翟義遠, 李俊杰, 任潔宇, 唐旻
心臟代謝損傷與適應(yīng)性代償在心力衰竭發(fā)生發(fā)展中的作用*
翟義遠, 李俊杰, 任潔宇, 唐旻△
(南華大學(xué)衡陽醫(yī)學(xué)院,湖南 衡陽 421001)
心臟代謝;心力衰竭;代謝重塑;能量底物
心臟作為機體非常重要的器官,可以利用脂肪酸、葡萄糖、酮體以及氨基酸等能量物質(zhì)為心臟提供能量。心臟能量底物代謝為心臟收縮提供能量的同時,還產(chǎn)生大量代謝中間產(chǎn)物。代謝中間產(chǎn)物不僅為生物大分子合成提供原料,還參與維持細(xì)胞形態(tài)與功能,如心肌細(xì)胞代謝中間產(chǎn)物葡萄糖-6-磷酸(glucose-6-phosphate, G6P)可以激活哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信號[1]。
心臟為全身運輸氧氣和營養(yǎng)物質(zhì),當(dāng)心臟泵血功能受損時,常常伴隨著能量缺乏、心肌細(xì)胞代謝紊亂和代謝能力的降低,即心力衰竭。代謝紊亂是心臟發(fā)生病理性重塑的原因。在這篇綜述中,我們主要概述了心肌細(xì)胞代謝的主要途徑以及在病理條件下的異常變化,以期為心力衰竭的預(yù)防和治療提供參考。
在正常生理條件下,70%~90%的心臟供能是由脂肪酸氧化產(chǎn)生,10%~30%來自葡萄糖、氨基酸和酮體等其他能量底物的氧化[2]。見圖1。
Figure 1. Cardiac energy substrate metabolism. GLUTs: glucose transporters; G6P: glucose-6-phosphate; F6P: fructose-6-phosphate; MPC: mitochondrial pyruvate carrier; PPP: pentose phosphate pathway; HBP: hexosamine biosynthetic pathway; MCTs: monocarboxylate transporters; CPT1/2: carnitine palmitoyltransferase-1/2; AcAc: acetoacetic acid; BCAA: branched-chain amino acid; BCKA: branched-chain keto acids.
PPAR: peroxisome proliferators-activated receptor; CPT1b: carnitine palmitoyltransferase-1b; ACC: acetyl CoA carboxylase; GLUT 1: glucose transporter; G6PD: 6-phosphogluconate dehydrogenase; BDH1: D-β-hydroxybutyrate dehydrogenase 1; SCOT: succinyl-CoA:3-oxoacid CoA transferase; BCAT: branched-chain amino-transaminase; FA: fatty acid; G: glucose; PPP: pentose phosphate pathway; KB: ketone bodies; BCAA: branched-chain amino acid.
1.1糖脂代謝脂肪酸作為心臟主要能量底物被心肌細(xì)胞攝取,活化為脂酰輔酶A,隨后進入線粒體進行脂肪酸β-氧化,生成乙酰輔酶A[3]。葡萄糖作為第二大能量代謝底物進入心肌細(xì)胞后,首先被己糖激酶磷酸化為G6P,隨后進入糖酵解途徑產(chǎn)生丙酮酸。丙酮酸進入線粒體中,在丙酮酸脫氫酶(pyruvate dehydrogenase, PDH)的催化下產(chǎn)生乙酰輔酶A。乙酰輔酶A進入三羧酸(tricarboxylic acid, TCA)循環(huán)產(chǎn)生大量能量[4]。
