• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probabilistic data association algorithm based on ensemble Kalman filter with observation iterated update①

    2015-04-17 06:38:13HuZhentao胡振濤FuChunling
    High Technology Letters 2015年3期

    Hu Zhentao (胡振濤), Fu Chunling

    (*Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**College of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China)

    ?

    Probabilistic data association algorithm based on ensemble Kalman filter with observation iterated update①

    Hu Zhentao (胡振濤)*, Fu Chunling②

    (*Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**College of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China)

    Aiming at improving the observation uncertainty caused by limited accuracy of sensors, and the uncertainty of observation source in clutters, through the dynamic combination of ensemble Kalman filter(EnKF) and probabilistic data association(PDA), a novel probabilistic data association algorithm based on ensemble Kalman filter with observation iterated update is proposed. Firstly, combining with the advantages of data assimilation handling observation uncertainty in EnKF, an observation iterated update strategy is used to realize optimization of EnKF in structure. And the object is to further improve state estimation precision of nonlinear system. Secondly, the above algorithm is introduced to the framework of PDA, and the object is to increase reliability and stability of candidate echo acknowledgement. In addition, in order to decrease computation complexity in the combination of improved EnKF and PDA, the maximum observation iterated update mechanism is applied to the iteration of PDA. Finally, simulation results verify the feasibility and effectiveness of the proposed algorithm by a typical target tracking scene in clutters.

    nonlinear filter, observation iterated update, ensemble Kalman filter (EnKF), probabilistic data association (PDA)

    0 Introduction

    Target tracking is used by the subjects to realize the process of state modeling, estimation and tracking for the objects concerned by means of various observation and calculation methods. In the military field, the application of this technology can provide basic information for fire control, threaten evaluation, situation assessment, and decision-making of the command and control system at different levels by issuing early warning against moving targets in ground, marine, air space and tracking them, discovering and locking onto unknown targets, and estimating and analyzing of their motion state and attribute features. In the civil field, ranging from air control system, robotic system and video monitor system to workpiece positioning in various production processes, identification and estimation of moving objects exist in all over various aspects of our production and life[1]. In actual realization of target tracking, the problem of model nonlinearity caused by the transforming process from target motion modeling to observation modeling coordinate system, the physical characteristics of sensors themselves, the problem of fuzzy, deficient, uncertain, inconsistent, even contradictory and conflicting information resulting from limited accuracy of sensors, complex detecting surroundings, the maneuvering, defrauding, disturbing, invisible, disguising and sheltering phenomenon of the targets are needed to be taken into consideration. In recent years, researches about target tracking mainly focus on two aspects including optimization of nonlinear filter and improvement of data association technology[2].

    The optimal strategy dealing with nonlinear estimated problems needs integrate description of state conditional posteriori probability. However, because of demanding infinite parameters, the accurate description is hardly practically applied and just some of specific problems are given to the optimal solutions[3]. Recently, combining with analytical approximation, numerical approximation and Gaussian sum approximation, some suboptimal filters are proposed. The main feature of extended Kalman filter (EKF)[4], the typical implementation of analytical approximation, approximates to state and observation equations with local linearization technology and applies to state estimation of weak nonlinear system. But EKF will cause a large estimation error for strong nonlinear system, and the Jacobian matrixes of nonlinear function are difficult to obtain directly in some practical problems. Gird filter (GF)[5]is one of the typical implementations of numerical value approximation, the primary characteristic of which is to substitute integration by sum of the discrete variables. However, good approximation of state space is obtained only when the grid is dense enough, and the computational complexity will increase intensely with the increase of estimated system state dimension. Gaussian sum filter[6], as the typical implementation of Gaussian sum approximation, obtains the demanded approximate precision by selecting appropriate number of Gaussian mixtures. GSF is deficient because the weight of each Gaussian distribution is difficult to work out, and the number of Gaussian mixtures will probably increase exponentially as time goes on. In recent years, with the improvement of computer performance, the approach of handling nonlinear system problems with sampling method approximating to state posteriori probability distribution has caught attention of scholars in relevant research field gradually. The sampling method is divided into two categories, i.e. the deterministic sampling and the random sampling, according to different sampling pattern. Unscented Kalman filter (UKF)[7], central difference filter (CDF)[8], and cubature Kalman filter (CKF)[9]are some of the typical implementations of deterministic sampling method, which applies the approach of direct approximating to the probability density distribution of nonlinear function as a substitute to approximate to the nonlinear function by the UT transform or the numerical difference calculation, and the filtering precision and the implementing ability are superior to the above mentioned nonlinear filters. The typical implementations of random sampling method are particle filter (PF)[10]and EnKF[11]. PF realizes Bayesian sequential estimation in Monte-Carlo simulation framework with importance sampling and re-sampling, and obtains better filtering result than EKF and UKF. PF has advantages because it is appropriate to nonlinear system estimation of arbitrary noise distribution format. However, in the process of implementation, PF cannot overcome the intrinsic particles degeneracy and particles diversity scarcity after re-sampling. Moreover, the filtering precision of PF is closely related to the estimated system dimensions and the amount of particles, and those makes parameters in PF lack of universality for various applications[12]. EnKF generates initial samples set which can characterize state statistics with the sequential Monte-Carlo simulation method, and applies nonlinear function to samples in the initial sample set. EnKF gets the solution of state estimation at current time by solving the mean and covariance of converted samples set[13]. In addition, compared with PF, EnKF can weaken the adverse effects on filtering precision resulting from the uncertainty of observation caused by limited accuracy of sensors, and its estimation precision is superior to that of PF in the case that the number of samples is constant[14].

