秦夢杰,韓曉強(qiáng),孫海飚
巖藻多糖在骨質(zhì)疏松癥中的研究進(jìn)展
秦夢杰1,韓曉強(qiáng)2,孫海飚2
1.山西醫(yī)科大學(xué)第一臨床醫(yī)學(xué)院,山西太原 030001;2.山西醫(yī)科大學(xué)第一醫(yī)院骨科,山西太原 030001
原發(fā)性骨質(zhì)疏松癥是與社會(huì)人口老齡化關(guān)系最為密切的疾病之一。多項(xiàng)研究表明,巖藻多糖可通過成骨細(xì)胞和破骨細(xì)胞對骨質(zhì)疏松癥的發(fā)生發(fā)展發(fā)揮作用。本文綜述骨質(zhì)疏松癥中巖藻多糖對成骨細(xì)胞和破骨細(xì)胞作用機(jī)制的最新研究進(jìn)展,為骨質(zhì)疏松癥的臨床治療提供理論依據(jù)。
巖藻多糖;成骨細(xì)胞;破骨細(xì)胞;炎癥反應(yīng);骨質(zhì)疏松癥
骨質(zhì)疏松癥是一種系統(tǒng)性骨骼疾病,會(huì)導(dǎo)致患者骨脆性和骨折易感性增加,被定義為比相應(yīng)年齡和種族的健康人的平均骨密度低2.5個(gè)或更多標(biāo)準(zhǔn)差的骨密度T值[1]。骨質(zhì)疏松癥是一種常見的代謝性骨骼疾病,特征是骨骼微結(jié)構(gòu)惡化和骨丟失,其臨床表現(xiàn)是患者的脊柱、髖關(guān)節(jié)、前臂遠(yuǎn)端和肱骨近端骨折率升高[2]。骨穩(wěn)態(tài)是一系列復(fù)雜且高度調(diào)節(jié)的過程,而破骨細(xì)胞的骨吸收和成骨細(xì)胞的骨基質(zhì)形成是至關(guān)重要的環(huán)節(jié)[3]。當(dāng)骨吸收速度>骨形成時(shí),骨穩(wěn)態(tài)被破壞,從而出現(xiàn)骨質(zhì)疏松,甚至發(fā)展為骨質(zhì)疏松癥。目前,臨床上常用的預(yù)防和治療骨質(zhì)疏松癥的藥物主要以雙膦酸鹽、選擇性雌激素受體調(diào)節(jié)劑、降鈣素、分子靶向藥物及中藥等為代表,上述藥物存在服用周期長、療效欠佳、不良反應(yīng)多等問題。研究表明,雙膦酸鹽雖可有效降低患者的骨折風(fēng)險(xiǎn),促進(jìn)礦化增加,但其引發(fā)的罕見且嚴(yán)重的不良反應(yīng)較多[4-6]。
巖藻多糖是發(fā)現(xiàn)于海洋大型藻類中的高度支化雜多糖,具有抗炎、抗氧化、抗腫瘤、免疫調(diào)節(jié)、刺激成骨細(xì)胞活性和礦化等生物學(xué)特性,且具有低毒性等優(yōu)點(diǎn)[7-8]。巖藻多糖主要由270kDa的多糖組成,低分子量巖藻多糖主要由760Da的寡糖組成,低分子量巖藻多糖比巖藻多糖具有更高的活性。研究表明,純化的巖藻多糖可顯著清除自由基形成,同時(shí)增加堿性磷酸酶(alkaline phosphatase,ALP)的活性、礦化和成骨細(xì)胞的特異性基因表達(dá)[9]。巖藻多糖的生物學(xué)效應(yīng)與其結(jié)構(gòu)、組成、分子量、硫酸化程度、分子幾何形狀、來源等密切相關(guān);且?guī)r藻多糖在體內(nèi)、體外發(fā)揮的生物活性作用也不盡相同[10]。
HWANG等[8]研究表明,低分子量巖藻多糖在體外可引發(fā)成骨分化、促進(jìn)鼠前成骨細(xì)胞的體外成骨分化,誘導(dǎo)細(xì)胞增殖、細(xì)胞外基質(zhì)礦化和成骨細(xì)胞系特異性基因表達(dá)增加。該結(jié)果與從褐飛虱細(xì)胞壁中提取的低分子量巖藻多糖增加成骨細(xì)胞的增殖并提高生物利用度獲得的結(jié)果相互佐證[11]。
低分子量巖藻多糖對成骨細(xì)胞分化過程中的ALP活性、骨鈣素分泌和礦化的影響包括細(xì)胞增殖、矩陣成熟和基質(zhì)礦化。成骨細(xì)胞的分化過程嚴(yán)格受組蛋白的表觀遺傳修飾[12]。