糖酵解途徑的中間產(chǎn)物還可進入戊糖磷酸途徑(pentose phosphate pathway, PPP)和己糖胺生物合成途徑(hexosamine biosynthetic pathway, HBP)。G6P進入PPP途徑,產(chǎn)生大量NADPH,參與維持細(xì)胞內(nèi)氧化應(yīng)激狀態(tài)[4]。果糖-6-磷酸(glucose 6-phosphate, F6P)進入HBP途徑,和谷氨酰胺一起被限速酶谷氨酰胺果糖-6-磷酸酰胺轉(zhuǎn)移酶催化為葡糖胺-6-磷酸,并生成終產(chǎn)物尿苷二磷酸--乙酰葡萄糖胺(uridine diphosphate-acetylglucosamine, UDP-GlcNAc),UDP-GlcNAc是內(nèi)質(zhì)網(wǎng)和高爾基體中發(fā)生蛋白質(zhì)糖基化的主要底物[4]。
1.2酮體代謝酮體雖然不是心臟所需的主要能量代謝底物,但在衰竭心臟中作為“超級燃料”發(fā)揮重要作用。酮體包括β-羥丁酸(β-hydroxybutyrate,β-OHB)、乙酰乙酸(acetoacetic acid, AcAc)和丙酮,其中β-OHB是參與心臟代謝的主要酮體。酮體經(jīng)單羧酸轉(zhuǎn)運蛋白(monocarboxylate transporters, MCTs)進入線粒體中進行氧化,產(chǎn)生乙酰輔酶A,進入TCA循環(huán)[5]。
1.3支鏈氨基酸代謝心臟還可以利用亮氨酸、異亮氨酸和纈氨酸等支鏈氨基酸(branched-chain amino acid, BCAA)作為能源物質(zhì)。BCAA通過線粒體支鏈氨基轉(zhuǎn)氨酶(branched-chain amino-transaminase, BCATm)發(fā)生轉(zhuǎn)氨基作用,生成支鏈酮酸(branched-chain keto acids, BCKA);BCKA在線粒體支鏈α-酮酸脫氫酶的作用下產(chǎn)生進入TCA循環(huán)的乙酰輔酶A或琥珀酰輔酶A[6]。
在正常生理條件下,心臟主要利用脂肪酸供能,而當(dāng)心臟處于應(yīng)激等不良狀態(tài)時會改變心臟能量底物的利用模式[7-9]。例如,橫向主動脈縮窄(transverse aortic constriction, TAC)手術(shù)誘導(dǎo)的壓力超負(fù)荷心力衰竭小鼠表現(xiàn)為心臟肥大和心臟收縮功能障礙,且伴隨著代謝模式發(fā)生改變,即脂肪酸攝取和氧化降低,葡萄糖攝取和糖酵解增加[9-12]。那么心臟功能障礙是否由于代謝紊亂引起的呢?
2.1脂肪酸代謝改變與心力衰竭發(fā)生的影響
2.1.1脂肪酸氧化損傷誘導(dǎo)心力衰竭過氧化物酶體增殖物激活受體(peroxisome proliferators-activated receptors, PPARs)家族成員參與調(diào)控脂肪酸氧化的基因。敲除或者基因小鼠,參與脂肪酸氧化的酶表達下調(diào),表現(xiàn)出嚴(yán)重的心臟功能障礙[13-14],提示脂肪酸氧化損傷是誘導(dǎo)心力衰竭發(fā)生的重要原因。
維持脂肪酸的氧化水平可以改善壓力超負(fù)荷誘導(dǎo)的心力衰竭。心臟特異性過表達PPARα或用PPARα激動劑處理小鼠,脂肪酸氧化增強,可以改善TAC誘導(dǎo)的心力衰竭,維持心肌能量與心臟功能[15]。乙酰輔酶A羧化酶(acetyl CoA carboxylase, ACC)參與脂肪酸合成,催化生成丙二酰輔酶A,而丙二酰輔酶A抑制脂肪酸氧化。心臟特異性ACC2敲除小鼠,脂肪酸氧化增加,改善了TAC誘導(dǎo)的心臟能量代謝紊亂,維持心臟功能[10]。給TAC處理的脂肪酸轉(zhuǎn)運蛋白CD36敲除小鼠喂食中鏈脂肪酸能夠顯著改善其心臟功能(中鏈脂肪酸獨立于CD36進入心肌細(xì)胞)[7, 9],進一步提示脂肪酸氧化受損是心力衰竭發(fā)生發(fā)展的一個顯著特征。