    The key of data association technology is to deal with the uncertainty of observation source which can be derived from one certain target, clutter or multiple targets. At first, the track division method is applied to data association, but it is seldom used because it requires lots of calculation and has low precision[15]. Besides, taking the statistic distance between target and echo and the echo intensity as the decision criterion, the nearest neighbor method is constructed by the nearest neighbor theory of echo acknowledgement[16]. In the implementation of the nearest neighbor algorithm, a hard decision is necessary on the basis of single scan operation. It performs pretty well when the clutter is sparse, but its performance degrades when the clutters are dense. Aiming at the theoretical defect of nearest neighbor algorithm, with the criterion of all-adjacency, PDA provides a novel idea to implement the association in probability for all the observations in the gate of one certain track[17]. Since all observation information in the gate is considered, PDA has better association performance than the nearest neighbor algorithm in dense clutters. In addition, joint probability data association (JPDA), 0-1 integer scheme approach and multi-hypothesis approach are presented for multi-target tracking[18,19].

    Based on the analysis mentioned above, combining with the character of data assimilation technology in EnKF the observation uncertainty caused by sensor’s limited accuracy can be improved, and the advantage of PDA is taken into consideration that it can deal with the uncertainty of observation source in clutters. The combination structure of EnKF and PDA is designed in this paper. Since the estimation precision of non-linear filter will directly affect the reliability and stability of the candidate echo acknowledgement and the resolution of equivalent observation in PDA, an improved EnKF (IEnKF) is constructed by adopting observation iterative update strategy, and the improved algorithm is introduced into the framework of PDA. A novel probabilistic data association algorithm based on ensemble Kalman filter with observation iterated update (IEnKF-PDA) is proposed in this paper, and the theory analysis and simulation verify the effectiveness of the proposed method.

    1 The ensemble Kalman filter with observation iterated update

    1.1 The standard ensemble Kalman filter

    The non-linear state spatial model is as follows:

    xk=f(xk-1)+uk

    (1)

    zk=h(xk)+vk

    (2)

    Xk/k-1

    (3)

    Xk-1/k-1

    (4)

    (5)

    (7)

    (8)

    (9)

    (10)

    (11)

    (12)

    (13)

    Xk/k

    (14)

    (15)

    (16)

    (17)

    (18)

    1.2 The observation iterated update strategy

    (19)

    (20)

    (21)

    (22)

    (23)

    (24)

    (25)

    (26)

    (27)

    (28)

    The capacity from repeated utilization of observation to improve the estimate performance is limited. In practical applications, the balance between filtering precision and calculation amount are taken into consideration, the number of iterations should not be too large, and the maximum iteration number L is usually set as 1 or 2[20].

    2 Probabilistic data association algorithm based on ensemble Kalman filter with observation iterated update

    The object of the proposed algorithm is to handle the observation uncertainty of target tracking process in clutters. The uncertainty not only consists of the observation uncertainty caused by sensor’s limited accuracy but also the uncertainty of observation source in the association realization of observation and target in clutters. The data assimilation technology in EnKF provides an effective approach to handle observation uncertainty caused by sensor’s limited accuracy according to Monte-Carlo simulation mechanism, and PDA provides an effective association method between observation and target based on all-adjacent principle. Meanwhile, considering the fact that the improvement of filtering precision can help lift the performance of data association, through dynamic combination of IEnKF and PDA, this section gives a novel PDA based on IEnKF.

    2.1 Probabilistic data association

    2.2 The concrete realization of IEnKF-PDA

    (29)

    here

    (30)

    P(θk,m|M,Z1:k-1)=

    (31)

    (32)

    (33)

    (34)

    where λ denotes the spatial intensity of virtual observation (the number of clutters in unit area), λVkis the number of clutters in the relevant gate. Substitute Eq.(34) into Eq.(31) as follows.

