• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Edge detection of magnetic tile cracks based on wavelet①

    2015-04-17 06:37:50LinLijun林麗君HeMinggeYinYing
    High Technology Letters 2015年3期

    Lin Lijun (林麗君), He Mingge, Yin Ying

    (*School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, P.R.China)(**Gas Production Engineering Research Institute, Petro China Southwest Oil & Gas Field Co., Guanghan 618300, P.R.China)

    ?

    Edge detection of magnetic tile cracks based on wavelet①

    Lin Lijun (林麗君)*, He Mingge**, Yin Ying②

    (*School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, P.R.China)(**Gas Production Engineering Research Institute, Petro China Southwest Oil & Gas Field Co., Guanghan 618300, P.R.China)

    In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background, an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima is proposed. At first, a new Butterworth high pass filter (BHPF) with adaptive cutoff frequency is produced, because the clarity and complexity of the textured background are described by the weighted information entropy of the image gradient variance quantitatively, and the filter can change its parameters through matching the non-linear relationship between the information entropy and the cutoff frequency. And then, the best decomposition scale is obtained by the level determination function to prevent edge information from missing. At last, edge points are got by double threshold after obtaining the wavelet modulus maxima, and then the edge image is linked by the edge points to ensure the edge continuity and veracity. Experiment results indicate that the proposed algorithm outperforms the conventional Canny and Sobel algorithm, and the edge detection algorithm can also detect other defects, and lays the foundation for defecting auto- recognition.

    edge detection, wavelet transform, textures processing, magnetic tile, information entropy

    0 Introduction

    Magnetic tile is an important part of the motor, and its surface defects must be removed which affects the motor safety performance directly. And most companies use the artificial vision to detect the defections due to the magnetic tile with gray color and low image contrast. At present, adopting machine vision to complete the defect detection is a hot research on the nondestructive testing, and the image edge information extraction is the key of image processing[1,2], thus many edge detection algorithms have been applied evolutionarily to all kinds of image edge features extraction[3-5]. Ref.[6] uses Sobel and Canny algorithm to locate the locked weld edge for avoiding outside interruptions. Ref.[7] employs the wavelet multi-scale analysis to extract the feature points on X-ray cephalometric, and gets the desired effect on the automatic location. Ref.[8] presents local modulus maxima and dynamic threshold to solve the wavelet edge detection’s shortage such as inaccurate location. Ref.[9] has employed an independent component analysis (ICA) and a particle swarm optimization (PSO) to detect the LCD panel defects, and the proposed algorithm is suitable for the defects with large size and low image contrast. The research on magnetic tile defects detection is quite few due to the magnetic tile characteristics.

    In Ref.[10], it proposes a defect extraction method based on adaptive morphological filter. Defects are removed or weakened by the adaptive morphological filtering to get the image background, and then the surface defects are extracted after comparing the original image with the background image, but it can’t get the accurate classification when the gray variety in small defects is big. Ref.[11] presents a texture analysis method to detect the defects on the magnetic tile surface. In this way, the original image is divided into several equal sized squares decomposed by the fast discrete curvelet transform(FDCT) at different scales and orientations, and then the coefficients are calculated as the feature vector of the support vector machine(SVM) classifier. However, it can’t get the desired result when defects percentage is less than 1/64 in magnetic tile image. Ref.[12] presents the learning vector quantization (LVQ) neural network to classify the magnetic tile defects, but it doesn’t explain how to extract the defects edge information correctly.

    A new edge detection algorithm of the magnetic tile crack is proposed in this paper. The BHPF filter’s cutoff frequency is changed adaptively by the image gradient variance weighted information entropy, so the background texture and noise are restrained adequately. To make good use of the feature of the wavelet multi-scale resolution, the original image is transformed by the translation invariance binary wavelet to calculate the wavelet modulus maxima, and then the level determination function (LDF) is adopted to decrease the interference from the wavelet level. At last, the edge points of crack are got by the double threshold, and then it can get the crack edge image by linking the edge points. The experimental results show that the proposed algorithm can decrease the influence from the background, and extract the crack edge accurately and effectively.

    1 The image preprocessing

    The crack is one of the most typical magnetic tile defects, some cracks are slight and mixed with the background, and are difficult to be identified. Due to the energy difference between the crack and background, the crack’s energy stays in high frequency area. The ideal high pass filter (IHPF) has ringing effect at the cut-off frequency, while the exponential high pass filter (EHPF) brings noise. The BHPF is proposed in this paper to process the original image, which can restrain the interference from random textures and smooth the curve more effectively while the cutoff frequency is increasing, so the cracks are enhanced[13].The n level BHPF filter is defined as

    (1)

    where the crack image isf(x, y), and its filtering is

    g(x, y)=F-1{F[f(x, y)]·H(u, v)}

    (2)

    In Eq.(2), F is Fourier transform, and F-1is inverse transform of F, g(x, y) is the filtered crack image.

