| 国产在线免费精品| 久久99一区二区三区| 亚洲天堂av无毛| 国产成人欧美在线观看 | 国产免费视频播放在线视频| 精品少妇一区二区三区视频日本电影| 日本91视频免费播放| 国产精品香港三级国产av潘金莲 | 人人妻人人添人人爽欧美一区卜| 色播在线永久视频| 一级黄色大片毛片| 建设人人有责人人尽责人人享有的| 日本91视频免费播放| 90打野战视频偷拍视频| 日韩一本色道免费dvd| 亚洲熟女精品中文字幕| 国产成人欧美在线观看 | 精品少妇一区二区三区视频日本电影| 乱人伦中国视频| 亚洲精品一二三| 天堂中文最新版在线下载| 国产精品成人在线| 大码成人一级视频| 午夜日韩欧美国产| 婷婷色av中文字幕| 1024香蕉在线观看| 大话2 男鬼变身卡| 亚洲国产av影院在线观看| www.熟女人妻精品国产| 一本综合久久免费| 久久精品久久久久久久性| 亚洲 国产 在线| 美女午夜性视频免费| 欧美黑人欧美精品刺激| 国产成人精品久久久久久| 天天操日日干夜夜撸| 亚洲国产av新网站| 亚洲国产中文字幕在线视频| 国产免费一区二区三区四区乱码| 午夜福利影视在线免费观看| 男女国产视频网站| 久久久国产一区二区| 精品一区二区三区av网在线观看 | 91字幕亚洲| 考比视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 波多野结衣一区麻豆| 国产高清videossex| av不卡在线播放| 国产深夜福利视频在线观看| 青春草视频在线免费观看| 免费观看人在逋| 制服诱惑二区| 久久综合国产亚洲精品| 高清不卡的av网站| 色婷婷久久久亚洲欧美| 亚洲av综合色区一区| 国产在线观看jvid| 国产免费福利视频在线观看| 一级片'在线观看视频| 2021少妇久久久久久久久久久| 巨乳人妻的诱惑在线观看| 欧美精品一区二区大全| 精品一区二区三区四区五区乱码 | 老司机深夜福利视频在线观看 | 热re99久久精品国产66热6| 欧美日韩亚洲高清精品| 日韩欧美一区视频在线观看| 大香蕉久久网| 男的添女的下面高潮视频| 亚洲av男天堂| 久久久久久久精品精品| 久久人人爽人人片av| 精品亚洲成国产av| 欧美日本中文国产一区发布| 大话2 男鬼变身卡| 中文字幕人妻熟女乱码| 国产成人91sexporn| 一级毛片电影观看| 婷婷色综合www| 欧美 日韩 精品 国产| 亚洲av成人不卡在线观看播放网 | 日韩欧美一区视频在线观看| 国产精品久久久久久人妻精品电影 | 飞空精品影院首页| 国产在线观看jvid| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 真人做人爱边吃奶动态| 999精品在线视频| 亚洲国产精品999| 交换朋友夫妻互换小说| 日韩大片免费观看网站| 精品国产国语对白av| 成年av动漫网址| 赤兔流量卡办理| 黄片小视频在线播放| 电影成人av| 狂野欧美激情性xxxx| 丝袜美足系列| 悠悠久久av| 黄片小视频在线播放| 永久免费av网站大全| 中文精品一卡2卡3卡4更新| 大片免费播放器 马上看| 另类精品久久| 国产主播在线观看一区二区 | 夫妻午夜视频| 亚洲精品第二区| 欧美av亚洲av综合av国产av| 国产免费现黄频在线看| 欧美日韩视频精品一区| 午夜激情久久久久久久| 国产成人a∨麻豆精品| 每晚都被弄得嗷嗷叫到高潮| 成年动漫av网址| 精品久久久久久久毛片微露脸 | 亚洲一区中文字幕在线| tube8黄色片| 久久人妻福利社区极品人妻图片 | 另类精品久久| 成人亚洲精品一区在线观看| 日韩伦理黄色片| 超碰成人久久| 男人添女人高潮全过程视频| 久久99精品国语久久久| 啦啦啦在线观看免费高清www| 国产片特级美女逼逼视频| 赤兔流量卡办理| 伊人亚洲综合成人网| 日日夜夜操网爽| av在线app专区| 欧美在线一区亚洲| 欧美中文综合在线视频| 亚洲精品日本国产第一区| 黄片小视频在线播放| 黄色片一级片一级黄色片| av不卡在线播放| 国产伦理片在线播放av一区| av网站免费在线观看视频| www.