相反地,降低脂肪酸氧化水平將進一步加劇TAC誘導(dǎo)的心力衰竭表型。心臟特異性敲除CD36小鼠,脂肪酸氧化降低,雖然沒有觀察到心臟功能障礙,但加劇了TAC誘導(dǎo)的心臟功能障礙,加速了心臟從代償性肥厚向心力衰竭的進展[7, 9]。敲除肉堿棕櫚酰轉(zhuǎn)移酶-1b (carnitine palmitoyltransferase -1b, CPT1b)基因(參與活化脂肪酸轉(zhuǎn)運)的一個拷貝同樣會進一步加劇TAC誘導(dǎo)的脂肪酸氧化降低,表現(xiàn)為更嚴(yán)重的心肌肥厚和心功能障礙[8],提示脂肪酸氧化損傷增加了心力衰竭的易感性。
2.1.2脂肪酸氧化增加將降低心臟能量利用效率在部分心力衰竭患者心臟中觀察到了脂肪酸攝取和氧化增加的現(xiàn)象[16-17]。在或者受體缺陷小鼠中,心臟脂肪酸氧化增加,導(dǎo)致乙酰輔酶A以及還原型黃素腺嘌呤二核苷酸和還原型煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide reduced, NADH)增加,從而激活解偶聯(lián)蛋白。UCP作為線粒體膜上的質(zhì)子轉(zhuǎn)運蛋白,介導(dǎo)質(zhì)子從線粒體膜外向線粒體基質(zhì)側(cè)回流,氧化磷酸化解偶聯(lián)[18-20]。由此可見,脂肪酸氧化的增加會降低心臟的能量利用效率,損傷心臟功能。
2.2衰竭心臟中的葡萄糖代謝變化
2.2.1葡萄糖利用增加是對衰竭心臟能量缺乏狀態(tài)下的適應(yīng)性代償多數(shù)心力衰竭病人心肌脂肪酸氧化降低的同時,常常伴隨著葡萄糖利用的增加,主要是糖酵解的增加[7, 9, 14]。在小鼠心臟中特異性過表達葡萄糖轉(zhuǎn)運蛋白1(glucosetransporter 1, GLUT1),增加葡萄糖攝取和糖酵解,可以改善升主動脈縮窄誘導(dǎo)的心臟收縮功能障礙,提示衰竭心臟中葡萄糖利用增加可能是能量缺乏狀態(tài)下的一種適應(yīng)性代償過程[11]。
2.2.2糖酵解與有氧氧化解偶聯(lián)促進心力衰竭的發(fā)生葡萄糖利用包括糖酵解和葡萄糖的有氧氧化這兩個階段。衰竭心臟中,糖酵解增加并不一定總是伴隨著葡萄糖氧化的同步增加[21-22]。高鹽飲食喂食Dahl鹽敏感大鼠GLUT1表達增加,糖酵解增加,但葡萄糖的有氧氧化并沒有發(fā)生變化,糖酵解與葡萄糖氧化解偶聯(lián),表現(xiàn)為心臟肥大和舒張功能障礙[22]。糖酵解終產(chǎn)物丙酮酸不進入葡萄糖的有氧氧化階段,在LDHA的催化下轉(zhuǎn)化為胞質(zhì)乳酸[21-22]。乳酸積累造成質(zhì)子H+濃度升高[23-26]。H+與Ca2+競爭結(jié)合影響肌肉收縮,同時激活了Na+/H+和Na+/Ca+離子通道的交換活性,導(dǎo)致細(xì)胞內(nèi)Ca+超載以及細(xì)胞死亡,從而引發(fā)心律失常,損害心臟功能[26]。二氯乙酸鹽(dichloroacetate , DCA)增加心肌細(xì)胞中PDH的活性,促進葡萄糖氧化,降低血漿乳酸和丙酮酸水平,可以改善高鹽喂食Dahl鹽敏感大鼠的心力衰竭表型[27]。
2.2.3戊糖磷酸途徑產(chǎn)物NADPH維持心肌細(xì)胞氧化應(yīng)激水平PPP途徑是體內(nèi)NADPH的重要來源,NADPH可以維持谷胱甘肽(GSH)的還原狀態(tài),保護心肌細(xì)胞免受氧化應(yīng)激誘導(dǎo)的細(xì)胞死亡[27-28]。敲除PPP途徑的關(guān)鍵酶6-磷酸葡萄糖脫氫酶(6-phosphogluconate dehydrogenase, G6PD)進一步加劇心肌梗死或者壓力超負(fù)荷引起的心臟功能障礙[28]。DCA處理改善高鹽喂食Dahl鹽敏感大鼠的心力衰竭表型可能也與DCA對PPP途徑的激活有關(guān)[27]。因此推測PPP途徑激活是改善心肌細(xì)胞氧化應(yīng)激的一種重要方式。
