• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the BER performance of turbo codes with short frame size based on union bound①

    2015-04-17 06:38:30ShaoXiaLiPingZhangWeidang
    High Technology Letters 2015年3期

    Shao Xia (邵 霞), Li Ping, Zhang Weidang

    (*Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, P.R.China)(**Department of Information Management, Shengda Trade Economics & Management College of Zhengzhou, 451191, P.R.China)(***School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P.R.China)

    ?

    Improving the BER performance of turbo codes with short frame size based on union bound①

    Shao Xia (邵 霞)*, Li Ping**, Zhang Weidang②

    (*Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, P.R.China)(**Department of Information Management, Shengda Trade Economics & Management College of Zhengzhou, 451191, P.R.China)(***School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P.R.China)

    In order to improve the bit error rate (BER) performance of turbo codes with short frame size at a wide range of signal to noise ratio (SNR), a new method by optimizing the bit energy is proposed. At first, a formula derived from the Union Bound is introduced. It describes the relations between the bit error rate distribution and the minimum weight distribution. And then, by mathematically optimizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degradations of BER at low and moderate SNR regions. Case studies indicate that the improvements of BER for turbo codes with short frame size are significant at a wide range of SNR.

    channel coding, bit error rate (BER), energy allocation, turbo code

    0 Introduction

    How to improve the bit error rate (BER) performance of turbo codes[1]is the most important task. There are many methods toward this destination. One of them is to reallocate the energy of the bit in the bit stream of the codeword. These schemes have previously been proposed in Refs[2-8]. In Ref.[2], the author assigned less and less power to the parity bits as the noise level increased to avoid the traditional negative “coding gain” associated with all error correcting codes at high noise levels. Ref.[3] showed that the fraction of the total power that should be allocated to a systematic bit was usually lower than that of the parity bit. But the amount of improvement depends on the choice of component codes, interleaver length and signal to noise ratio. Ref.[4] also pointed out that if different energies were assigned to two outputs of a turbo encoder, the information bit and parity bit, then the performance would be changed according to the ratio of the information bit energy to the parity bit energy. The optimum point of the ratio may not be 1. As the rate of the turbo code is changed, the optimum point would also be changed. In Ref.[5], it concluded that for turbo codes with short frames operating in very low signal-to-noise environments, more energy should be assigned to the systematic bits so that the performance was improved. At higher signal-to-noise ratios, allocating less energy to the systematic bits improved the performance. Ref.[6] studied the effect of asymmetric energy allocations to the output bits of turbo codes. It showed that the error floor was improved as more energy was given to the non-systematic bits. However, due to the degradation in the convergence threshold of the code, tradeoff between the error floor and the convergence threshold appeared. Ref.[7] studied theoretically and empirically channels coding for nonuniform i.i.d. sequences using turbo codes with unequal energy allocation. It was shown that both systematic codes and non-systematic codes with unequal energy allocation were improved on equal energy allocation schemes. Ref.[8] introduced a method of reducing the error floor in parallel concatenated codes. It also pointed out that simple approaches based on modifying just the energy of the systematic and coded bits seemed very attractive. From the references listed above we can see that nearly all of them allocate the energies between the systematic bits and parity bits, but the merits of different strategies are sometimes not very clear, with different authors arriving to contradicting conclusions[6]. This is because that there is no theoretical base for the energy allocation between the information bits and parity check bits. The fraction of the total energy depends on the choice of the component codes, interleaver length, puncturing pattern and the signal to noise ratio.

    In Ref.[9], the authors allocated the bits’ energies among the codewords that have different weights instead of between the systematic and parity bits. In this scheme more energy is assigned to the codewords that have minimum (and second minimum) weight and the simulation results showed that the “error floor” of turbo codes was improved with no practical degradation in the waterfall region.

    In this work, a new method is presented to decrease the bit error rate (BER) by optimizing the bit energy. It is based on a formula, which describes the relationships between the bit error rate distribution and the minimum weight distribution, derived from the union bound. Through mathematical optimization, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR. Then by adding an adjustable parameter, the BER performance at low and moderate SNR regions is also improved.

    The paper is organized as follows. A formula to estimate the BER distributions based on the union bound is introduced in Section 1. In Section 2, we firstly derive a formula to optimize the bit energy based on the BER distribution. Then we introduce an adjustable parameter to modify the energy distribution so that it can be used at low and moderate SNR regions. In Section 3, more detailed optimizing procedures are provided and various types of turbo codes are simulated to show the efficiency of the scheme. Section 5 is the conclusion.