熟女人妻精品国产| 亚洲精品中文字幕在线视频| 成人免费观看视频高清| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 欧美97在线视频| 国产福利在线免费观看视频| 日韩av免费高清视频| 亚洲av片天天在线观看| 国产日韩欧美在线精品| 男女免费视频国产| 国产精品 欧美亚洲| 成人国产av品久久久| 丝袜美足系列| 飞空精品影院首页| 精品久久久久久久毛片微露脸 | 久久国产精品大桥未久av| 狂野欧美激情性xxxx| 欧美日韩精品网址| 亚洲国产精品999| 视频在线观看一区二区三区| 在线av久久热| 王馨瑶露胸无遮挡在线观看| 热re99久久精品国产66热6| 久久亚洲国产成人精品v| 欧美精品一区二区大全| 各种免费的搞黄视频| 人妻人人澡人人爽人人| 纯流量卡能插随身wifi吗| tube8黄色片| 久久国产精品大桥未久av| 精品国产一区二区久久| 91精品国产国语对白视频| 丝袜在线中文字幕| 久久av网站| 欧美日韩成人在线一区二区| 久久久精品94久久精品| 侵犯人妻中文字幕一二三四区| 国产一区二区三区综合在线观看| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 免费黄频网站在线观看国产| 欧美xxⅹ黑人| 熟女少妇亚洲综合色aaa.| 又紧又爽又黄一区二区| 人妻一区二区av| 亚洲欧美成人综合另类久久久| 一本综合久久免费| 在线观看免费视频网站a站| 天天操日日干夜夜撸| 日本猛色少妇xxxxx猛交久久| 亚洲午夜精品一区,二区,三区| 精品亚洲乱码少妇综合久久| 亚洲七黄色美女视频| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影小说| 国产伦理片在线播放av一区| 久久精品亚洲av国产电影网| 一级毛片女人18水好多 | 满18在线观看网站| 国产精品免费大片| 久久久久国产精品人妻一区二区| 午夜福利,免费看| 久久女婷五月综合色啪小说| 欧美黄色淫秽网站| 好男人视频免费观看在线| 国产爽快片一区二区三区| 18禁国产床啪视频网站| 亚洲五月婷婷丁香| 久久午夜综合久久蜜桃| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产 | 久久99热这里只频精品6学生| 欧美亚洲日本最大视频资源| 精品少妇黑人巨大在线播放| 日韩伦理黄色片| 美女国产高潮福利片在线看| 国产在线免费精品| 一级片'在线观看视频| 另类精品久久| 国产精品一区二区在线观看99| 久久久久国产一级毛片高清牌| 久久人人爽人人片av| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 精品国产超薄肉色丝袜足j| 国产欧美亚洲国产| 操美女的视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 一区二区三区四区激情视频| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 国产男女内射视频| 老司机深夜福利视频在线观看 | 无遮挡黄片免费观看| 亚洲激情五月婷婷啪啪| 啦啦啦中文免费视频观看日本| 男女午夜视频在线观看| 国产女主播在线喷水免费视频网站| 在线观看国产h片| 亚洲专区中文字幕在线| 日韩av不卡免费在线播放| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品第一综合不卡| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| a 毛片基地| 久久鲁丝午夜福利片| 首页视频小说图片口味搜索 | a级片在线免费高清观看视频| 日韩制服骚丝袜av| 大片电影免费在线观看免费| 婷婷成人精品国产| 久久精品成人免费网站| 国产av国产精品国产| 精品国产一区二区三区四区第35| 国产色视频综合| 国产免费视频播放在线视频| 午夜福利视频在线观看免费| 在线观看人妻少妇| 视频区欧美日本亚洲| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 中文字幕人妻丝袜一区二区| 老司机午夜十八禁免费视频| 久久精品亚洲熟妇少妇任你| 亚洲精品美女久久久久99蜜臀 | 脱女人内裤的视频| 丝袜喷水一区| 国产黄频视频在线观看| 2021少妇久久久久久久久久久| 