但也有研究表明,衰竭心臟中PPP途徑激活增加NADPH水平的同時,也增加了NADPH氧化酶的活性,促進了超氧陰離子的產(chǎn)生[29-30]。因此,PPP途徑所介導(dǎo)的NADPH平衡在心力衰竭的發(fā)生發(fā)展過程中扮演著重要角色。
2.3酮體是心臟能量缺乏時的重要替代燃料心力衰竭的發(fā)生還伴隨著酮體代謝的增加。TAC誘導(dǎo)的壓力超負(fù)荷心力衰竭小鼠模型中,脂肪酸利用下降,伴隨著酮體利用增加[31]。人類終末期心力衰竭患者同樣表現(xiàn)出心肌酮體利用增加的現(xiàn)象[32],提示酮體在發(fā)生心力衰竭的心臟中可能作為脂肪酸氧化損傷的替代燃料。
心臟特異性敲除酮體代謝過程中的酶,如D-β-羥丁酸脫氫酶1(D-β-hydroxybutyrate dehydrogenase 1,BDH1)或者琥珀酰輔酶A:3-氧酸輔酶A轉(zhuǎn)移酶(succinyl-CoA:3-oxoacid CoA transferase, SCOT),酮體氧化代謝受損,導(dǎo)致壓力超負(fù)荷或者缺血性應(yīng)激誘導(dǎo)的心臟功能障礙以及病理重構(gòu)更加嚴(yán)重[33-34]。相反,心臟特異性過表達BDH1可以減輕TAC誘導(dǎo)的心力衰竭[35]。
生酮飲食喂食TAC誘導(dǎo)的心力衰竭小鼠,或者對擴張型心肌病的犬心動過速模型輸注β-OHB,可以改善心臟的病理性重塑和心臟功能障礙,對心臟具有顯著的保護作用[33, 36]。對心力衰竭患者輸注β-OHB同樣可以顯著改善患者的血流動力學(xué)和心臟功能[37]。增加酮體的氧化可以增加衰竭心臟中ATP的產(chǎn)生,是扭轉(zhuǎn)衰竭心臟能量不足的一種嘗試。
2.4支鏈氨基酸氧化損傷導(dǎo)致心臟功能障礙壓力過載誘導(dǎo)的心力衰竭小鼠和人類心肌病患者心臟中,參與支鏈氨基酸分解代謝酶的表達減少,BCAA的氧化代謝受損,表現(xiàn)為BCAA及其代謝中間產(chǎn)物BCKA顯著積累[38]。在BCAA氧化受損的小鼠中(如BCATm敲除小鼠或BCAT2無義突變小鼠,蛋白磷酸酶PP2Cm敲除小鼠),BCAA和BCKA顯著積累[38-40]。BCAA 可以激活mTOR信號,小鼠表現(xiàn)出心臟肥大、心臟電化學(xué)改變和心律失常率增加[39-40]。BCKA可以直接抑制線粒體復(fù)合體-Ⅰ 介導(dǎo)的呼吸作用,導(dǎo)致線粒體功能受損,從而促進心肌線粒體超氧化物的產(chǎn)生[38],提示異常的BCAA分解代謝會導(dǎo)致心臟收縮功能障礙。
α-酮酸脫氫酶激酶的抑制劑BT2促進BCAA分解代謝,可以顯著減輕了TAC誘導(dǎo)的心臟功能障礙[38, 41]。而敲除PP2Cm,BCAA氧化受損,會進一步加劇TAC小鼠的收縮功能障礙[38]。BCAA及其代謝中間產(chǎn)物BCKA的積累促進了心力衰竭的發(fā)展,增強BCAA的分解代謝活性可以改善心臟功能。
葡萄糖徹底氧化的磷氧比為2.58,酮體(β-OHB)氧化的磷氧比為2.50,而脂肪酸氧化的磷氧比為2.33。在氧氣供應(yīng)變得有限的情況下,葡萄糖的耗氧量最低,其次是酮體,而脂肪酸的耗氧量最高[42]。衰竭心臟中,能量底物利用從脂肪酸轉(zhuǎn)向葡萄糖是心臟應(yīng)對氧氣供應(yīng)不足的適應(yīng)性改變。但從能量生成的角度來考慮,葡萄糖和酮體的適應(yīng)性補償終究不能滿足心肌能量的缺乏,最終還是發(fā)展為心力衰竭。