    1.1 The texture estimation

    Information entropy can describe the image’s information content efficiently, but it ignores the space information of gray distribution[14]. The weighted entropy not only expresses the image’s average information content, but also reflects how the high gray value affects the image information entropy. The crack has high gray value and contains the noise, and the gray value is one of the standards about the image’s complexity degree.

    If the image has 256 gray levels, gray value s is the weighting factor, so the weighted information entropy is

    (if ps=0, pslogps=0)

    (3)

    In Eq.(3), S is the set of pixel values, psis the probability of the gray value s appearing in S.

    In order to describe the texture complexity more objectively, and the gradient variance can reflect the changes of the texture detail, the weighted information entropy adjusted by the gradient variance can describe the texture details clarity qualitatively. Image gradient variance is

    (4)

    gradAVR=

    (5)

    So the image gradient variance weighted information entropy (IGVWIE) can be expressed as

    (6)

    (7)

    The gradient variance is a reflection of the degree that the pixel gray value deviates from its average gray value, as the variance is bigger, the difference among the pixels is bigger, and the details of the image are more.

    1.2 The texture description

    In order to explain the reliability of the IGVWIE describing the different image background, the following is the analysis about this method.

    H(S)=

    (8)

    (9)

    Eq.(9) indicates that the whole intensity feature can reflect the background complexity at the same gray level.

    1.3 The adjusting cutoff frequency correction

    As a result, the system chart of the adjusting BHPF cutoff frequency is in Fig.1. According to the prior knowledge, the cutoff frequency of some typical magnetic tile crack which has different complexity are got, and then stored in the system. The weighted information entropy and the cutoff frequency is fitted by the segment linear interpolation while the system is running, and the relationship of the nonlinear function between them is determined. So it can get the cutoff frequency corresponding to the information entropy values of the different crack background, and the parameters of the BHPF is changed adaptively to realize the quantitative analysis of the energy change for the crack image.

    Fig.1 The system chart of adjusting BHPF cutoff frequency

    2 The edge detection principle

    Binary wavelet edge detection is that the waiting detection signal is transformed by the second differential smooth function, and the image edge points are got through the wavelet modulus maximum[15].

    Assume that the wavelet function ψ(t) and the signal f(t) is real function, and ψ(t) is the first derivation of smooth function θ(t), that ψ(t)=dθ(t)/dt, the f(t) binary wavelet transform is defined as follows

    (10)

    2.1 The wavelet modulus maxima

    For a binary wavelet transform sequence Wf(2j,0), Wf(2j,1), …, Wf(2j,n), if it satisfies the following conditions.

    (11)

    Also Eq.(11) can’t take equal at the same time, so the wavelet coefficients can get the modulus maxima at the point m(0≤m≤n).

    2.2 The optimal decomposition scale

    Because the crack edge information is influenced by the wavelet decomposition scale greatly, so it needs an optimal decomposition scale got through the level determination function (LDF)[17]. The function is

    (12)

    2.3 The threshold determination

    The threshold is the criterion of detecting the image edge, and affects the quality of the edge detection directly. Seeking the wavelet modulus’ maximum and minimum, and their average is the initial threshold T0.The window n×n scans image D, then it can get the wavelet coefficient Wj,k, so the threshold is

    (13)

    In Eq.(13), δ is the impact factor, and δ=0.5.

    3 The magnetic tile crack edge detection

    If crack D has N×N pixels, D={dn,m|n,m=0,1,…,N-1}, so the process of crack D multi-scale edge detection is as following:

    (1) Image D is filtered by the new BHPF, then it can get image D1.

    (2) Image D1is transformed by 2-D wavelet at 2j, W1f(2j, n, m), W2f(2j, n, m), n, m=0,1,…,N-1,1≤j≤J=log2N。

    (3) Modulus Mf(2j, n, m) and the tangent value tanAf(2j, n, m) are got at pixel point (n,m).

    (4) The optimal decomposition scale of image D1is determined by Eq.(12), and its flowchart is shown as Fig.2.

    Fig.2 The flowchart of getting the optimal decomposition scale

    (5) Threshold T got by Eq.(13) divides image D1into two parts. Modulus less than T are region R1, and the others are region R2. Also threshold T1in region R1and threshold T2in region R2can be got by Eq.(13), if T1

    (6) The boundary points at one scale are got. If one pixel’s gray value in image D1is less than threshold T1, the gray value is 0, then image D1is changed into image I1, at the same way, it can get image I2at threshold T2. The image I2is the base, the image I1is the supplement for image I2, and t The flowchart of finding the contour line is shown as Fig.3.