    1 Union bound and the formulas of the BER distribution

    Let c=(c0, c1,…,cN-1) be a binary codeword, where N is the code length, cj=0 or 1 is called the j-th bit of the codeword. If a codeword is with ci=1, it is said that the i-th bit connects to this codeword, or this codeword connects to the i-th bit.

    For an Additive White Gaussian Noise (AWGN) channel, the BER is bounded by the union bound as[10]

    (1)

    where wiand diare the information weight and total Hamming weight, respectively, of the i-th codeword. k is the input length. Rcis the code rate. Ebis the bit energy of the codeword and N0is the noise power spectrum density.

    From Eq.(1), a formula to estimate the bit error rate for every position at higher SNR can be derived as[11,12]

    (2)

    where dmin(j) is the lowest weight of the codeword(s) that connects to the j-th bit and nmin(j) is its multiplicity, where j=0,1,…,N-1. We call the sequence (dmin(j), nmin(j), j=0,1,…,N-1) the distribution of minimum weight codewords.

    Eq.(2) shows that, generally, bit error rates pb(j) are not identical for different j. For example, if a bit in the codeword sequence connects to a lower weight codeword, it will have a weaker error protection so the bit error rate for this bit will be higher. The average bit error rate of the code is dominated by such bits that connect to the low weight codewords. Therefore, if the bits’ energy is changed so that more energy is allocated to the bits that connect to low weight codewords and less energy to the bits that connect to high weight codewords, the average bit error rate will be decreased.

    2 Optimizing the bit energy with an adjustable parameter

    In Eq.(2), constant bit energy Ebby Eb(j) is replaced that is the optimized bit energy for the j-th bit and pb(j) is replaced by pob(j) that is the new bit error rate for bit j relating to Eb(j), then Eq.(2) becomes

    (3)

    (4)

    Now the minimum value of average BER expressed by Eq.(4) will be found with the binding condition of energy conservation:

    (5)

    Using the Lagrange multiplier method, let λ be the multiplier, the formula of calculating the optimized bit energy Eb(j) can be derived and the result is

    (6)

    where

    (7)

    So Eb(j) expressed by Eq.(6) is the optimized energy for bit j. It is determined by the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Apparently, if dmin(j), as well as nmin(j), are constant, then Eb(j)=Eb. In this case, there is no need to modify the bit energy, such as the equal-weight codes that have perfect construction. But there are many codes, especially such as turbo codes, that don’t have such perfect construction. Their dmin(j)s usually expend to a wide range. In this case, there are much more spaces for the bit energy to be optimized and noticeable improvements can be achieved.

    To calculate optimized bit energy Eb(j), the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1) should be found. If the code length is not long, for example, it is no longer than thousands bits, the methods presented in Refs[13-15] and [16] are very efficient to calculate the minimum distance of turbo codes. Through modifications, they can be used to find the parameters of dmin(j) and nmin(j).

    (8)

    where ρ is the adjustable parameter.

    Without loss of generality, assuming Eb=1, Eq.(9) can be got:

    (9)

    (10)

    3 Optimization procedures and simulation results

    The followings give the optimization procedures and simulation results. There are four turbo codes used in this section. The generator matrix for the four codes is the same, which is g=(1, 10001/10011). But they have different code lengths, different interleavers and different puncturing patterns. Code 1 is a turbo code with a 8×8 block interleaver of size 64 and without puncturing. So the code rate is 1/3. Another turbo code, noted as code 2, is with a 32×32 block interleaver. The puncturing pattern for this code is p=(10; 01). So the code rate is 1/2. There are other two turbo codes. Both of them use random interleavers, but the sizes are 64 and 1024 separately. The turbo code of size 64, noted as code 3, is not punctured. The turbo code of size 1024, noted as code 4, is punctured with puncturing pattern p = (10; 01). For all the turbo codes, the decoding algorithm is BCJR, the number of iteration is 5 and the two encoder components are both terminated. Binary antipodal signalling is used with an AWGN channel model. The SNR is measured in terms of energy per information bit, Eb, over the single-sided noise power spectral density, N0.

    Based on code 3, which has the code length of N=(64+4)×3=204, the practical procedures of optimization will be given and used to show the efficiency of the proposed scheme.

    Firstly, the minimum weight distribution (dmin(j), nmin(j) is searched, j=0,1,2,…,N-1) of the code by the method presented in Ref.[10] is searched. Fig.1 shows the distribution of the minimum weight (dmin(j), nmin(j), j=0,1,2,…,N-1) of code 3.