    P(θk,m|N,Z1:k-1)=

    (35)

    According to Eq.(30) and Eq.(35), Eq.(29) can be simplified further. And the mathematical expression of βk,mwith Possion distribution model of clutters is achieved as follows.

    (36)

    (37)

    (38)

    3 Simulation result and analysis

    To verify the feasibility and effectiveness of the proposed algorithm, the observations from two-coordinate radar are adopted to realize the typical scene for target tracking of uniform motion in the X-Y plane. Combining with the dynamic characteristic of target motion and the physical property of radar sensors, the system state equation and the observation equation are as follows.

    xk=Fxk-1+Γuk-1

    zk,d=[γkθk]Τ+vk

    θk=tan-1(yk/xk)

    Fig.1 and Fig.4 show the motion trajectory of target and the clutter distribution in radar monitored region when λ is set to 0.01 or 0.025. Fig.2, Fig.3, Fig.5 and Fig.6 show the comparison of root mean square error (RMSE) of state estimation of five algorithms under 50 independent experiments. According to RMSE, the ranking from the best to worst of all five algorithms are as follows: PDA-IEnKF, PDA-PF, PDA-EnKF, PDA-UKF and PDA-EKF. It is worth noting that the filtering precision of PDA-PF and PDA-EnKF is similar, and PDA-IEnKF is better than PDA-EnKF. The main reason is that IEnKF improves the filtering precision relative to EnKF by the introduction of observation iterated update strategy. Table 1 and Table 2 provide quantitatively the mean of RMSE and the average running time in the cases that λ is set as 0.01 or 0.025, respectively. The data verifies the results analyzed above as well. In addition, in the same simulation condition, regarding to the cost time of algorithms, PDA-PF takes the first place, and PDA-IEnKF comes second but with the highest precision. The above results are conducive to reasonable selection of filters as for the two performance criterion of filtering precision and calculation amount in actual engineering.

    Fig.1 Trajectory of target and clutters distribution under λ=0.01

    Fig.2 Horizontal direction under λ=0.01

    Fig.3 Vertical direction under λ=0.01

    Fig.5 Horizontal direction under λ=0.025

    Fig.6 Vertical direction under λ=0.025

    AlgorithmHorizontaldirectionVerticaldirectionCosttimePDA-EKF0.144650.136660.04526PDA-UKF0.120160.112420.07352PDA-EnKF0.087280.081750.68515PDA-PF0.081260.0765610.1781PDA-IEnKF0.051230.062330.79342

    Table 2 The comparison of the mean of RMSE and the average cost time under λ=0.025

    4 Conclusions

    The optimization of nonlinear filter and the effective acknowledgement of candidate echo are the key to realize target tracking process in clutters, and they are always the hot and difficult problems in target tracking field. This paper proposes a novel probabilistic data association algorithm based on ensemble Kalman filter with observation iterated update. In the framework of EnKF, combining with observation iterated update technology, IEnKF is constructed to make further improvement in filtering precision. And then IEnKF is adopted into the framework of PDA to improve the reliability and stability of echo acknowledgment and the calculation of conditional probability that the candidate echo comes from target. In addition, considering the structure characteristic of IEnKF, in order to decrease computation complexity further, the realization process of new algorithm is designed by the maximum observation iterated update mechanism. Results from practical simulation examples have verified that the proposed algorithm is superior to PDA and its improved algorithms. It is known that the application objects of PDA are mainly to solve the single target tracking in clutters, therefore, new algorithm is not suitable for multiple targets tracking. The realization of EnKF in multiple targets tracking will be our next step research emphasis.

    [ 1] Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69

    [ 2] Chavali P, Nehorai A. Concurrent particle filtering and data association using game theory for tracking multiple maneuvering targets. IEEE Transactions on Signal Processing, 2013,61(20): 4934-4948

    [ 3] Ronald P S Mahler. Statistical Multisource-multitarget Information Fusion. Boston, London: Artech House Publishers, 2007. 23-27

    [ 4] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters. IEEE Transactions on Signal Processing, 2012 ,60(2): 545-555

    [ 5] Laneuville D, Vignal H. Grid based target motion analysis. In: Proceedings of the IEEE Aerospace Conference, Big Sky, USA, 2007. 1-7

    [ 6] Terejanu G, Singla P, Singh T, et al. Adaptive Gaussian sum filter for nonlinear bayesian estimation. IEEE Transactions on Automatic Control, 2011, 56(9):2151-2156

    [ 7] Dunik J, Simandl M, Straka O. Unscented Kalman filter: aspects and adaptive setting of scaling parameter. IEEE Transactions on Automatic Control, 2012,57(9):2411-2416