    Fig.3 The flowchart of seeking the boundary points

    (7) Connect all edge points at scale 2j, it can get the modulus maxima line.

    (8) The gray value of edge points meeting the algorithm is set as 255, and the others are set as 0, then the edge image I is got.

    4 The analysis of experimental results

    4.1 The analysis of filter result

    Fig.4 is the axial crack of magnetic tile, and Fig.5 is the crack filtered by BHPF. Fig.5 shows that the defect is enhanced, and the random texture and noise of background is reduced effectively.

    Fig.4 The axial crack

    Fig.5 The axial crack filtered by BHPF

    4.2 The analysis of edge detection results

    The magnetic tile image from the production line is analyzed by the proposed method, and the image size is 256×128, the used PC is powered by a 3.2GHz Intel Core i5 Quad processor. This experiment is realized by the Matlab R2013a encoding.

    The algorithm proposed in this paper is applied to the edge extraction of three crack defects, and the result is shown in Fig.6. From Fig.6(a), cracks can be seen on the end face and outside surface of magnetic tile obviously. The detection results of the Sobel operator in Fig.6(b) shows the crack defects can’t be extracted correctly, because the crack defects is multi-directional while the classical Sobel operator using only the horizontal direction and vertical direction template. It must add a new template to increase the direction detection information. Moreover, the false edges are smoothed by the Sobel operator, and the real edges are lost as well. On the other hand, because of lacking of the adaptability for different images, the threshold of the classical Sobel operator is determined by one’s experience. The results tested by Canny operator are shown in Fig.6(c), which shows the crack edges are interfered by the texture, and the real crack can’t be extracted correctly. That is because the traditional Canny operator calculates the gradient amplitude by using a finite difference average, which is sensitive to the noise and is easy to cause the real edge details lost or the false edge detected. The low contrast of magnetic tile makes the double threshold Canny algorithm based on gradient amplitude difficult to suppress the noise while preserving the edge in low-intensity, so that the effects of edge detection are affected. Tested results using the proposed algorithm are shown in Fig.6(d), in which the cracks are detected accurately, and the tested results are better than Sobel algorithm and Canny algorithm and achieve the desired effect.

    Fig.6 Comparison of the proposed algorithm with other algorithm

    There are 160 pieces of the magnetic tile, and the accepted products are 78, while the others have crack defects. The ones detected from the accepted magnetic tile is 72, so the false positive rate is (78-72)/78×100%=7.7%, and it indicates that there are 6 pieces of magnetic tile judged falsely because of the influence from the watermark or the dust on the magnetic tile surface. It can detect 77 pieces of the magnetic tile from the defects, and the missing rate is (82-77)/82×100%=6.1%, the reason of missing is that the direction of some cracks is consistent with the direction of grinding.

    5 Conclusion

    Using the image gradient variance to modify the weighted information entropy has made estimating the complexity of the magnetic tile crack defects background more accurately. The BHPF filter performance has been improved adaptively, and the background texture has been eliminated effectively. This paper uses the modulus maxima algorithm based on the wavelet transform to extract the crack edges, and the crack edge information is optimally retained because of the application of the optimal decomposition scale, and the double threshold has made finding the crack edges points more precisely. The experiment proves that the proposed algorithm of the edge detection is better than the classical edge detection algorithm, so it has laid the foundation for other magnetic tile defects detections.

    [ 1] Lin K Y, Si H P, Zhou Q, et al. Plant leaf edge detection based on fuzzy logic. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6):227-231

    [ 2] Xiang R, Ying Y B, Jiang H Y, et al. Recognition of overlapping tomatoes based on edge curvature analysis. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3):157-162 (In Chinese)

    [ 3] Selvathi D, Dharani J. Realization of beamlet transform edge detection algorithm using FPGA. In: Proceedings of the 2013 International Conference on Signal Processing, Image Processing and Pattern Recognition, Coimbatore, India, 2013. 131-135

    [ 4] Hussain P S J, Ayesha S. Analysis of edge detection algorithm for feature extraction in satellite images. In: Proceedings of the 2013 3rd IEEE International Conference on Space Science and Communication, IconSpace2013, Melaka, Malaysia, 2013. 238-242

    [ 5] Zhao X F, Yin G F, Yin X Y, et al. Image edge detection based on support vector machine and cellular automata. Journal of Sichuan University (Engineering Science Edition), 2011, 43(1):137-142