低分子量巖藻多糖不僅能增強(qiáng)鼠前成骨細(xì)胞的增殖,還可增強(qiáng)成骨細(xì)胞的分化。低分子量巖藻多糖對成骨細(xì)胞分化標(biāo)志物基因表達(dá)水平的影響是一個(gè)復(fù)雜的過程,涉及成骨細(xì)胞分化、骨基質(zhì)蛋白合成和沉積。骨形成蛋白(bone morphogenetic protein,BMP)被稱為細(xì)胞因子或代謝原,其通過增加ALP和骨鈣素的表達(dá)來刺激成骨細(xì)胞的分化。低分子量巖藻多糖對BMP2具有特異性增強(qiáng)作用,BMP2可增加ALP和骨鈣素基因的表達(dá),級聯(lián)式促進(jìn)成骨。骨細(xì)胞外基質(zhì)由膠原蛋白和非膠原蛋白組成,Ⅰ型膠原(collagen Ⅰ,COLⅠ)構(gòu)成成熟骨中總有機(jī)細(xì)胞外基質(zhì)的90%,如骨唾液酸蛋白。低分子量巖藻多糖促使COLⅠ信使核糖核酸(messenger RNA,mRNA)水平顯著增加,刺激骨唾液酸蛋白mRNA表達(dá),增加成骨細(xì)胞中COLⅠ的水平[13]。馬尾藻提取物可在體外刺激骨形成,且其對年輕和老年大鼠的骨骼成分具有合成代謝作用。Tae等[14]在兔模型體內(nèi)研究發(fā)現(xiàn),巖藻多糖可促進(jìn)其骨形成。
破骨細(xì)胞是源自造血干細(xì)胞的組織特異性巨噬細(xì)胞。在巨噬細(xì)胞集落刺激因子(macrophage colony stimulating factor,M-CSF)存在下,造血干細(xì)胞作用于巨噬細(xì)胞集落形成單元,當(dāng)被核因子κB受體活化因子配體(receptor activator of nuclear factor-κB ligand,RANκL)-核因子κB受體活化因子(receptor activator of nuclear factor-κB,RANκB)信號(hào)激活時(shí),其會(huì)進(jìn)一步分化為單核破骨細(xì)胞,隨后融合成為多核破骨細(xì)胞,過度增殖和分化在骨質(zhì)疏松癥的發(fā)病機(jī)制中起關(guān)鍵作用[15]。破骨細(xì)胞關(guān)聯(lián)受體(osteoclast associated receptor,OSCAR)是一種近期被發(fā)現(xiàn)的破骨細(xì)胞特異性受體,其可能是誘導(dǎo)破骨細(xì)胞生成的重要因素,低分子量巖藻多糖可抑制OSCAR mRNA的表達(dá),進(jìn)而抑制細(xì)胞向破骨細(xì)胞的分化,使得破骨細(xì)胞的數(shù)量和骨吸收率降低。Jin等[16]在低分子量巖藻多糖處理去卵巢大鼠的實(shí)驗(yàn)中證實(shí),低分子量巖藻多糖可限制破骨細(xì)胞標(biāo)記基因TRAP和NFATc1的表達(dá),抑制破骨細(xì)胞增殖,從而使破骨細(xì)胞生成更少,最大限度地減少骨丟失;同時(shí),低分子量巖藻多糖可降低去卵巢大鼠的骨轉(zhuǎn)換率及血清Ⅰ型前膠原氨基端原肽、Ⅰ型膠原C端肽的水平,增加骨形成的表面積、礦化時(shí)間及股骨機(jī)械強(qiáng)度,最終證實(shí)低分子量巖藻多糖可抑制破骨細(xì)胞前體分化、成熟和骨吸收,改善骨密度損失和小梁退化。另有研究表明,巖藻多糖可通過抑制破骨細(xì)胞分化因子誘導(dǎo)的絲裂原活化蛋白激酶激活、下調(diào)參與破骨細(xì)胞分化和吸收的基因,抑制骨髓巨噬細(xì)胞的破骨細(xì)胞生成[17]。