    [ 8] Wang Y F, Sun F C, Zhang Y A, et al. Central difference particle filter applied to transfer alignment for SINS on missiles. IEEE Transactions on Aerospace and Electronic Systems, 2012,48(1): 375-387

    [ 9] Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transactions on Signal Processing, 2010, 58(10): 4977-4993

    [10] Karlsson R. Particle filter for positioning and tracking applications[Ph.D dissertation]. Linkoping: Linkoping University, 2005

    [11] Evensen G. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. Geophys, 1994, 99(5):143-162

    [12] Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 2007,95(5):899-924

    [13] Gillijns S, Mendoza O B, Chandrasekar J, et al. What is the ensemble Kalman filter and how well does it work. In: Proceedings of the American Control Conference, Minneapolis, USA, 2006. 4448-4453

    [14] Evensen G. The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Systems, 2009, 29(3): 83-104

    [15] Chummun M R, Kirubarajan T, Pattipati K R, et al. Fast data association using multidimensional assignment with clustering. IEEE Transactions on Aerospace and Electronic Systems, 2001,37(3): 898-913

    [16] Wijesoma W S, Perera L D L,Adams M D. Toward multidimensional assignment data association in robot localization and mapping. IEEE Transactions on Robotics, 2006 , 22(2): 350-365

    [17] Bar-Shalom Y, Daum F, Huang J. The probabilistic data association filter. IEEE Control Systems, 2009, 29(6):82-100

    [18] Svensson D,Ulmke M, Hammarstrand L. Multitarget sensor resolution model and joint probabilistic data association. IEEE Transactions on Aerospace and Electronic Systems, 2012 ,48(4): 3418-3434

    [19] Panta K, Ba-Ngu V, Sumeetpal S. Novel data association schemes for the probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 556-570

    [20] Chang L, Hu B, Chang G, et al. Marginalised iterated unscented Kalman filter. IET Control Theory & Applications, 2012,6(6): 847-854

    [21] Shaoshi Y, Tiejun L, Maunder R G, et al. From nominal to true a posteriori probabilities: an exact Bayesian theorem based probabilistic data association approach for iterative MIMO detection and decoding. IEEE Transactions on Communications, 2013,61(7):2782-2793

    [22] Habtemariam B K, Tharmarasa R, Kirubarajan T, et al. Multiple detection probabilistic data association filter for multistatic target tracking. In: Proceedings of the 14th International Conference on Information Fusion, Chicago, USA, 2011. 1-6

    Hu Zhentao, born in 1979. He received his Ph.D degrees in Control Science and Engineering from Northwestern Polytechnical University in 2010. He also received his B.S. and M.S. degrees from Henan University in 2003 and 2006 respectively. Now, he is an assistant professor of College of Computer and Information Engineering, Henan University. His research interests include complex system modeling and estimation, target tracking and particle filter, etc.

    10.3772/j.issn.1006-6748.2015.03.009

    ①Supported by the National Nature Science Foundation of China (No. 61300214), the Science and Technology Innovation Team Support Plan of Education Department of Henan Province (No. 13IRTSTHN021), the National Natural Science Foundation of Henan Province (No.132300410148), the Science and Technology Research Key Project of Education Department of Henan Province (No.13A413066), the Post-doctoral Science Foundation of China (No.2014M551999), the Funding Scheme of Young Key Teacher of Henan Province Universities (No.2013GGJS-026), the Postdoctoral Fund of Henan Province (No. 2013029) and the Outstanding Young Cultivation Foundation of Henan University (No.0000A40366).

    ②To whom correspondence should be addressed. E-mail: fuchunling@henu.edu.cn Received on June 15, 2014**, Li Junwei*