    [ 6] Kong M, Chen S B, Lin T. Weld seam edge detection based on composite edge detectors. Journal of Shanghai Jiaotong University, 2009, 43(5):693-696 (In Chinese)

    [ 7] Ling X F, Yang J, Lu Y. Characteristic points extraction of X-Ray skull image based on wavelet multiscale analysis. Journal of Shanghai Jiaotong University, 2001, 35(9):1350-1354 (In Chinese)

    [ 8] Fan Y J, Wu X H, Luo D S. A modified image edge detection algorithm based on wavelet transform. Journal of Sichuan University (Natural Science Edition), 2012, 49(6):1264-1268 (In Chinese)

    [ 9] Tsneg Y H, Tsai D M. Defect detection of uneven brightness in low-contrast images using basis image representation. Pattern Recognition, 2010, 43(3):1129-1141

    [10] Yu Y W, Yin G F, Jiang H H, et al. Defect extraction method of arc magnet surface image based on adaptive morphological filtering. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(3):351-356 (In Chinese)

    [11] Jiang H H, Yin G F, Liu P Y, et al. Defect detection on magnetic tile surface based on fast discrete curvelet transform and support vector machine. Journal of Sichuan University (Engineering Science Edition), 2012, 44(3):147-152 (In Chinese)

    [12] Yan J L, Zheng X X, Li T Y. Application of LVQ neural network in classification of surface defects for arc segments ceramic magnet. Computer & Digital Engineering, 2009, 37(12):147-150 (In Chinese)

    [13] Rafael C G, Richard E W. Digital Image Processing. Third Edition. Beijing: Publishing House of Electronics Industry, 2011. 305-308

    [14] Li X Z, Yu H D, Yu Z J, et al. Optimal inspection method for surface defects of micro-components. Acta Armamentarii, 2011, 32(7):872-877 (In Chinese)

    [15] Sun Y K. Wavelet and Image Processing Technology. Beijing: Tsinghua University Press, 2012. 185-186 (In Chinese)

    [16] Maria P, Josef K. Optimal edge detectors for ramp edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5):483-491

    [17] Zhang X, Wang H L. Stationary lifting wavelet de-noising method based on optimal decomposition level. High Voltage Engineering, 2009, 35(3):501-508 (In Chinese)

    Lin Lijun, born in 1985. She is a Ph.D candidate of Sichuan University. She received her B.E. and M.E. degrees from Southwest Petroleum University in 2008 and 2011. Her research focuses on intelligent control and image processing.

    10.3772/j.issn.1006-6748.2015.03.005

    ①Supported by the National Natural Science Foundation of China (No. 51205265).

    ②To whom correspondence should be addressed. E-mail: kevin_yying@hotmail.com Received on Mar. 19, 2014*, Yin Xiangyun*, Yin Guofu*