    Fig.1 The minimum weight distribution (dmin(j), nmin(j), j=0, 1, 2, …,N-1) of code 3 calculated by the method presented in Ref.[10]

    Secondly, the optimized bit energy distribution can be got by Eq.(6) with the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Fig.2 shows the bit energy distributions before and after energy optimization. Before energy optimization, the bit energy is the same for all bits in the codewords. The bit energy is assumed Eb=1. So curve 1 is a straight line with amplitude 1. After energy optimization, the distribution of bit energy is not even. Compared with Fig.1, apparently, more energy is allocated to the bits that connect to the lowest weight codeword and less energy is allocated to the bits connecting to high weight codewords.

    Fig.2 The bit energy distributions before and after energy optimization for code 3

    Fig.3 The BER distributions before and after energy optimization for code 3 at SNR=4dB

    Table 1 shows the values of BER at different SNRs without and with bit energy optimization separately. By examining Table 1 we find that at high SNR region, such as 4dB and 5dB, the average BERs are improved obviously. But at low and moderate SNR regions, there even some degradations appeared.

    Table 1 The average BER without and with energy optimization for code 3 at different SNRs

    Finally, by modifying the optimized bit energy with adjustable ρ expressed by Eq.(8), the lowest BER at a wide range of SNR is got.

    Table 2 shows the valid ranges of ρ constrained by Eq.(10) at some specific SNRs. The best values of ρ that produce the lowest BER at specific SNRs and the corresponding BERs are also displayed in the table. The best values of ρ are obtained by grid search within the valid ranges, starting from step size of 2, down to the finest step size of 0.25. From the table we can see that after modification with ρ, the BER performance is improved not only at high SNR region, but also at low and moderate SNR regions.

    Table 2 The valid ranges of ρ at different SNRs, the best values of ρ and the corresponding values of BER for code 3

    The BER improvements in the two figures are obvious. From the figures it can be seen that after energy optimizing, the BER curves corresponding to Eq.(6) are lower than the curves before energy optimizing at

    Fig.4 The simulation BER curves before and after optimizing for code 1 and code 2

    Fig.5 The simulation BER curves before and after optimizing for code 3 and code 4

    high SNR regions. For example, the improvements are more than 1 order of magnitude at 4.5dB for turbo code 3 and at 2.5dB for turbo code 4. In the two figures that, with modification of Eq.(8), the BER performance at low and moderate SNR regions is improved and all the curves corresponding to Eq.(8) have the best performance.

    So, by optimizing the bit energy distributions to the codeword sequences, the BER performance is improved noticeably. In fact, this scheme changes the weight of the codewords. For example, the minimum weight for code 3 is 7 before energy optimizing. After optimizing, this codeword’s weight is changed to 12 at 5dB. For code 2, the minimum weight is changed from 7 to 10 after optimizing at 4dB.

    4 Conclusion

    A new method to optimize the bit energy is presented in this work. By changing the bit energy allocation in an optimized way, the deviation of the BER distribution is decreased; the minimum weight of the codewords is increased; and the average BER is minimized over a wide range of SNR. However, this scheme is based on the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Finding the minimum weight distribution consume time very much especially when the code size is not short. Therefore the proposed scheme is suitable for turbo coded with short size. How to optimize the bit energy for the code with large size is further work.

    [ 1] Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo codes. In: Proceedings of the IEEE International Conference Communications, Geneva, Switzerland, 1993. 1064-1070

    [ 2] Hokfelt J, Maseng T. Optimizing the energy of different bitstreams of turbo codes. In: Proceedings of the Turbo Coding Seminar, Lund, Sweden, 1998. 59-63

    [ 3] Duman T M, Salehi M. On optimal power allocation for turbo codes. ISIT 1997, Ulm, Germany, June-July: 104

    [ 4] Choi Y, Lee P. Analysis of turbo codes with asymmetric modulation, Electron. Lett., 1999, 35, (1): 35-36

    [ 5] Salah M M, Raines R A, Temple M A, et al. Energy allocation strategies for Turbo codes with short frames. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC 2000), Las Vegas, USA, 2000. 27-29

    [ 6] Cabarcas F, Garcia-Frias J. Asymmetric energy allocation strategies to improve Turbo codes performance. In: Proceedings of the Vehicular Technology Conference (VTC 2001 Fall). 2001, (3):1839-1842

    [ 7] Shamir G I, Souza R D, Garcia-Frias J. Unequal energy allocation with Turbo Codes for nonuniform sources. In: Proceedings of the Turbo-Coding-2006, Munich, Germany, 2006. 1-6