骨重塑是通過骨形成和骨吸收之間的動(dòng)態(tài)平衡實(shí)現(xiàn)的,絕經(jīng)后女性體內(nèi)成骨細(xì)胞的骨形成基因表達(dá)及能力低于破骨細(xì)胞的骨吸收基因表達(dá)和能力,進(jìn)而導(dǎo)致絕經(jīng)后女性易出現(xiàn)骨質(zhì)疏松。破骨細(xì)胞生成和破骨細(xì)胞前體增殖的過程取決于M-CSF和RANKL這2種關(guān)鍵的細(xì)胞因子[18]。RANKL與破骨細(xì)胞前體細(xì)胞膜上的核因子κB(nuclear factor-κB,NF-κB)蛋白受體激活劑結(jié)合激活核因子激活的B細(xì)胞的κ-輕鏈增強(qiáng)信號(hào)通路。NF-κB是NFATc1表達(dá)水平的關(guān)鍵核激活劑,這可能導(dǎo)致單核破骨細(xì)胞被激活,進(jìn)而提高骨破壞率。
NF-κB信號(hào)通路的激活是破骨細(xì)胞分化的關(guān)鍵,由RANKL誘導(dǎo)[19];NFATc1是RANKL誘導(dǎo)的破骨細(xì)胞生成的主要轉(zhuǎn)錄調(diào)節(jié)因子[20]。研究表明,NFATc1通過上調(diào)破骨細(xì)胞相關(guān)基因的表達(dá)產(chǎn)物,如組織蛋白酶K、TRAP和基質(zhì)金屬蛋白酶-9,在破骨細(xì)胞分化和功能中發(fā)揮重要作用;NFATc1是通過激活參與破骨細(xì)胞分化和活性基因的轉(zhuǎn)錄來促進(jìn)RANKL誘導(dǎo)的破骨細(xì)胞生成的關(guān)鍵轉(zhuǎn)錄因子[21]。NFATc1對NF-κB的誘導(dǎo)較為重要,其可能通過NF-κB與NFATc1的啟動(dòng)子區(qū)域結(jié)合而發(fā)生,導(dǎo)致NFATc1表達(dá)增加,隨后RANKL誘導(dǎo)破骨細(xì)胞分化[22]。體外研究表明,巖藻多糖可抑制RANKL誘導(dǎo)的骨髓源性巨噬細(xì)胞中破骨細(xì)胞的形成,主要是通過抑制NF-κB的激活,這是破骨細(xì)胞分化的先決條件[23-24]。Lu等[25]研究發(fā)現(xiàn)巖藻多糖可較好地抑制RANKL刺激的巨噬細(xì)胞中破骨細(xì)胞分化、破骨細(xì)胞骨吸收活性和炎癥性骨丟失,其是通過調(diào)節(jié)Akt/糖原合酶激酶3β(glycogen synthase kinase 3β,GSK3β)/PTEN信號(hào)傳導(dǎo)通路、抑制細(xì)胞內(nèi)Ca2+水平、抑制鈣調(diào)磷酸酶活性的增加而介導(dǎo)、抑制核因子激活的T細(xì)胞c1向細(xì)胞核易位。另有研究表明,從刺參中提取的褐藻糖膠可抑制破骨細(xì)胞的生成[26]。
Jin等[16]研究表明,低分子量巖藻多糖可抑制RANKL受體激活劑和M-CSF誘導(dǎo)的鼠巨噬細(xì)胞分化為耐酒石酸酸性磷酸酶陽性破骨細(xì)胞,并減少骨破骨細(xì)胞的吸收表面;低分子量巖藻多糖可抑制酸性磷酸酶、基質(zhì)金屬蛋白酶9、活化T細(xì)胞核激活劑1和破骨細(xì)胞相關(guān)免疫球蛋白樣受體mRNA的表達(dá),它們是破骨細(xì)胞分化信號(hào)通路的組成部分;同時(shí)研究表明低分子量巖藻多糖可在體外抑制RANKL和M-CSF將鼠巨噬細(xì)胞誘導(dǎo)為成熟破骨細(xì)胞。
骨重建過程必不可少的因素之一是成骨細(xì)胞的成熟、分化。成骨細(xì)胞是間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)來源的小單核細(xì)胞,其分化受多種生長因子、細(xì)胞因子和環(huán)境因子的調(diào)節(jié)[27]。MSC成骨細(xì)胞譜系的發(fā)育受特定轉(zhuǎn)錄因子、生長因子和信號(hào)通路等多種因素的調(diào)節(jié)[28]。研究表明,用高分子量巖藻多糖作用于細(xì)胞模型系統(tǒng),所有受試巖藻多糖提取物對血管生成過程均表現(xiàn)出負(fù)面影響,進(jìn)而對骨的形成產(chǎn)生不利影響[29]。