    a在线观看视频网站| 国产亚洲精品av在线| 又黄又爽又免费观看的视频| 国产精品影院久久| 国产精品爽爽va在线观看网站 | 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 久久婷婷人人爽人人干人人爱| 亚洲九九香蕉| 热99re8久久精品国产| 老司机福利观看| 国产精品野战在线观看| 91字幕亚洲| 亚洲,欧美精品.| 午夜亚洲福利在线播放| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 亚洲国产欧美日韩在线播放| 黄色视频不卡| 国产成人av教育| 久久青草综合色| 亚洲 欧美 日韩 在线 免费| 亚洲熟妇中文字幕五十中出| 亚洲五月婷婷丁香| 淫妇啪啪啪对白视频| 一边摸一边做爽爽视频免费| 精品乱码久久久久久99久播| 午夜精品在线福利| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 极品教师在线免费播放| e午夜精品久久久久久久| 人人妻人人看人人澡| 成人av一区二区三区在线看| 成人免费观看视频高清| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多| 亚洲专区中文字幕在线| 免费高清在线观看日韩| 成人国语在线视频| 在线十欧美十亚洲十日本专区| 国产av在哪里看| a级毛片a级免费在线| 欧美日韩一级在线毛片| 亚洲国产欧美网| 欧美+亚洲+日韩+国产| 19禁男女啪啪无遮挡网站| 成人手机av| 国产精品永久免费网站| 一级黄色大片毛片| 久久天堂一区二区三区四区| 午夜精品在线福利| 热re99久久国产66热| 日韩欧美 国产精品| 中文字幕人妻丝袜一区二区| 最近在线观看免费完整版| 精品第一国产精品| 老汉色∧v一级毛片| 亚洲 国产 在线| 长腿黑丝高跟| 久久久久久亚洲精品国产蜜桃av| 国产熟女xx| av天堂在线播放| 天天添夜夜摸| 亚洲avbb在线观看| 黄网站色视频无遮挡免费观看| 亚洲激情在线av| 色播亚洲综合网| 两性夫妻黄色片| 十八禁人妻一区二区| 97人妻精品一区二区三区麻豆 | 亚洲国产精品999在线| 男人舔女人下体高潮全视频| 他把我摸到了高潮在线观看| 99热只有精品国产| 久久久久久大精品| 亚洲黑人精品在线| 亚洲成av人片免费观看| 老司机午夜十八禁免费视频| 国产精品久久电影中文字幕| 欧美最黄视频在线播放免费| 亚洲午夜精品一区,二区,三区| 大型黄色视频在线免费观看| 午夜亚洲福利在线播放| 一本精品99久久精品77| 少妇粗大呻吟视频| 免费看美女性在线毛片视频| 日本在线视频免费播放| 久久精品91蜜桃| 波多野结衣高清作品| 久久香蕉激情| 一本大道久久a久久精品| 国产真人三级小视频在线观看| 满18在线观看网站| 黑人欧美特级aaaaaa片| 神马国产精品三级电影在线观看 | 亚洲成a人片在线一区二区| 成人永久免费在线观看视频| 亚洲国产精品999在线| 免费搜索国产男女视频| 国内精品久久久久精免费| 一进一出抽搐gif免费好疼| 韩国精品一区二区三区| 国产午夜精品久久久久久| 免费在线观看亚洲国产| 国语自产精品视频在线第100页| 久久婷婷人人爽人人干人人爱| 日韩大码丰满熟妇| 99国产精品99久久久久| 亚洲国产看品久久| 精品欧美国产一区二区三| 真人做人爱边吃奶动态| 午夜a级毛片| 免费看十八禁软件| 国产亚洲精品综合一区在线观看 | 黄频高清免费视频| 欧美中文综合在线视频| 国产爱豆传媒在线观看 | 亚洲成国产人片在线观看| 天天一区二区日本电影三级| 久久99热这里只有精品18| 色精品久久人妻99蜜桃| 久久久久久久久中文| 国产三级在线视频| 国产成人影院久久av| 亚洲欧美日韩高清在线视频| 自线自在国产av| 日本免费a在线| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区mp4| 美女高潮喷水抽搐中文字幕| 夜夜夜夜夜久久久久| 女性被躁到高潮视频| 国产精品久久久人人做人人爽| 成年人黄色毛片网站| 日日爽夜夜爽网站| 国产精品香港三级国产av潘金莲| 麻豆国产av国片精品| 91在线观看av| 黄色女人牲交| 日韩一卡2卡3卡4卡2021年| 天天一区二区日本电影三级| 哪里可以看免费的av片| aaaaa片日本免费| 日本熟妇午夜| 国产黄a三级三级三级人| 日本撒尿小便嘘嘘汇集6| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 热99re8久久精品国产| 不卡av一区二区三区| 丰满的人妻完整版| 