葡萄糖和脂肪酸的利用處于動態(tài)平衡中。脂肪酸氧化增加會抑制對葡萄糖利用,相反葡萄糖的利用增加會抑制對脂肪酸的利用,這種葡萄糖和脂肪酸利用的競爭關(guān)系,稱之為葡萄糖-脂肪酸循環(huán)(也稱為蘭德爾Randle循環(huán))[43]。脂肪酸氧化增加引起的乙酰輔酶A和NADH/NAD+的比率增加,導(dǎo)致丙酮酸脫氫酶激酶被激活,從而抑制PDH對糖酵解產(chǎn)物丙酮酸的氧化[18]。脂肪酸氧化增加還會導(dǎo)致胞質(zhì)檸檬酸鹽積累,抑制6-磷酸果糖激酶活性,從而抑制糖酵解[18]。相反,葡萄糖(丙酮酸)氧化產(chǎn)生的乙酰輔酶A會抑制脂肪酸β-氧化過程中的硫解酶活性。乙酰輔酶A轉(zhuǎn)運至細(xì)胞質(zhì)中被羧化為丙二酰輔酶A,會抑制脂肪酸的氧化[18]。如果脂肪酸與葡萄糖利用的平衡被打破,心臟將會遭受脂毒性或者糖毒性,導(dǎo)致心臟功能嚴(yán)重受損。
4.1己糖胺生物合成途徑促進心臟糖基化糖基化修飾增加是心力衰竭發(fā)生的重要標(biāo)志[44]。葡萄糖攝取增加,同時伴隨著HBP途徑的通量增加。HBP途徑的終產(chǎn)物為UDP-GlcNAc,是內(nèi)質(zhì)網(wǎng)和高爾基體中發(fā)生蛋白質(zhì)糖基化的主要供體[45]。小鼠心臟特異性過表達糖基轉(zhuǎn)移酶(O-GlcNAc transferase, OGT)時,糖基化修飾增加、出現(xiàn)嚴(yán)重的擴張型心肌病、室性心律失常和過早死亡[46]。而小鼠心臟特異性過表達糖苷酶時,糖基化修飾顯著降低,可以減輕TAC處理后的心臟肥大并保留心臟功能[46]。但也有研究表明心臟特異性敲除OGT,心臟不能發(fā)生糖基化,加重了梗塞誘導(dǎo)的心臟功能障礙和死亡率[47]。因此,一定水平的糖基化對于維持心臟功能是必須的,但是糖基化過度修飾會導(dǎo)致心力衰竭的發(fā)生。
4.2葡萄糖代謝中間產(chǎn)物G6P積累誘發(fā)心肌細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激當(dāng)葡萄糖攝取與葡萄糖氧化不匹配時,會導(dǎo)致G6P積累,表現(xiàn)為糖毒性。例如,壓力超負(fù)荷心臟中G6P積累,激活mTOR途徑,誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),收縮功能障礙,這是葡萄糖毒性的一種體現(xiàn)。用雷帕霉素抑制mTOR信號,可以改善葡萄糖攝取和氧化不匹配引起的內(nèi)質(zhì)網(wǎng)應(yīng)激,改善心功能[45]。
4.3脂質(zhì)中間體DAG和神經(jīng)酰胺具有心肌細(xì)胞脂毒性晚期心力衰竭患者心臟脂肪酸氧化降低,脂肪酸積累的同時伴隨著脂質(zhì)中間體DAG和神經(jīng)酰胺水平增加[48-49]。脂質(zhì)中間體DAG和神經(jīng)酰胺在心肌細(xì)胞中積聚,激活蛋白激酶C,上調(diào)NADPH氧化酶,誘導(dǎo)大量活性氧產(chǎn)生,導(dǎo)致線粒體功能障礙,心肌細(xì)胞凋亡,引起心肌細(xì)胞脂毒性[50-51]。
脂肪酸氧化受損導(dǎo)致的心臟脂質(zhì)毒性中間體(如DAG和神經(jīng)酰胺)積累嚴(yán)重影響心臟收縮功能;降低心肌細(xì)胞脂毒性中間體積累可以減輕心臟功能障礙。TAC處理的肉堿脂酰轉(zhuǎn)移酶基因敲除雜合小鼠中同樣觀察到了由于脂肪酸氧化降低導(dǎo)致的神經(jīng)酰胺含量升高,心肌細(xì)胞凋亡增加[8]。心臟特異性敲除二?;视王;D(zhuǎn)移酶1(diacylglycerol acyltransferase 1, DGAT1),心肌細(xì)胞DAG和神經(jīng)酰胺水平顯著增加,導(dǎo)致心臟收縮功能障礙[52]。相反,心臟特異性過表達DGAT1,心肌脂毒性中間體DAG和神經(jīng)酰胺水平顯著降低,可以改善PPARγ過表達誘導(dǎo)的脂毒性心肌病小鼠的心臟功能并提高存活率[53-55]。同樣,絲氨酸棕櫚酰轉(zhuǎn)移酶抑制劑處理后,神經(jīng)酰胺水平降低,可以改善心肌梗死小鼠的心肌纖維化和心臟病理性重塑等表型[48]。