    一本色道久久久久久精品综合| 操出白浆在线播放| 欧美日本中文国产一区发布| 涩涩av久久男人的天堂| 曰老女人黄片| 亚洲 欧美一区二区三区| 少妇的丰满在线观看| 制服诱惑二区| 国产黄色免费在线视频| 男女下面插进去视频免费观看| 在线观看免费日韩欧美大片| 亚洲一卡2卡3卡4卡5卡精品中文| 桃红色精品国产亚洲av| 国产高清有码在线观看视频 | 成年女人毛片免费观看观看9| 久9热在线精品视频| 国产精品久久电影中文字幕| 国产精品乱码一区二三区的特点| 99国产极品粉嫩在线观看| 国产成年人精品一区二区| 免费人成视频x8x8入口观看| 免费在线观看成人毛片| 麻豆一二三区av精品| 亚洲成人免费电影在线观看| 一a级毛片在线观看| 制服丝袜大香蕉在线| 国产精品美女特级片免费视频播放器 | 亚洲熟妇中文字幕五十中出| 国产精华一区二区三区| 亚洲人成网站高清观看| 精品一区二区三区视频在线观看免费| 男女做爰动态图高潮gif福利片| 免费观看人在逋| 日本撒尿小便嘘嘘汇集6| 丁香六月欧美| 神马国产精品三级电影在线观看 | 国产精品美女特级片免费视频播放器 | 精品无人区乱码1区二区| 黄片播放在线免费| 老司机靠b影院| 国产精品久久久人人做人人爽| 国产高清有码在线观看视频 | 欧美久久黑人一区二区| 成人av一区二区三区在线看| 成人免费观看视频高清| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 男女下面进入的视频免费午夜 | 看黄色毛片网站| 一进一出抽搐gif免费好疼| 欧美黑人欧美精品刺激| 久久香蕉激情| 91在线观看av| 美女午夜性视频免费| а√天堂www在线а√下载| 在线av久久热| 免费无遮挡裸体视频| 大型黄色视频在线免费观看| 亚洲中文字幕日韩| 两个人看的免费小视频| 国产v大片淫在线免费观看| 黄片大片在线免费观看| 国产在线观看jvid| 国产精品国产高清国产av| 真人做人爱边吃奶动态| 国产日本99.免费观看| 99在线视频只有这里精品首页| av超薄肉色丝袜交足视频| 国产午夜精品久久久久久| 精品久久久久久久末码| 两个人视频免费观看高清| 国产伦人伦偷精品视频| 久久中文字幕一级| 国内毛片毛片毛片毛片毛片| 男女之事视频高清在线观看| a级毛片在线看网站| 好男人在线观看高清免费视频 | 国产极品粉嫩免费观看在线| 大香蕉久久成人网| 日韩高清综合在线| 欧美一级毛片孕妇| 精品卡一卡二卡四卡免费| 日韩中文字幕欧美一区二区| 国产av一区二区精品久久| 亚洲av日韩精品久久久久久密| 久久久久国内视频| 久久久久久亚洲精品国产蜜桃av| 欧美最黄视频在线播放免费| 日韩中文字幕欧美一区二区| 久久狼人影院| 啦啦啦 在线观看视频| 久久精品91无色码中文字幕| 可以免费在线观看a视频的电影网站| 亚洲avbb在线观看| 欧美最黄视频在线播放免费| 成年版毛片免费区| 亚洲成人精品中文字幕电影| 一区福利在线观看| 欧美性猛交╳xxx乱大交人| 1024视频免费在线观看| 国产成人啪精品午夜网站| 欧美乱色亚洲激情| 人人妻人人澡欧美一区二区| 成在线人永久免费视频| 久久这里只有精品19| 黑人欧美特级aaaaaa片| 色老头精品视频在线观看| 男人舔女人的私密视频| 一级a爱视频在线免费观看| 听说在线观看完整版免费高清| 波多野结衣高清无吗| 亚洲色图av天堂| 一区二区三区国产精品乱码| 嫁个100分男人电影在线观看| 久久精品91无色码中文字幕| 国产午夜精品久久久久久| 美女免费视频网站| 国产一区二区三区视频了| 亚洲午夜理论影院| 精品一区二区三区av网在线观看| 一本精品99久久精品77| 久久青草综合色| av电影中文网址| 国产亚洲精品av在线| 欧美最黄视频在线播放免费| 黑人欧美特级aaaaaa片| 两个人看的免费小视频| 老司机福利观看| 成人一区二区视频在线观看| 中文在线观看免费www的网站 | 欧美黑人精品巨大| 久久人人精品亚洲av| 久久久久久九九精品二区国产 | 人人妻人人看人人澡| 精品国内亚洲2022精品成人| 亚洲中文日韩欧美视频| 色播在线永久视频| 又黄又粗又硬又大视频| 青草久久国产| 国产国语露脸激情在线看| 成人手机av| 特大巨黑吊av在线直播 | 亚洲精品国产精品久久久不卡| 又大又爽又粗| 国产精品永久免费网站| 国产精品99久久99久久久不卡| 国产真人三级小视频在线观看| 90打野战视频偷拍视频| 欧美丝袜亚洲另类 | 国产主播在线观看一区二区| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久久久久免费视频| 在线观看免费视频日本深夜| 国产蜜桃级精品一区二区三区| 两个人视频免费观看高清| 最新在线观看一区二区三区| 老司机深夜福利视频在线观看| 神马国产精品三级电影在线观看 | 长腿黑丝高跟| 欧美日韩一级在线毛片| 精品久久久久久久人妻蜜臀av| 亚洲精品中文字幕在线视频| 亚洲美女黄片视频| 最好的美女福利视频网| 老汉色∧v一级毛片| 国产av在哪里看| 亚洲国产欧美日韩在线播放| 亚洲精品在线美女| 精品福利观看| 亚洲国产精品合色在线| 精品一区二区三区四区五区乱码| 黄片大片在线免费观看| 亚洲成人国产一区在线观看| www.