精品无人区乱码1区二区| www日本在线高清视频| 免费av毛片视频| 欧美人与性动交α欧美精品济南到| 欧美日本视频| 日韩欧美三级三区| 可以免费在线观看a视频的电影网站| 亚洲专区国产一区二区| 久久久久久大精品| 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| 国产精华一区二区三区| 超碰成人久久| 99在线人妻在线中文字幕| 成人国语在线视频| 日韩欧美 国产精品| 91av网站免费观看| 中文字幕久久专区| av在线播放免费不卡| 后天国语完整版免费观看| 成人永久免费在线观看视频| 亚洲精品美女久久av网站| av片东京热男人的天堂| 侵犯人妻中文字幕一二三四区| 深夜精品福利| 狂野欧美激情性xxxx| 女同久久另类99精品国产91| 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 一级a爱片免费观看的视频| 黄片大片在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一卡二卡三卡精品| 老司机午夜福利在线观看视频| 精品少妇一区二区三区视频日本电影| 亚洲精品粉嫩美女一区| svipshipincom国产片| 99久久久亚洲精品蜜臀av| 国产亚洲精品久久久久5区| 久久人妻av系列| 男女午夜视频在线观看| 男人操女人黄网站| 老熟妇乱子伦视频在线观看| 淫秽高清视频在线观看| 久久热在线av| 国产又色又爽无遮挡免费看| 美女 人体艺术 gogo| 成人国产综合亚洲| 国产精品av久久久久免费| 正在播放国产对白刺激| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 亚洲国产精品合色在线| 久久久精品欧美日韩精品| 久久伊人香网站| 亚洲全国av大片| 两个人视频免费观看高清| 人人澡人人妻人| 午夜福利18| 1024视频免费在线观看| 成人永久免费在线观看视频| av有码第一页| 国产精品久久电影中文字幕| 精品久久久久久,| 制服诱惑二区| av免费在线观看网站| 久久久久久久午夜电影| 久久热在线av| 两个人免费观看高清视频| 女警被强在线播放| 黑人巨大精品欧美一区二区mp4| 国产一区二区三区在线臀色熟女| 91老司机精品| 国内揄拍国产精品人妻在线 | 亚洲国产高清在线一区二区三 | 精品高清国产在线一区| 免费电影在线观看免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美日韩在线播放| 十八禁人妻一区二区| 无限看片的www在线观看| 亚洲久久久国产精品| 精品久久蜜臀av无| 波多野结衣高清无吗| 日韩高清综合在线| 成人国产综合亚洲| 国产精品精品国产色婷婷| 欧美久久黑人一区二区| 久久婷婷人人爽人人干人人爱| 亚洲欧美激情综合另类| 午夜视频精品福利| 国产精华一区二区三区| 麻豆成人av在线观看| 嫩草影院精品99| 制服人妻中文乱码| avwww免费| 中文字幕精品亚洲无线码一区 | 亚洲av熟女| 日日爽夜夜爽网站| 88av欧美| 级片在线观看| 日韩精品免费视频一区二区三区| av片东京热男人的天堂| ponron亚洲| 国产成人影院久久av| 九色国产91popny在线| 在线视频色国产色| e午夜精品久久久久久久| 亚洲一区二区三区色噜噜| 最近最新中文字幕大全免费视频| 色综合婷婷激情| 18禁国产床啪视频网站| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 桃红色精品国产亚洲av| 亚洲五月色婷婷综合| 欧美激情高清一区二区三区| 黑人操中国人逼视频| 免费高清视频大片| 欧美大码av| 国产又色又爽无遮挡免费看| 久久久久国产一级毛片高清牌| 一进一出抽搐gif免费好疼| 又大又爽又粗| 亚洲色图av天堂| 久久久精品欧美日韩精品| 怎么达到女性高潮| 久久久久久久久久黄片| 国产av一区在线观看免费| 丁香欧美五月| 国产单亲对白刺激| 波多野结衣av一区二区av| 女警被强在线播放| 日韩免费av在线播放| 在线观看免费日韩欧美大片| 变态另类成人亚洲欧美熟女| 啪啪无遮挡十八禁网站| 精品一区二区三区av网在线观看| 999精品在线视频| 久久国产亚洲av麻豆专区| 美女国产高潮福利片在线看| 日本 av在线| 亚洲成人国产一区在线观看| 亚洲熟妇中文字幕五十中出| 欧美黑人巨大hd| 国产成人av教育| 搡老熟女国产l中国老女人| 亚洲成人免费电影在线观看| 国产精品,欧美在线| 操出白浆在线播放| 国产成+人综合+亚洲专区| 日韩欧美一区视频在线观看| 一区二区三区精品91| 一级毛片高清免费大全| 