心臟能量代謝是一個復(fù)雜的調(diào)控過程,其主要的能量代謝底物為脂肪酸。在不同的生理條件下,心臟將改變對不同能量底物的喜好,如TAC誘導(dǎo)小鼠中葡萄糖和脂肪酸利用率的適應(yīng)性改變。當(dāng)這種代償性改變能滿足心臟能量所需時,在短時間內(nèi)能改善由于能量缺乏引起的心臟收縮功能障礙。心臟靈活利用各種底物的能力在一定程度上反映了心臟抗負(fù)荷能力[7-9]。但是長時間的代償性適應(yīng)最終將打破心肌細(xì)胞內(nèi)的代謝平衡。例如,葡萄糖利用的代償性增加是建立在抑制脂肪酸氧化的基礎(chǔ)上,存在脂質(zhì)中間體積累造成脂毒性的風(fēng)險[18];糖酵解與葡萄糖氧化解偶聯(lián)導(dǎo)致G6P積累,激活mTOR信號,誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激[45]。因此,代謝穩(wěn)態(tài)和代謝的靈活性對于維持心臟功能至關(guān)重要。
心臟能量代謝是一個連續(xù)動態(tài)的過程,不同代謝途徑可通過交叉點上的中間代謝物相互作用和相互轉(zhuǎn)化,形成了龐大的代謝調(diào)控網(wǎng)絡(luò)。一種能量代謝物的代謝損傷常常伴隨著其它能量代謝底物代謝途徑的改變。不同因素誘導(dǎo)的心力衰竭病人以及心力衰竭病人發(fā)生的不同階段表現(xiàn)為不同的代謝特點[18-20, 22, 27, 56-57]。心臟底物代謝重塑一般先于心臟發(fā)生病理性結(jié)構(gòu)改變,可以作為心力衰竭早期發(fā)現(xiàn)的診斷標(biāo)志。目前的研究主要集中于一種或者兩種代謝物而非整體代謝物的研究,且心力衰竭發(fā)生發(fā)展階段對應(yīng)的特征性代謝改變尚不清晰。未來可以在心力衰竭類型和心力衰竭發(fā)展階段兩個方面進行代謝組學(xué)比較研究,以期為心力衰竭分型診斷和治療提供指導(dǎo)性意見。
[1] Gibb AA, Hill BG. Metabolic coordination of physiological and pathological cardiac remodeling[J]. Circ Res, 2018, 123(1):107-128.
[2] Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production[J]. Circ Res, 2013, 113(6):709-724.
[3] Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters[J]. Cardiovasc Res, 2017, 113(4):411-421.
[4] Tran DH, Wang ZV. Glucose metabolism in cardiac hypertrophy and heart failure[J]. J Am Heart Assoc, 2019, 8(12):e012673.
[5] Abdul Kadir A, Clarke K, Evans RD. Cardiac ketone body metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(6):165739.
[6] Karwi QG, Lopaschuk GD. Branched-chain amino acid metabolism in the failing heart[J]. Cardiovasc Drugs Ther, 2023, 37(2):413-420.
[7] Sung MM, Byrne NJ, Kim TT, et al. Cardiomyocyte-specific ablation of CD36 accelerates the progression from compensated cardiac hypertrophy to heart failure[J]. Am J Physiol Heart Circ Physiol, 2017, 312(3):H552-H560.