自偷自拍.com| 久久久久亚洲av毛片大全| 欧美又色又爽又黄视频| 老司机靠b影院| 精华霜和精华液先用哪个| 国产精品,欧美在线| 亚洲精品国产精品久久久不卡| 久久久水蜜桃国产精品网| 亚洲狠狠婷婷综合久久图片| 长腿黑丝高跟| 免费观看人在逋| 日韩大码丰满熟妇| 欧美在线一区亚洲| 欧美乱妇无乱码| 桃色一区二区三区在线观看| 午夜久久久久精精品| 国产高清videossex| 欧美国产日韩亚洲一区| 欧美中文综合在线视频| 欧美中文综合在线视频| 国产片内射在线| 看黄色毛片网站| 国产高清videossex| 国产v大片淫在线免费观看| 黄色毛片三级朝国网站| 村上凉子中文字幕在线| 欧美黑人巨大hd| 国产高清videossex| 久久国产精品影院| 免费av毛片视频| 又大又爽又粗| 观看免费一级毛片| 身体一侧抽搐| 在线天堂中文资源库| 一级作爱视频免费观看| 9191精品国产免费久久| 久久国产乱子伦精品免费另类| 免费女性裸体啪啪无遮挡网站| 久久久国产成人精品二区| 国产免费男女视频| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 精品日产1卡2卡| 亚洲午夜精品一区,二区,三区| 国产又色又爽无遮挡免费看| 国产精品 国内视频| 色尼玛亚洲综合影院| 亚洲三区欧美一区| 亚洲中文av在线| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 丁香欧美五月| 啪啪无遮挡十八禁网站| 成人18禁在线播放| 亚洲电影在线观看av| 变态另类丝袜制服| 欧美一级毛片孕妇| 啦啦啦观看免费观看视频高清| 欧美最黄视频在线播放免费| 99国产精品一区二区三区| 老汉色∧v一级毛片| 老司机靠b影院| 久久久久亚洲av毛片大全| 国产精品一区二区精品视频观看| 变态另类成人亚洲欧美熟女| 波多野结衣高清作品| 亚洲一卡2卡3卡4卡5卡精品中文| 一本综合久久免费| 一区福利在线观看| 亚洲av熟女| 天堂影院成人在线观看| 天天躁夜夜躁狠狠躁躁| 久久中文字幕一级| 欧美一级毛片孕妇| 悠悠久久av| 19禁男女啪啪无遮挡网站| 免费在线观看亚洲国产| 丁香六月欧美| 婷婷精品国产亚洲av在线| 国产91精品成人一区二区三区| 香蕉丝袜av| 很黄的视频免费| 在线十欧美十亚洲十日本专区| 欧美黑人精品巨大| 亚洲人成电影免费在线| 又黄又爽又免费观看的视频| 欧美激情 高清一区二区三区| 午夜福利视频1000在线观看| 韩国av一区二区三区四区| 国产成人欧美在线观看| 亚洲三区欧美一区| 久久香蕉国产精品| 色综合欧美亚洲国产小说| 又紧又爽又黄一区二区| 天天添夜夜摸| 久久伊人香网站| 老汉色∧v一级毛片| 90打野战视频偷拍视频| 中文在线观看免费www的网站 | 欧美精品啪啪一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲精华国产精华精| 免费观看精品视频网站| 神马国产精品三级电影在线观看 | 一a级毛片在线观看| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 美女国产高潮福利片在线看| 日本精品一区二区三区蜜桃| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 成人三级黄色视频| 午夜福利在线观看吧| 成人18禁在线播放| av中文乱码字幕在线| 最近最新中文字幕大全免费视频| 日本一本二区三区精品| 波多野结衣av一区二区av| 美女高潮喷水抽搐中文字幕| 丝袜美腿诱惑在线| 亚洲国产精品成人综合色| 国产真实乱freesex| 美女 人体艺术 gogo| 免费看日本二区| 91麻豆av在线| 亚洲一区高清亚洲精品| 欧美黄色淫秽网站| 亚洲av电影不卡..