    [ 8] Garcia-Frias J, Cabarcas F. Reducing the error floor in turbo codes by using non-binary constituent encoders. In: Proceedings of the Vehicular Technology Conference, Boston, USA, 2000. 1230-1237

    [ 9] Zhang W, Wang X. Optimal energy allocations for turbo codes based on distributions of low weight codewords, Electronics Letters, 2004,19(40): 1205-1206

    [10] S. Benedetto, G. Montorsi, Unveiling turbo codes: Some results on parallel concatenated coding schemes, IEEE Trans. Inform. Theory, 1996,42(2): 1996. 409-428

    [11] Shao X, Zhang W D. Estimate the BER Distributions of Turbo Codes, Wireless and Microwave Technologies, 2012, 2:53-58

    [12] Zhang W D, Shao X, Torki M et al. Unequal error protection of JPEG2000 images using short block length turbo codes, Communications Letters, IEEE, 2011,15(6): 659-661

    [13] Roberto G, Paola P, Sergio B. Computing the free distance of turbo codes and serially concatenated codes with interleavers: algorithms and applications, IEEE Journal on Selected Areas in Commun, 2001,19(5): 800-812

    [14] Sandro S, Young-Jik K B, Harald E. A fast algorithm to estimate the distance spectrum of turbo codes. In: Proceedings of the 10th International Conference on Telecommunications (ICT 2003), Papeete, FR Polynesia, 2003. 90-95

    [15] Crozier S, Guinand P, Hunt A. Estimating the minimum distance of turbo codes using double and triple impulse methods, IEEE Communications Letters, 2005,(7): 631-633

    [16] Ould-Cheikh-Mouhamedou Y. Crozier S, Kabal P. Comparison of Distance Measurement Methods for Turbo codes. In: Proceedings of the 9th Canadian Workshop on Information Theory, Montreal, Canada, 2005. 36-39

    Shao Xia, born in 1970. She received her M.S. degree and B. S. degree from Zhengzhou University in 2007 and 1992 separately. Her research focuses on key techniques for telecommunication theory and engineering.

    10.3772/j.issn.1006-6748.2015.03.010

    ①Supported by the National High Technology Research and Development Programme of China (No. 2014AA01A705) and the National Natural Science Foundation of China (U1204607).

    ②To whom correspondence should be addressed. E-mail: zhangweidang@zzu.edu.cn Received on June 23, 2014***