[8] He L, Kim T, Long Q, et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity[J]. Circulation, 2012, 126(14):1705-1716.
[9] Umbarawan Y, Syamsunarno M, Koitabashi N, et al. Myocardial fatty acid uptake through CD36 is indispensable for sufficient bioenergetic metabolism to prevent progression of pressure overload-induced heart failure[J]. Sci Rep, 2018, 8(1):12035.
[10] Kolwicz SC, Jr., Olson DP, Marney LC, et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy[J]. Circ Res, 2012, 111(6):728-738.
[11] Liao R, Jain M, Cui L, et al. Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice[J]. Circulation, 2002, 106(16):2125-2131.
[12] Pereira RO, Wende AR, Olsen C, et al. GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure[J]. J Mol Cell Cardiol, 2014, 72:95-103.
[13] Watanabe K, Fujii H, Takahashi T, et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity[J]. J Biol Chem, 2000, 275(29):22293-22299.
[14] Cheng L, Ding G, Qin Q, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy[J]. Nat Med, 2004, 10(11):1245-1250.
[15] Kaimoto S, Hoshino A, Ariyoshi M, et al. Activation of PPAR-alpha in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure[J]. Am J Physiol Heart Circ Physiol, 2017, 312(2):H305-H313.
[16] Voros G, Ector J, Garweg C, et al. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling[J]. Circ Heart Fail, 2018, 11(12):e004953.
[17] Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women[J]. Circulation, 2004, 109(18):2191-2196.
[18] Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease[J]. Physiol Rev, 2010, 90(1):207-258.
[19] How OJ, Aasum E, Kunnathu S, et al. Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis inmouse hearts[J]. Am J Physiol Heart Circ Physiol, 2005, 288(6):H2979-H2985.
[20] How OJ, Aasum E, Severson DL, et al. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice[J]. Diabetes, 2006, 55(2):466-473.
[21] Diakos NA, Navankasattusas S, Abel ED, et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning[J]. JACC Basic Transl Sci, 2016, 1(6):432-444.
[22] Fillmore N, Levasseur JL, Fukushima A, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction[J]. Mol Med, 2018, 24(1):3.
[23] Lopaschuk GD, Wambolt RB, Barr RL. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts[J]. J Pharmacol Exp Ther, 1993, 264(1):135-144.
[24] Liu B, El Alaoui-Talibi Z, Clanachan AS, et al. Uncoupling of contractile function from mitochondrial TCA cycle activity and MVO2during reperfusion of ischemic hearts[J]. Am J Physiol, 1996, 270(1 Pt 2):H72-H80.
[25] Liu Q, Clanachan AS, Lopaschuk GD. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts[J]. Am J Physiol, 1998, 275(3):E392-E399.
[26] Liu Q, Docherty JC, Rendell JC, et al. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation[J]. J Am Coll Cardiol, 2002, 39(4):718-725.
[27] Kato T, Niizuma S, Inuzuka Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure[J]. Circ Heart Fail, 2010, 3(3):420-430.
[28] Hecker PA, Lionetti V, Ribeiro RF, Jr., et al. Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure[J]. Circ Heart Fail, 2013, 6(1):118-126.
[29] Gupte SA, Levine RJ, Gupte RS, et al. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart[J]. J Mol Cell Cardiol, 2006, 41(2):340-349.
[30] Gupte RS, Vijay V, Marks B, et al. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart[J]. J Card Fail, 2007, 13(6):497-506.
[31] Aubert G, Martin OJ, Horton JL, et al. The failing heart relies on ketone bodies as a fuel[J]. Circulation, 2016, 133(8):698-705.
[32] Bedi KC, Jr., Snyder NW, Brandimarto J, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure[J]. Circulation, 2016, 133(8):706-716.
[33] Horton JL, Davidson MT, Kurishima C, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense[J]. JCI Insight, 2019, 4(4):e124079.
[34] Schugar RC, Moll AR, Andre D'avignon D, et al. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling[J]. Mol Metab, 2014, 3(7):754-769.
[35] Uchihashi M, Hoshino A, Okawa Y, et al. Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure[J]. Circ Heart Fail, 2017, 10(12):e004417.