一级a爱片免费观看的视频| 黄片大片在线免费观看| 麻豆一二三区av精品| avwww免费| 后天国语完整版免费观看| 搡老熟女国产l中国老女人| 色综合亚洲欧美另类图片| 国产真实乱freesex| 99国产精品一区二区三区| 欧美午夜高清在线| 人人妻人人澡人人看| 女性被躁到高潮视频| 99精品欧美一区二区三区四区| √禁漫天堂资源中文www| 亚洲第一av免费看| 一卡2卡三卡四卡精品乱码亚洲| 在线视频色国产色| 99久久综合精品五月天人人| 亚洲国产精品999在线| 桃色一区二区三区在线观看| 久久久国产欧美日韩av| 欧美色欧美亚洲另类二区| 嫩草影视91久久| 中文字幕人妻熟女乱码| 欧美一区二区精品小视频在线| 给我免费播放毛片高清在线观看| 欧美日韩黄片免| 日本 欧美在线| www日本在线高清视频| 午夜亚洲福利在线播放| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 国产亚洲精品综合一区在线观看 | 欧美成人性av电影在线观看| 天天一区二区日本电影三级| cao死你这个sao货| 欧美日韩精品网址| 久久久久国内视频| 女同久久另类99精品国产91| 午夜免费激情av| 变态另类成人亚洲欧美熟女| a在线观看视频网站| 日本成人三级电影网站| 男女视频在线观看网站免费 | 国产成人系列免费观看| 色av中文字幕| 久久亚洲精品不卡| 色尼玛亚洲综合影院| 两个人免费观看高清视频| 国产成人啪精品午夜网站| 在线观看一区二区三区| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区久久 | 日本 av在线| 国产精品久久电影中文字幕| 丰满的人妻完整版| 久久久久久久久免费视频了| 波多野结衣高清作品| 高潮久久久久久久久久久不卡| 欧美激情 高清一区二区三区| 国产人伦9x9x在线观看| 亚洲第一青青草原| 久久人妻av系列| 久久久久久久久久黄片| 国产激情欧美一区二区| 男女床上黄色一级片免费看| e午夜精品久久久久久久| 国产99白浆流出| 丰满的人妻完整版| 国产精品免费一区二区三区在线| 三级毛片av免费| 一边摸一边做爽爽视频免费| 黄频高清免费视频| 日韩大尺度精品在线看网址| 国产成人系列免费观看| 成人手机av| 成人18禁在线播放| 人人妻人人看人人澡| 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 久久热在线av| 欧美一区二区精品小视频在线| 一夜夜www| 最新在线观看一区二区三区| 午夜激情av网站| 听说在线观看完整版免费高清| 亚洲天堂国产精品一区在线| 精华霜和精华液先用哪个| 中文字幕人妻熟女乱码| 在线观看66精品国产| 国产伦人伦偷精品视频| 中文字幕久久专区| 久久亚洲精品不卡| 免费在线观看成人毛片| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频 | 日本撒尿小便嘘嘘汇集6| 欧美日本亚洲视频在线播放| 老司机福利观看| 国产主播在线观看一区二区| 日韩欧美国产在线观看| 深夜精品福利| 一区二区三区国产精品乱码| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩精品网址| 成人手机av| 国产爱豆传媒在线观看 | av电影中文网址| 少妇裸体淫交视频免费看高清 | 亚洲国产高清在线一区二区三 | 国产亚洲av高清不卡| 在线观看免费日韩欧美大片| 亚洲全国av大片| 亚洲成a人片在线一区二区| 搡老岳熟女国产| 久久久久久久久免费视频了| 亚洲中文av在线| 在线国产一区二区在线| 免费女性裸体啪啪无遮挡网站| 美女国产高潮福利片在线看| 一本久久中文字幕| 男人舔女人的私密视频| 首页视频小说图片口味搜索| av欧美777| 久久午夜综合久久蜜桃| АⅤ资源中文在线天堂| 免费在线观看日本一区| 免费高清在线观看日韩| 曰老女人黄片| 一区二区三区精品91| 国产精品综合久久久久久久免费| 亚洲成a人片在线一区二区| 国产真人三级小视频在线观看| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三| 久久久久久久久免费视频了| 一个人免费在线观看的高清视频| 岛国在线观看网站| a在线观看视频网站| 99久久久亚洲精品蜜臀av| 午夜精品久久久久久毛片777| 成人国产一区最新在线观看| 特大巨黑吊av在线直播 | 精品高清国产在线一区| 两个人视频免费观看高清| 精品少妇一区二区三区视频日本电影| 中文字幕人妻熟女乱码| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| 