    亚洲午夜理论影院| 国产在视频线精品| 国产黄频视频在线观看| 欧美老熟妇乱子伦牲交| 国产高清激情床上av| 久久av网站| 久久久水蜜桃国产精品网| 露出奶头的视频| 高清黄色对白视频在线免费看| 视频在线观看一区二区三区| 亚洲人成电影免费在线| av又黄又爽大尺度在线免费看| 国产精品一区二区在线不卡| 精品第一国产精品| 男女高潮啪啪啪动态图| 欧美精品av麻豆av| 丰满人妻熟妇乱又伦精品不卡| 男人操女人黄网站| cao死你这个sao货| 国产成人精品在线电影| 深夜精品福利| 国产野战对白在线观看| 极品少妇高潮喷水抽搐| 亚洲全国av大片| 另类精品久久| 9热在线视频观看99| 成人永久免费在线观看视频 | 在线观看免费视频网站a站| 国产精品麻豆人妻色哟哟久久| av在线播放免费不卡| 一二三四社区在线视频社区8| 亚洲性夜色夜夜综合| 日本精品一区二区三区蜜桃| 精品亚洲成国产av| 好男人电影高清在线观看| 久久久国产欧美日韩av| 国产精品久久久av美女十八| 亚洲第一av免费看| 国产欧美日韩精品亚洲av| 久久人妻熟女aⅴ| 成人手机av| 国产精品亚洲av一区麻豆| 成人18禁在线播放| 久久国产精品人妻蜜桃| 国产日韩一区二区三区精品不卡| 精品一区二区三区av网在线观看 | 久久性视频一级片| 黄频高清免费视频| 国产在线免费精品| 国产欧美日韩一区二区三| 日韩欧美一区视频在线观看| www.自偷自拍.com| 韩国精品一区二区三区| 老汉色∧v一级毛片| 欧美日韩黄片免| 一边摸一边做爽爽视频免费| 亚洲一区中文字幕在线| 侵犯人妻中文字幕一二三四区| 精品一区二区三区视频在线观看免费 | 男女午夜视频在线观看| 99精国产麻豆久久婷婷| 国产av精品麻豆| 视频区图区小说| 亚洲情色 制服丝袜| 国产精品一区二区精品视频观看| 国产亚洲精品第一综合不卡| 十八禁网站免费在线| 欧美在线一区亚洲| 香蕉国产在线看| 日韩一卡2卡3卡4卡2021年| 亚洲情色 制服丝袜| 黑人巨大精品欧美一区二区mp4| 无遮挡黄片免费观看| 大香蕉久久网| 最新的欧美精品一区二区| 中文字幕色久视频| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放| 欧美黄色片欧美黄色片| 国产成人精品久久二区二区91| 99香蕉大伊视频| 国产精品欧美亚洲77777| 国产精品 欧美亚洲| 日韩人妻精品一区2区三区| 12—13女人毛片做爰片一| 一本久久精品| 757午夜福利合集在线观看| 婷婷成人精品国产| 日韩欧美一区视频在线观看| 露出奶头的视频| 午夜福利在线观看吧| 国产精品秋霞免费鲁丝片| 91大片在线观看| 成年版毛片免费区| 纯流量卡能插随身wifi吗| 欧美黑人精品巨大| 丝袜美腿诱惑在线| 一区在线观看完整版| 首页视频小说图片口味搜索| 丰满迷人的少妇在线观看| 国产成人免费无遮挡视频| 岛国在线观看网站| 国产亚洲一区二区精品| 国产无遮挡羞羞视频在线观看| 一级黄色大片毛片| 免费少妇av软件| 久久久久久久精品吃奶| 久久青草综合色| 午夜精品国产一区二区电影| 51午夜福利影视在线观看| 大片电影免费在线观看免费| 欧美亚洲日本最大视频资源| 久久精品人人爽人人爽视色| 夫妻午夜视频| 午夜精品国产一区二区电影| 精品福利永久在线观看| 久久ye,这里只有精品| 不卡一级毛片| 国内毛片毛片毛片毛片毛片| 国产aⅴ精品一区二区三区波| 久热爱精品视频在线9| 久久国产精品男人的天堂亚洲| 久久久久精品人妻al黑| a级片在线免费高清观看视频| 深夜精品福利| 午夜福利免费观看在线| 又大又爽又粗| 国产成人免费观看mmmm| 99精品在免费线老司机午夜| 亚洲色图av天堂| 在线观看人妻少妇| 久久国产精品大桥未久av| 久久九九热精品免费| 国产精品 欧美亚洲| 成年人午夜在线观看视频| 久久久久久人人人人人| 国产不卡一卡二| 欧美黄色片欧美黄色片| 色94色欧美一区二区| 99精品欧美一区二区三区四区| 久久毛片免费看一区二区三区| 久久久国产精品麻豆| 欧美在线一区亚洲| 久久久精品94久久精品| 国产精品亚洲一级av第二区| 国产不卡一卡二| av超薄肉色丝袜交足视频| 国产精品一区二区在线不卡| 国产男靠女视频免费网站| 亚洲av第一区精品v没综合| 亚洲欧洲日产国产| 日本黄色视频三级网站网址 | 黄频高清免费视频| www.