研究發(fā)現(xiàn),褐藻糖膠可誘導(dǎo)人脂肪源性干細(xì)胞14和MG-63細(xì)胞的成骨分化。Cho等[30]研究表明巖藻多糖可增加成骨細(xì)胞中與骨礦化相關(guān)的ALP、骨鈣素和BMP-2的水平,可顯著誘導(dǎo)成骨細(xì)胞分化。另外,Kim等[31]通過體外細(xì)胞實(shí)驗(yàn)發(fā)現(xiàn),褐藻糖膠誘導(dǎo)人骨髓MSC增殖,且顯著增加ALP活性、鈣積累和成骨細(xì)胞特異性基因的表達(dá)。巖藻多糖可通過增加磷酸化,誘導(dǎo)BMP的表達(dá),并刺激細(xì)胞外信號(hào)相關(guān)激酶、c-Jun氨基端激酶(c-Jun N-terminal kinase,JNK)和p38絲裂原激活蛋白激酶的激活,最終發(fā)現(xiàn)并證明褐藻糖膠通過激活ERK和JNK,通過BMP2-Smad1/5/8信號(hào)誘導(dǎo)成骨細(xì)胞分化[32]。研究發(fā)現(xiàn),巖藻多糖可刺激人脂肪干細(xì)胞成骨分化,而低于30kDa巖藻多糖可促進(jìn)人成骨細(xì)胞增殖、骨鈣素分泌和礦物質(zhì)沉積,提高ALP活性[33]。
綜上,巖藻多糖對成骨細(xì)胞增殖的影響可隨巖藻多糖的濃度、受試細(xì)胞和分子量的大小而產(chǎn)生不同的影響。
炎癥因子、炎癥細(xì)胞等免疫因素也可導(dǎo)致骨質(zhì)疏松癥的發(fā)展。研究表明,炎癥細(xì)胞因子可促進(jìn)破骨細(xì)胞的生成和骨吸收,推測其可能由于成骨細(xì)胞前體和成熟成骨細(xì)胞促進(jìn)RANKL的生成,且與RANKL的協(xié)同作用可放大RANKL/RANK的調(diào)節(jié)過程。免疫炎癥細(xì)胞和骨細(xì)胞之間的相互作用通過促進(jìn)骨吸收,導(dǎo)致骨代謝失衡[34]。脂多糖(lipopolysaccharide,LPS)是革蘭陰性細(xì)菌的膜成分,可增強(qiáng)各種免疫細(xì)胞的募集,從而進(jìn)一步激活促破骨細(xì)胞生成細(xì)胞因子的分泌及破骨細(xì)胞形成和骨吸收所必需的前成骨細(xì)胞融合和存活;另外,LPS在促進(jìn)鼠巨噬細(xì)胞中的破骨細(xì)胞分化和破骨細(xì)胞相關(guān)基因表達(dá)中也具有關(guān)鍵影響[35]。抑制促炎因子誘導(dǎo)的破骨細(xì)胞過度生成可能是減少LPS誘導(dǎo)的體內(nèi)炎癥性骨丟失的關(guān)鍵靶點(diǎn)。研究證實(shí),巖藻多糖通過免疫調(diào)節(jié)減少肥大細(xì)胞脫粒和細(xì)胞因子釋放,下調(diào)白細(xì)胞介素-22,可局部和全身調(diào)節(jié)動(dòng)物的免疫系統(tǒng),在LPS刺激的巨噬細(xì)胞中發(fā)揮抗炎作用[36]。
巖藻多糖通過對成骨細(xì)胞和破骨細(xì)胞產(chǎn)生影響,進(jìn)而影響骨質(zhì)疏松癥的發(fā)生、發(fā)展過程。但目前關(guān)于巖藻多糖對成骨細(xì)胞和破骨細(xì)胞作用的研究大都是動(dòng)物實(shí)驗(yàn)研究,關(guān)于人體的研究相對較少,缺乏更進(jìn)一步的臨床研究數(shù)據(jù)和結(jié)果。因此,仍需進(jìn)一步探索研究巖藻多糖對成骨細(xì)胞和破骨細(xì)胞的作用機(jī)制,為探索骨骼疾病的治療方法提供更多依據(jù)。
[1] RIANCHO J A, PERIS P, GONZáLEZ-MACíAS J, et al. Executive summary clinical practice guideline of postmenopausal, glucocortcioid-induced and male osteoporosis (2022 update). Spanish society for bone and mineral metabolism investigation (SEIOMM)[J]. Rev Clin Esp (Barc), 2022, 222(7): 432–439.