窝窝影院91人妻| 国产不卡一卡二| 一级作爱视频免费观看| 老司机在亚洲福利影院| 搡老妇女老女人老熟妇| 国产熟女xx| 久久国产精品影院| 满18在线观看网站| 99久久99久久久精品蜜桃| 国产一区二区三区在线臀色熟女| 欧美不卡视频在线免费观看 | aaaaa片日本免费| 精品国产一区二区三区四区第35| 国产在线精品亚洲第一网站| 亚洲性夜色夜夜综合| 亚洲av五月六月丁香网| 男人操女人黄网站| 精品久久久久久,| 伦理电影免费视频| 亚洲无线在线观看| 老熟妇乱子伦视频在线观看| 后天国语完整版免费观看| 精品人妻1区二区| 午夜福利成人在线免费观看| 国产精品免费一区二区三区在线| 9191精品国产免费久久| 中亚洲国语对白在线视频| 12—13女人毛片做爰片一| 97超级碰碰碰精品色视频在线观看| 国内揄拍国产精品人妻在线 | 国产欧美日韩一区二区三| 可以在线观看毛片的网站| 男女之事视频高清在线观看| 日本黄色视频三级网站网址| 欧美色欧美亚洲另类二区| 日韩欧美一区视频在线观看| 中文字幕av电影在线播放| 51午夜福利影视在线观看| 亚洲中文字幕日韩| 亚洲人成伊人成综合网2020| 久久99热这里只有精品18| 一级毛片精品| 欧美成人性av电影在线观看| 身体一侧抽搐| 国产v大片淫在线免费观看| 免费在线观看完整版高清| 热re99久久国产66热| 国产精品久久久久久人妻精品电影| 黑人巨大精品欧美一区二区mp4| 国产极品粉嫩免费观看在线| 中文字幕人成人乱码亚洲影| 黄片播放在线免费| 俄罗斯特黄特色一大片| 午夜两性在线视频| 99久久精品国产亚洲精品| 国产高清激情床上av| 一级毛片精品| 国产精品久久久久久人妻精品电影| 丝袜在线中文字幕| www国产在线视频色| 国产精品,欧美在线| 国产亚洲精品av在线| 久久精品成人免费网站| 嫩草影视91久久| 午夜成年电影在线免费观看| 亚洲精品国产精品久久久不卡| 欧美激情久久久久久爽电影| 男人操女人黄网站| 国产一区在线观看成人免费| 99精品在免费线老司机午夜| cao死你这个sao货| 男人舔女人的私密视频| 日本三级黄在线观看| 国产午夜精品久久久久久| 成人国产综合亚洲| 日本一区二区免费在线视频| 久久精品国产亚洲av香蕉五月| 一区二区三区国产精品乱码| 久久天躁狠狠躁夜夜2o2o| 久久精品人妻少妇| 国产精品永久免费网站| 嫩草影院精品99| 欧美成人午夜精品| 欧美黄色淫秽网站| 欧美黄色片欧美黄色片| 国产伦一二天堂av在线观看| 午夜精品在线福利| 中文字幕人成人乱码亚洲影| 黄色毛片三级朝国网站| 99久久无色码亚洲精品果冻| 精品国产超薄肉色丝袜足j| 国产区一区二久久| 男女床上黄色一级片免费看| 在线十欧美十亚洲十日本专区| 久久久国产成人免费| 99re在线观看精品视频| 国产精品野战在线观看| 国产精品久久视频播放| 2021天堂中文幕一二区在线观 | 精品久久久久久久毛片微露脸| 在线观看66精品国产| av片东京热男人的天堂| 欧美黑人欧美精品刺激| 日韩精品中文字幕看吧| 日本一区二区免费在线视频| 国产精品久久久久久精品电影 | 日韩av在线大香蕉| 国产精品综合久久久久久久免费| √禁漫天堂资源中文www| a级毛片a级免费在线| 熟女电影av网| xxxwww97欧美| 精品乱码久久久久久99久播| 亚洲最大成人中文| 99久久国产精品久久久| 18禁国产床啪视频网站| 99国产精品一区二区三区| 99精品久久久久人妻精品| 国产av一区二区精品久久| 久久精品国产综合久久久| 久久性视频一级片| 丁香欧美五月| 久久国产亚洲av麻豆专区| 久久久久国内视频| 国产精品久久久av美女十八| 一级毛片精品| 99riav亚洲国产免费| 国产精品久久久av美女十八| 久久 成人 亚洲| 国产精品久久视频播放| 久久国产乱子伦精品免费另类| 中文字幕久久专区| 亚洲五月天丁香| 亚洲美女黄片视频| 99精品在免费线老司机午夜| 久久精品91无色码中文字幕| 午夜福利18| 可以在线观看毛片的网站| 亚洲精品久久国产高清桃花| 国产精品久久久av美女十八| 免费一级毛片在线播放高清视频| 18禁裸乳无遮挡免费网站照片 | 国产成人一区二区三区免费视频网站| 国产精品免费一区二区三区在线| www日本在线高清视频| 非洲黑人性xxxx精品又粗又长| 美女高潮喷水抽搐中文字幕| 手机成人av网站| 老司机午夜十八禁免费视频| 亚洲久久久国产精品| 国产精品99久久99久久久不卡| 在线看三级毛片| АⅤ资源中文在线天堂| 变态另类成人亚洲欧美熟女| 久久精品国产99精品国产亚洲性色| 变态另类丝袜制服| 亚洲人成网站在线播放欧美日韩|