熟女人妻精品国产| 老熟女久久久| 亚洲av日韩在线播放| 日韩中文字幕视频在线看片| 真人做人爱边吃奶动态| 99久久99久久久精品蜜桃| 国产精品98久久久久久宅男小说| 999精品在线视频| 国产av一区二区精品久久| 日韩欧美免费精品| 日本一区二区免费在线视频| 国产男女内射视频| 欧美性长视频在线观看| 人人妻,人人澡人人爽秒播| 女人久久www免费人成看片| 成人黄色视频免费在线看| 人人澡人人妻人| 黄色视频在线播放观看不卡| 老熟女久久久| 精品乱码久久久久久99久播| 亚洲七黄色美女视频| 无人区码免费观看不卡 | 日本黄色视频三级网站网址 | 这个男人来自地球电影免费观看| 午夜91福利影院| av欧美777| 久9热在线精品视频| 91九色精品人成在线观看| 欧美黑人精品巨大| 操美女的视频在线观看| 在线观看免费视频日本深夜| 免费高清在线观看日韩| 高清在线国产一区| 老熟女久久久| 欧美乱妇无乱码| 亚洲av片天天在线观看| 久久中文看片网| 人人妻人人澡人人看| 99国产精品一区二区三区| 国产伦理片在线播放av一区| 视频区图区小说| 美女福利国产在线| 国产老妇伦熟女老妇高清| 亚洲专区国产一区二区| 国产精品久久久久久精品古装| 成年动漫av网址| 纵有疾风起免费观看全集完整版| 热99re8久久精品国产| 99精品在免费线老司机午夜| 悠悠久久av| 岛国毛片在线播放| 精品国产一区二区久久| 亚洲成人手机| av网站免费在线观看视频| 国产精品 国内视频| 成人三级做爰电影| 99国产精品99久久久久| 在线观看www视频免费| 999久久久国产精品视频| 国产精品免费一区二区三区在线 | 国产精品亚洲一级av第二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色片欧美黄色片| 久久天躁狠狠躁夜夜2o2o| 免费不卡黄色视频| 黑人欧美特级aaaaaa片| 免费在线观看视频国产中文字幕亚洲| 日本黄色视频三级网站网址 | 国产精品.久久久| 美女主播在线视频| 国产高清videossex| 色婷婷久久久亚洲欧美| 精品亚洲成a人片在线观看| 女人久久www免费人成看片| 别揉我奶头~嗯~啊~动态视频| 久久精品国产综合久久久| 久久狼人影院| 最新的欧美精品一区二区| 一级毛片电影观看| 波多野结衣av一区二区av| 狠狠婷婷综合久久久久久88av| 美女主播在线视频| 国产成人欧美在线观看 | 国产男女内射视频| 美女国产高潮福利片在线看| 久久精品aⅴ一区二区三区四区| 母亲3免费完整高清在线观看| 亚洲国产欧美在线一区| 欧美激情久久久久久爽电影 | 国产成人精品无人区| 亚洲欧洲日产国产| 在线观看免费视频日本深夜| 久久毛片免费看一区二区三区| 最近最新中文字幕大全免费视频| 日韩中文字幕视频在线看片| 香蕉久久夜色| 丝瓜视频免费看黄片| 两个人免费观看高清视频| 亚洲九九香蕉| 桃花免费在线播放| 又黄又粗又硬又大视频| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线观看99| 精品久久久久久电影网| 亚洲成人手机| 丁香六月天网| 99国产综合亚洲精品| 91麻豆av在线| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 亚洲国产欧美一区二区综合| 亚洲一卡2卡3卡4卡5卡精品中文| 免费久久久久久久精品成人欧美视频| 欧美日韩av久久| 日韩精品免费视频一区二区三区| 亚洲五月婷婷丁香| 国产av国产精品国产| 激情视频va一区二区三区| 男女无遮挡免费网站观看| 精品免费久久久久久久清纯 | 日韩一卡2卡3卡4卡2021年| 五月天丁香电影| 另类亚洲欧美激情| 男人操女人黄网站| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机亚洲免费影院| 动漫黄色视频在线观看| 新久久久久国产一级毛片| 亚洲精品美女久久av网站| 如日韩欧美国产精品一区二区三区| av一本久久久久| 美国免费a级毛片| 亚洲熟女毛片儿| avwww免费| 成在线人永久免费视频| 男人操女人黄网站| 国产aⅴ精品一区二区三区波| www日本在线高清视频| 国产深夜福利视频在线观看| 宅男免费午夜| 欧美日韩亚洲综合一区二区三区_| 别揉我奶头~嗯~啊~动态视频| 免费av中文字幕在线| 午夜日韩欧美国产| 亚洲欧美激情在线| 久久久国产欧美日韩av| 色94色欧美一区二区| 久久午夜亚洲精品久久| 高清av免费在线| 无限看片的www在线观看| 国产深夜福利视频在线观看| 99国产精品免费福利视频| 夜夜爽天天搞| 午夜激情久久久久久久| 91九色精品人成在线观看| 嫩草影视91久久| 捣出白浆h1v1| 国产色视频综合| 亚洲精品国产色婷婷电影| 99国产精品一区二区三区| 91成人精品电影| 岛国毛片在线播放| 最黄视频免费看| 