[2] YANG T L, SHEN H, LIU A, et al. A road map for understanding molecular and genetic determinants of osteoporosis[J]. Nat Rev Endocrinol, 2020, 16(2): 91–103.
[3] SONG S, GUO Y, YANG Y, et al. Advances in pathogenesis and therapeutic strategies for osteoporosis[J]. Pharmacol Ther, 2022, 237: 108168.
[4] WENG B, CHEN C. Effects of bisphosphonate on osteocyte proliferation and bone formation in patients with diabetic osteoporosis[J]. Comput Math Methods Med, 2022, 2022: 2368564.
[5] MALLUCHE H H, CHEN J, LIMA F, et al. Bone quality and fractures in women with osteoporosis treated with bisphosphonates for 1 to 14?years[J]. JBMR Plus, 2021, 5(11): e10549.
[6] TAKAHATA M, SHIMIZU T, YAMADA S, et al. Bone biopsy findings in patients receiving long-term bisphosphonate therapy for glucocorticoid-induced osteoporosis[J]. J Bone Miner Metab, 2022, 40(4): 613–622.
[7] WANG Y, XING M, CAO Q, et al. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies[J]. Mar Drugs, 2019, 17(3): 183.
[8] HWANG P A, HUNG Y L, PHAN N N, et al. The in vitro and in vivo effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties[J]. Cytotechnology, 2016, 68(4): 1349–1359.
[9] DEVI G V Y, NAGENDRA A H, SHENOY P S, et al. Isolation and purification of fucoidan from Sargassum ilicifolium: Osteogenic differentiation potential in mesenchymal stem cells for bone tissue engineering[J]. J Taiwan Inst Chem Eng, 2022, 136: 104418.
[10] SILVA M M C L, DOS SANTOS LISBOA L, PAIVA W S, et al. Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus[J]. Int J Biol Macromol, 2022, 216: 757–767.
[11] CHANGOTADE S I, KORB G, BASSIL J, et al. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties[J]. J Biomed Mater Res A, 2008, 87(3): 666–675.
[12] 李建良, 張濛, 麥嘉樂, 等. 組蛋白甲基轉(zhuǎn)移酶2(SMYD2)抑制劑LLY-507對成骨分化的影響[J]. 中國骨質(zhì)疏松雜志, 2022, 28(3): 373–379.
[13] PARK S J, LEE K W, LIM D S, et al. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells[J]. Stem Cells Dev, 2012, 21(12): 2204–2211.
[14] TAE YOUNG A, KANG J H, KANG D J, et al. Interaction of stem cells with nano hydroxyapatite- fucoidan bionanocomposites for bone tissue regeneration[J]. Int J Biol Macromol, 2016, 93(Pt B): 1488–1491.
[15] NEMETH K, SCHOPPET M, AL-FAKHRI N, et al. The role of osteoclast-associated receptor in osteoimmunology[J]. J Immunol, 2011, 186(1): 13–18.
[16] JIN X, ZHU L, LI X, et al. Low?molecular weight fucoidan inhibits the differentiation of osteoclasts and reduces osteoporosis in ovariectomized rats[J]. Mol Med Rep, 2017, 15(2): 890–898.
[17] KIM Y W, BAEK S H, LEE S H, et al. Fucoidan, a sulfated polysaccharide, inhibits osteoclast differentiation and function by modulating RANKL signaling[J]. Int J Mol Sci, 2014, 15(10): 18840–18855.
[18] 董偉, 于靜, 戚孟春, 等. M-CSF、RANKL濃度及M-CSF預(yù)誘導(dǎo)對破骨細(xì)胞生成影響的研究[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2010, 27(6): 1336–1340.