在线观看| 亚洲精品国产一区二区精华液| 窝窝影院91人妻| av中文乱码字幕在线| 久久婷婷人人爽人人干人人爱| videosex国产| 色播亚洲综合网| tocl精华| 久久人妻av系列| 亚洲欧美精品综合一区二区三区| 欧美日韩黄片免| 一区二区日韩欧美中文字幕| 亚洲精品美女久久av网站| 成人午夜高清在线视频 | 午夜久久久久精精品| 777久久人妻少妇嫩草av网站| 麻豆久久精品国产亚洲av| 男女下面进入的视频免费午夜 | 国产免费av片在线观看野外av| 亚洲av熟女| 99热6这里只有精品| 国产国语露脸激情在线看| 色尼玛亚洲综合影院| 国产成+人综合+亚洲专区| 国产成人欧美| 91麻豆精品激情在线观看国产| 18禁美女被吸乳视频| 校园春色视频在线观看| 午夜视频精品福利| 18美女黄网站色大片免费观看| 99热这里只有精品一区 | 亚洲第一青青草原| 最近在线观看免费完整版| 国产精品乱码一区二三区的特点| 十八禁网站免费在线| 性欧美人与动物交配| 亚洲精品国产区一区二| 日本a在线网址| 国内精品久久久久精免费| 午夜影院日韩av| a在线观看视频网站| 黑人操中国人逼视频| 少妇被粗大的猛进出69影院| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| 欧美性猛交╳xxx乱大交人| 久久午夜综合久久蜜桃| 午夜免费成人在线视频| 在线观看免费日韩欧美大片| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 国内久久婷婷六月综合欲色啪| 亚洲专区中文字幕在线| 母亲3免费完整高清在线观看| 一级毛片精品| 免费av毛片视频| 欧美色欧美亚洲另类二区| 亚洲人成网站在线播放欧美日韩| 叶爱在线成人免费视频播放| 日本一本二区三区精品| 一区二区日韩欧美中文字幕| aaaaa片日本免费| 麻豆成人av在线观看| av有码第一页| 午夜久久久久精精品| 久久人人精品亚洲av| 99在线视频只有这里精品首页| 日韩精品中文字幕看吧| 亚洲人成77777在线视频| 国产97色在线日韩免费| 日本熟妇午夜| 日韩欧美 国产精品| a级毛片a级免费在线| 欧美色欧美亚洲另类二区| 国产aⅴ精品一区二区三区波| 好看av亚洲va欧美ⅴa在| 久热爱精品视频在线9| 999久久久精品免费观看国产| 亚洲成人精品中文字幕电影| 精品国产乱码久久久久久男人| 桃色一区二区三区在线观看| 变态另类成人亚洲欧美熟女| 香蕉丝袜av| 精品一区二区三区av网在线观看| 午夜a级毛片| 黄色片一级片一级黄色片| 国产免费男女视频| av有码第一页| 最近最新中文字幕大全电影3 | 黄色视频不卡| 国产av一区在线观看免费| 亚洲真实伦在线观看| 国产黄色小视频在线观看| 国产在线精品亚洲第一网站| 亚洲五月色婷婷综合| 日韩三级视频一区二区三区| 日本三级黄在线观看| 最好的美女福利视频网| 亚洲成人久久爱视频| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲综合一区二区三区_| 怎么达到女性高潮| 88av欧美| 成人18禁高潮啪啪吃奶动态图| 欧美日本亚洲视频在线播放| 给我免费播放毛片高清在线观看| 天天一区二区日本电影三级| 欧美性猛交╳xxx乱大交人| 国产精品电影一区二区三区| 国产91精品成人一区二区三区| 欧美成人免费av一区二区三区| 久久久久亚洲av毛片大全| 后天国语完整版免费观看| 婷婷精品国产亚洲av| 久久中文字幕人妻熟女| 成人一区二区视频在线观看| 中文字幕人妻丝袜一区二区| 国产aⅴ精品一区二区三区波| av欧美777| 日韩一卡2卡3卡4卡2021年| 老司机靠b影院| 高清毛片免费观看视频网站| 日本成人三级电影网站| 色精品久久人妻99蜜桃| 热re99久久国产66热| 国产精品,欧美在线| 99热这里只有精品一区 | 亚洲成人久久爱视频| 国产精品亚洲一级av第二区| 欧美日韩乱码在线| 亚洲国产日韩欧美精品在线观看 | 成年人黄色毛片网站| 亚洲av五月六月丁香网| 亚洲aⅴ乱码一区二区在线播放 | 18美女黄网站色大片免费观看| 人人妻人人澡人人看| 一区二区三区国产精品乱码| 精品人妻1区二区| 听说在线观看完整版免费高清| 久久这里只有精品19| 国产免费男女视频| 久久天堂一区二区三区四区| 高清毛片免费观看视频网站| 国产亚洲欧美精品永久| 亚洲一区中文字幕在线| 国产精品九九99| 正在播放国产对白刺激| 男女下面进入的视频免费午夜 | 国产亚洲精品综合一区在线观看 | 制服丝袜大香蕉在线| 国产单亲对白刺激| 99国产精品99久久久久| 亚洲精品久久成人aⅴ小说| 两性夫妻黄色片| 国产亚洲精品综合一区在线观看 | 黄色毛片三级朝国网站| АⅤ资源中文在线天堂| 看免费av毛片| 波多野结衣高清作品| 人人澡人人妻人| 亚洲男人天堂网一区| 最近最新中文字幕大全电影3 | 人成视频在线观看免费观看| 国产免费男女视频| 俄罗斯特黄特色一大片| 