最新美女视频免费是黄的| 精品少妇一区二区三区视频日本电影| 国产精品麻豆人妻色哟哟久久| 性高湖久久久久久久久免费观看| 欧美人与性动交α欧美精品济南到| 丰满人妻熟妇乱又伦精品不卡| 99精品欧美一区二区三区四区| h视频一区二区三区| 男女之事视频高清在线观看| 午夜老司机福利片| 日日摸夜夜添夜夜添小说| 999久久久国产精品视频| 一二三四社区在线视频社区8| 成人黄色视频免费在线看| 久久国产精品人妻蜜桃| 黑人巨大精品欧美一区二区mp4| 亚洲国产看品久久| 亚洲欧美一区二区三区黑人| 欧美成人免费av一区二区三区 | 亚洲天堂av无毛| av一本久久久久| 麻豆成人av在线观看| 一区二区日韩欧美中文字幕| 满18在线观看网站| 桃花免费在线播放| 午夜日韩欧美国产| 午夜免费成人在线视频| 精品久久久久久久毛片微露脸| 国产成人av教育| 色综合婷婷激情| 天天躁夜夜躁狠狠躁躁| 美女高潮到喷水免费观看| 在线观看免费午夜福利视频| 久久人人爽av亚洲精品天堂| 国产视频一区二区在线看| av视频免费观看在线观看| 99riav亚洲国产免费| 精品一区二区三区av网在线观看 | 一区二区日韩欧美中文字幕| 欧美在线一区亚洲| www.精华液| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻在线不人妻| 亚洲精品自拍成人| 成人18禁高潮啪啪吃奶动态图| 亚洲五月色婷婷综合| 亚洲精品一二三| 大香蕉久久成人网| 人人妻人人添人人爽欧美一区卜| 热re99久久精品国产66热6| 宅男免费午夜| 男人操女人黄网站| 啦啦啦视频在线资源免费观看| 亚洲专区中文字幕在线| 女人久久www免费人成看片| 日本wwww免费看| av电影中文网址| 一个人免费看片子| 满18在线观看网站| 在线播放国产精品三级| 亚洲中文字幕日韩| 国产一区二区三区综合在线观看| 欧美日韩成人在线一区二区| 国产男女内射视频| 亚洲精品成人av观看孕妇| 久久狼人影院| 国产欧美亚洲国产| 国产精品成人在线| 久久青草综合色| 一边摸一边做爽爽视频免费| 乱人伦中国视频| 丝袜美腿诱惑在线| 青草久久国产| 国产精品 欧美亚洲| 在线观看www视频免费| 日本黄色日本黄色录像| 日韩一卡2卡3卡4卡2021年| 757午夜福利合集在线观看| 他把我摸到了高潮在线观看 | 欧美人与性动交α欧美软件| 国产av一区二区精品久久| 久9热在线精品视频| av电影中文网址| 国产av一区二区精品久久| 如日韩欧美国产精品一区二区三区| 国产免费视频播放在线视频| 免费黄频网站在线观看国产| 麻豆av在线久日| 亚洲精品av麻豆狂野| 国产成人系列免费观看| 久久天躁狠狠躁夜夜2o2o| 精品国产乱子伦一区二区三区| 国产男靠女视频免费网站| 国产精品久久久久久人妻精品电影 | 亚洲av成人一区二区三| av在线播放免费不卡| 如日韩欧美国产精品一区二区三区| 在线观看舔阴道视频| 国产主播在线观看一区二区| 欧美精品一区二区免费开放| 国产1区2区3区精品| videos熟女内射| 亚洲精华国产精华精| 怎么达到女性高潮| 天天躁狠狠躁夜夜躁狠狠躁| 视频在线观看一区二区三区| 国产免费视频播放在线视频| 国产又爽黄色视频| bbb黄色大片| 国产亚洲av高清不卡| 满18在线观看网站| 午夜91福利影院| 亚洲精品国产精品久久久不卡| 在线播放国产精品三级| 免费少妇av软件| 色婷婷av一区二区三区视频| 成人av一区二区三区在线看| 男女边摸边吃奶| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 成人影院久久| av欧美777| 日韩中文字幕视频在线看片| 亚洲av成人不卡在线观看播放网| 波多野结衣一区麻豆| 亚洲专区国产一区二区| 国产有黄有色有爽视频| xxxhd国产人妻xxx| avwww免费| 日韩大片免费观看网站| 国产欧美日韩一区二区三区在线| 老鸭窝网址在线观看| 亚洲国产欧美网| 91精品三级在线观看| www.精华液| 丝袜喷水一区| 人人妻人人澡人人看| 另类精品久久| 麻豆av在线久日| 免费在线观看日本一区| 午夜福利视频在线观看免费| 亚洲黑人精品在线| 精品高清国产在线一区| 一区二区日韩欧美中文字幕| 久久香蕉激情| 黄色视频在线播放观看不卡| 国产免费视频播放在线视频| tube8黄色片| 国产av又大| 黑人操中国人逼视频| 两个人免费观看高清视频| 国产成人av教育| 九色亚洲精品在线播放| 日韩三级视频一区二区三区| 熟女少妇亚洲综合色aaa.