[19] YU M, QI X, MORENO J L, et al. NF-κB signaling participates in both RANKL- and IL-4-induced macrophage fusion: Receptor cross-talk leads to alterations in NF-κB pathways[J]. J Immunol, 2011, 187(4): 1797–1806.
[20] 王琮仁, 孔長庚, 郭祥, 等. 阿托伐他汀通過NFATc1信號(hào)通路促進(jìn)大鼠骨質(zhì)疏松性骨折愈合[J]. 臨床外科雜志, 2022, 30(6): 583–585.
[21] 胡維帆, 鄭力, 李大地, 等. 過表達(dá)miR-25通過NFATc1信號(hào)通路調(diào)控鈦顆粒誘導(dǎo)的破骨細(xì)胞分化[J]. 中國組織工程研究, 2022, 26(5): 682–687.
[22] WEI W, PENG C, GU R, et al. Urolithin A attenuates RANKL-induced osteoclastogenesis by co-regulating the p38MAPK and Nrf2 signaling pathway[J]. Eur J Pharmacol, 2022, 921: 174865.
[23] 戴振寧, 鄭蔚晗, 利時(shí)雨. 核因子κB受體活化因子配體和腫瘤壞死因子α經(jīng)炎性牙周膜干細(xì)胞外泌體促進(jìn)破骨細(xì)胞分化[J]. 華西口腔醫(yī)學(xué)雜志, 2022, 40(4): 377–385.
[24] MENG J, ZHANG X, GUO X, et al. Briarane-type diterpenoids suppress osteoclastogenisis by regulation of Nrf2 and MAPK/NF-kB signaling pathway[J]. Bioorg Chem, 2021, 112: 104976.
[25] LU S H, HSIA Y J, SHIH K C, et al. Fucoidan prevents RANKL-stimulated osteoclastogenesis and LPS-induced inflammatory bone loss via regulation of Akt/GSK3β/ PTEN/NFATc1 signaling pathway and calcineurin activity[J]. Mar Drugs, 2019, 17(6): 345.
[26] KARIYA Y, MULLOY B, IMAI K, et al. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis[J]. Carbohydr Res, 2004, 339(7): 1339–1346.
[27] PONZETTI M, RUCCI N. Osteoblast Differentiation and signaling: Established concepts and emerging topics[J]. Int J Mol Sci, 2021, 22(13): 6651.
[28] BERARDI S, CORRADO A, MARUOTTI N, et al. Osteoblast role in the pathogenesis of rheumatoid arthritis[J]. Mol Biol Rep, 2021, 48(3): 2843–2852.
[29] WANG F, XIAO Y, NEUPANE S, et al. Influence of fucoidan extracts from different fucus species on adult stem cells and molecular mediators in vitro models for bone formation and vascularization[J]. Mar Drugs, 2021, 19(4): 194.
[30] CHO Y S, JUNG W K, KIM J A, et al. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation[J]. Food Chem, 2009, 116(4): 990–994.
[31] KIM B S, KANG H J, PARK J Y, et al. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells[J]. Exp Mol Med, 2015, 47(1): e128.
[32] PARK K R, KIM B, LEE J Y, et al. Effects of scoparone on differentiation, adhesion, migration, autophagy and mineralization through the osteogenic signalling pathways[J]. J Cell Mol Med, 2022, 26(16): 4520–4529.
[33] CHANGOTADE S I, KORB G, BASSIL J, et al. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties[J]. J Biomed Mater Res A, 2008, 87: 666–675.
[34] 徐蕾, 張春芳, 韓國柱, 等. 骨質(zhì)疏松發(fā)病機(jī)制的研究進(jìn)展[J]. 大連醫(yī)科大學(xué)學(xué)報(bào), 2022, 44(5): 433–439.
[35] HOU G Q, GUO C, SONG G H, et al. Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expressionin RAW264.7 cells[J]. Int J Mol Med, 2013, 32(2): 503–510.
[36] CHEN B R, HSU K T, HSU W H, et al. Immunomodulationand mechanisms of fucoidan from Cladosiphon okamuranus ameliorates atopic dermatitis symptoms[J]. Int J Biol Macromol, 2021, 189: 537–543.
(2022–11–29)
(2023–09–03)
R589.5
A
10.3969/j.issn.1673-9701.2023.27.034
韓曉強(qiáng),電子信箱:jack98193@163.com