99久久99久久久精品蜜桃| 久久久久久大精品| 亚洲国产日韩欧美精品在线观看 | 一夜夜www| 中文资源天堂在线| 香蕉丝袜av| 国产伦一二天堂av在线观看| 99精品欧美一区二区三区四区| 国内精品久久久久久久电影| 国产精品综合久久久久久久免费| 男女视频在线观看网站免费 | 久久国产精品影院| 免费看十八禁软件| 一二三四在线观看免费中文在| 亚洲欧美一区二区三区黑人| 亚洲av成人一区二区三| 久久久水蜜桃国产精品网| 91大片在线观看| 亚洲美女黄片视频| 欧美日韩一级在线毛片| 手机成人av网站| cao死你这个sao货| 国语自产精品视频在线第100页| 满18在线观看网站| 国产精品98久久久久久宅男小说| 男女视频在线观看网站免费 | 美国免费a级毛片| 成在线人永久免费视频| 国产伦在线观看视频一区| 日韩欧美免费精品| 欧美日韩瑟瑟在线播放| 日韩av在线大香蕉| 亚洲av五月六月丁香网| 1024视频免费在线观看| 国产免费男女视频| 日本免费a在线| 国产伦在线观看视频一区| 嫩草影院精品99| 制服人妻中文乱码| 国产不卡一卡二| 日韩欧美在线二视频| 国产av一区二区精品久久| 99热这里只有精品一区 | 男女午夜视频在线观看| 女人被狂操c到高潮| 精品国产亚洲在线| 琪琪午夜伦伦电影理论片6080| 精品国产乱子伦一区二区三区| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 制服人妻中文乱码| 国产一级毛片七仙女欲春2 | 无限看片的www在线观看| 母亲3免费完整高清在线观看| 欧美日韩黄片免| 精品一区二区三区四区五区乱码| 亚洲精品一区av在线观看| 给我免费播放毛片高清在线观看| 国产一区二区三区视频了| 久99久视频精品免费| 亚洲全国av大片| 女警被强在线播放| 精品人妻1区二区| 夜夜夜夜夜久久久久| 久久国产乱子伦精品免费另类| 国产单亲对白刺激| av在线播放免费不卡| 国产激情久久老熟女| 久久精品夜夜夜夜夜久久蜜豆 | 波多野结衣高清作品| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 国产成+人综合+亚洲专区| 久久精品国产亚洲av高清一级| 美女国产高潮福利片在线看| 一个人观看的视频www高清免费观看 | 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 精品久久久久久成人av| 丰满的人妻完整版| 免费观看精品视频网站| 嫩草影院精品99| 超碰成人久久| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 真人一进一出gif抽搐免费| 午夜日韩欧美国产| 深夜精品福利| 中文字幕av电影在线播放| 村上凉子中文字幕在线| 免费在线观看黄色视频的| 欧美一区二区精品小视频在线| 99久久国产精品久久久| 久久人人精品亚洲av| 国产高清有码在线观看视频 | 精品国内亚洲2022精品成人| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区三区精品91| 级片在线观看| 亚洲真实伦在线观看| 高清毛片免费观看视频网站| 搡老熟女国产l中国老女人| 欧美激情极品国产一区二区三区| 人妻久久中文字幕网| 熟女电影av网| 69av精品久久久久久| 9191精品国产免费久久| 久久精品国产亚洲av高清一级| 免费无遮挡裸体视频| 桃红色精品国产亚洲av| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 在线观看一区二区三区| 免费在线观看黄色视频的| 天堂动漫精品| 成人国语在线视频| 国内揄拍国产精品人妻在线 | 观看免费一级毛片| 久久精品aⅴ一区二区三区四区| svipshipincom国产片| 长腿黑丝高跟| 日日夜夜操网爽| 久久人妻福利社区极品人妻图片| 不卡av一区二区三区| 一夜夜www| 一二三四在线观看免费中文在| 国产熟女午夜一区二区三区| av中文乱码字幕在线| 成人国语在线视频| 少妇被粗大的猛进出69影院| 中文字幕av电影在线播放| 叶爱在线成人免费视频播放| 国产亚洲精品一区二区www| 亚洲aⅴ乱码一区二区在线播放 | 成人av一区二区三区在线看| 日韩一卡2卡3卡4卡2021年| 99re在线观看精品视频| 伦理电影免费视频| 国产一区二区在线av高清观看| 美国免费a级毛片| 色精品久久人妻99蜜桃| 一区二区三区高清视频在线| 成人国语在线视频| 久久精品国产清高在天天线| 久久国产亚洲av麻豆专区| 亚洲国产精品成人综合色| 2021天堂中文幕一二区在线观 | 亚洲七黄色美女视频|