| 狠狠精品人妻久久久久久综合| 亚洲七黄色美女视频| 国精品久久久久久国模美| 国产xxxxx性猛交| 99热国产这里只有精品6| 一边摸一边抽搐一进一出视频| 亚洲成av片中文字幕在线观看| 一本色道久久久久久精品综合| 老司机靠b影院| 人成视频在线观看免费观看| 精品少妇久久久久久888优播| 国产精品麻豆人妻色哟哟久久| 男女边摸边吃奶| 女人爽到高潮嗷嗷叫在线视频| 午夜福利,免费看| 成人国产av品久久久| kizo精华| 亚洲成a人片在线一区二区| 一区二区三区激情视频| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| 亚洲精品久久成人aⅴ小说| 国产麻豆69| 精品国产亚洲在线| 中文字幕人妻丝袜制服| 怎么达到女性高潮| 国产av一区二区精品久久| 成年女人毛片免费观看观看9 | 免费在线观看日本一区| 精品一品国产午夜福利视频| 国产欧美日韩综合在线一区二区| 女同久久另类99精品国产91| 中文字幕人妻丝袜制服| 啦啦啦在线免费观看视频4| 午夜福利乱码中文字幕| 日本wwww免费看| 久久久精品区二区三区| av网站免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 一二三四社区在线视频社区8| www.精华液| 久久久国产欧美日韩av| 亚洲人成电影免费在线| 日韩一区二区三区影片| 国产精品久久久久久人妻精品电影 | 一二三四在线观看免费中文在| 成在线人永久免费视频| 亚洲色图综合在线观看| 国产欧美日韩一区二区三| 老司机午夜福利在线观看视频 | 两个人免费观看高清视频| 十分钟在线观看高清视频www| 狠狠精品人妻久久久久久综合| 在线观看免费日韩欧美大片| www日本在线高清视频| 日韩视频一区二区在线观看| 免费在线观看日本一区| 亚洲视频免费观看视频| 大片电影免费在线观看免费| 免费看a级黄色片| 99香蕉大伊视频| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| 精品福利观看| 亚洲av国产av综合av卡| 成人特级黄色片久久久久久久 | 一级毛片精品| 色94色欧美一区二区| 精品久久久精品久久久| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 欧美精品一区二区大全| 精品少妇一区二区三区视频日本电影| 嫁个100分男人电影在线观看| 久久久久久免费高清国产稀缺| 麻豆国产av国片精品| 亚洲专区中文字幕在线| 精品久久久久久电影网| 丝袜喷水一区| 亚洲国产中文字幕在线视频| 久久精品国产亚洲av香蕉五月 | 精品第一国产精品| 亚洲av美国av| 怎么达到女性高潮| 国产三级黄色录像| 一区二区三区国产精品乱码| 90打野战视频偷拍视频| 天天躁日日躁夜夜躁夜夜| 99国产综合亚洲精品| 超碰成人久久| 啪啪无遮挡十八禁网站| 亚洲精品成人av观看孕妇| 青草久久国产| 亚洲三区欧美一区| 这个男人来自地球电影免费观看| av免费在线观看网站| 一级,二级,三级黄色视频| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| 激情在线观看视频在线高清 | 久久人妻福利社区极品人妻图片| 午夜91福利影院| 极品教师在线免费播放| netflix在线观看网站| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 色94色欧美一区二区| 亚洲av成人一区二区三| 亚洲性夜色夜夜综合| 午夜91福利影院| 香蕉丝袜av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产在线一区二区三区精| 国产成人一区二区三区免费视频网站| 日韩制服丝袜自拍偷拍| 精品国产一区二区久久| 99久久人妻综合| 日韩一卡2卡3卡4卡2021年| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产av新网站| 国产深夜福利视频在线观看| 性少妇av在线| tube8黄色片| 欧美另类亚洲清纯唯美| 考比视频在线观看| 91大片在线观看| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| 一本一本久久a久久精品综合妖精| 久久人人爽av亚洲精品天堂| 99精品欧美一区二区三区四区| 黄片播放在线免费| 亚洲熟妇熟女久久| 国产1区2区3区精品| 色94色欧美一区二区| 黑人操中国人逼视频| 国产av精品麻豆| 一本久久精品| 母亲3免费完整高清在线观看| 一区二区三区激情视频| 99久久国产精品久久久| 在线观看一区二区三区激情| 伦理电影免费视频|