日韩精品免费视频一区二区三区| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 黄网站色视频无遮挡免费观看| 黄片小视频在线播放| 午夜激情久久久久久久| 免费黄频网站在线观看国产| 国产精品一国产av| 五月天丁香电影| 在线天堂中文资源库| 又粗又硬又长又爽又黄的视频| 悠悠久久av| 永久免费av网站大全| 亚洲国产欧美网| 亚洲人成网站在线观看播放| 色婷婷av一区二区三区视频| 一区二区三区激情视频| 成在线人永久免费视频| 国产高清国产精品国产三级| 女人高潮潮喷娇喘18禁视频| 久久天躁狠狠躁夜夜2o2o | 午夜福利乱码中文字幕| 99精品久久久久人妻精品| a级毛片黄视频| 成年人免费黄色播放视频| 一级片'在线观看视频| 在线亚洲精品国产二区图片欧美| 大话2 男鬼变身卡| 久久国产亚洲av麻豆专区| 国产免费又黄又爽又色| 国产成人91sexporn| 亚洲精品一卡2卡三卡4卡5卡 | 国产高清视频在线播放一区 | 国产成人精品无人区| 脱女人内裤的视频| 亚洲成人国产一区在线观看 | 亚洲专区中文字幕在线| 久久久久久久久久久久大奶| 美女福利国产在线| 亚洲国产精品999| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 青草久久国产| 热99国产精品久久久久久7| 午夜福利在线免费观看网站| 欧美日韩视频高清一区二区三区二| 久久av网站| 欧美日韩视频高清一区二区三区二| 国产一卡二卡三卡精品| 久久久久视频综合| 一级a爱视频在线免费观看| 91精品三级在线观看| 欧美少妇被猛烈插入视频| 亚洲av在线观看美女高潮| 超色免费av| 狂野欧美激情性bbbbbb| 亚洲av日韩精品久久久久久密 | 最近手机中文字幕大全| 色94色欧美一区二区| 9色porny在线观看| 午夜福利乱码中文字幕| 国产亚洲欧美精品永久| 亚洲欧美色中文字幕在线| 性少妇av在线| 999久久久国产精品视频| 免费观看a级毛片全部| 下体分泌物呈黄色| 99精国产麻豆久久婷婷| 中文字幕高清在线视频| 一本一本久久a久久精品综合妖精| 色婷婷av一区二区三区视频| 久久久久久免费高清国产稀缺| 色精品久久人妻99蜜桃| 在线观看免费高清a一片| www.av在线官网国产| 中国国产av一级| 久久狼人影院| 国产麻豆69| 老司机靠b影院| 视频在线观看一区二区三区| 最近手机中文字幕大全| 夫妻性生交免费视频一级片| 亚洲精品国产色婷婷电影| 国产精品国产av在线观看| 久久久精品94久久精品| 巨乳人妻的诱惑在线观看| 国产成人免费观看mmmm| 亚洲国产精品国产精品| 国产极品粉嫩免费观看在线| 女人被躁到高潮嗷嗷叫费观| 汤姆久久久久久久影院中文字幕| a 毛片基地| 男的添女的下面高潮视频| a级毛片黄视频| 久久99一区二区三区| 日本欧美国产在线视频| 中文字幕人妻丝袜制服| 国语对白做爰xxxⅹ性视频网站| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 亚洲国产日韩一区二区| 国产亚洲午夜精品一区二区久久| 亚洲国产看品久久| 中文精品一卡2卡3卡4更新| avwww免费| 熟女少妇亚洲综合色aaa.| 午夜福利乱码中文字幕| 啦啦啦在线观看免费高清www| 少妇精品久久久久久久| av网站在线播放免费| videos熟女内射| 日本wwww免费看| 天天躁夜夜躁狠狠躁躁| 日本午夜av视频| 国产一级毛片在线| 日本av免费视频播放| 国产精品一二三区在线看| 色精品久久人妻99蜜桃| 精品福利观看| 99国产精品一区二区蜜桃av | 亚洲精品av麻豆狂野| 日韩 欧美 亚洲 中文字幕| 色综合欧美亚洲国产小说| 亚洲第一av免费看| 一级片'在线观看视频| 久久狼人影院| 欧美国产精品一级二级三级| 在线观看免费视频网站a站| 亚洲精品国产一区二区精华液| 精品一品国产午夜福利视频| xxx大片免费视频| 男女无遮挡免费网站观看| 久久久精品94久久精品| 免费看不卡的av| av天堂久久9| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 国产成人一区二区在线| 欧美久久黑人一区二区|