[36] Ho KL, Zhang L, Wagg C, et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency[J]. Cardiovasc Res, 2019, 115(11):1606-1616.
[37] Nielsen R, Moller N, Gormsen LC, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients[J]. Circulation, 2019, 139(18):2129-2141.
[38] Sun H, Olson KC, Gao C, et al. Catabolic defect of branched-chain amino acids promotes heart failure[J]. Circulation, 2016, 133(21):2038-2049.
[39] Neishabouri SH, Hutson SM, Davoodi J. Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy[J]. Amino Acids, 2015, 47(6):1167-1182.
[40] Portero V, Nicol T, Podliesna S, et al. Chronically elevated branched chain amino acid levels are pro-arrhythmic[J]. Cardiovasc Res, 2022, 118(7):1742-1757.
[41] Chen M, Gao C, Yu J, et al. Therapeutic effect of targeting branched-chain amino acid catabolic flux in pressure-overload induced heart failure[J]. J Am Heart Assoc, 2019, 8(11):e011625.
[42] Karwi QG, Uddin GM, Ho KL, et al. Loss of metabolic flexibility in the failing heart[J]. Front Cardiovasc Med, 2018, 5:68.
[43] Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus[J]. Lancet, 1963, 1(7285):785-789.
[44] Lunde IG, Aronsen JM, Kvaloy H, et al. Cardiac-GlcNAc signaling is increased in hypertrophy and heart failure[J]. Physiol Genomics, 2012, 44(2):162-172.
[45] Sen S, Kundu BK, Wu HC, et al. Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart[J]. J Am Heart Assoc, 2013, 2(3):e004796.
[46] Umapathi P, Mesubi OO, Banerjee PS, et al. Excessive-GlcNAcylation causes heart failure and sudden death[J]. Circulation, 2021, 143(17):1687-1703.
[47] Watson LJ, Facundo HT, Ngoh GA, et al.-linked β--acetylglucosamine transferase is indispensable in the failing heart[J]. Proc Natl Acad Sci U S A, 2010, 107(41):17797-17802.
[48] Ji R, Akashi H, Drosatos K, et al. Increased de novo ceramide synthesis and accumulation in failing myocardium[J]. JCI Insight, 2017, 2(9):e82922.
[49] Chokshi A, Drosatos K, Cheema FH, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure[J]. Circulation, 2012, 125(23):2844-2853.
[50] Jaishy B, Zhang Q, Chung HS, et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity[J]. J Lipid Res, 2015, 56(3):546-561.
[51] Joseph LC, Barca E, Subramanyam P, et al. Inhibition of NAPDH oxidase 2 (NOX2) prevents oxidative stress and mitochondrial abnormalities caused by saturated fat in cardiomyocytes[J]. PLoS One, 2016, 11(1):e0145750.
[52] Liu L, Trent CM, Fang X, et al. Cardiomyocyte-specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure[J]. J Biol Chem, 2014, 289(43):29881-29891.
[53] Son NH, Park TS, Yamashita H, et al. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice[J]. J Clin Invest, 2007, 117(10):2791-2801.
[54] Liu L, Shi X, Bharadwaj KG, et al. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity[J]. J Biol Chem, 2009, 284(52): 36312-36323.
[55] Liu L, Yu S, Khan RS, et al. Diacylglycerol acyl transferase 1 overexpression detoxifies cardiac lipids in PPARgamma transgenic mice[J]. J Lipid Res, 2012, 53(8):1482-1492.
[56] Rosenblatt-Velin N, Montessuit C, Papageorgiou I, et al. Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism[J]. Cardiovasc Res, 2001, 52(3):407-416.
[57] Doenst T, Pytel G, Schrepper A, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload[J]. Cardiovasc Res, 2010, 86(3):461-470.
Role of cardiometabolic injury and adaptive compensation in development of heart failure
ZHAI Yiyuan, LI Junjie, REN Jieyu, TANG Min△
(,,421001,)
Fatty acids, glucose, ketone bodies, and amino acids, are utilized by the heart to meet its energy requirements, with fatty acids being the main source of energy. The damage of fatty acids oxidation is accompanied by heart failure. Cardiac metabolic remodeling occurs, wherein the heart utilizes glucose, ketone bodies, and other substances as energy substrates instead of fatty acid to meet its energetic requirements. Although this compensatory adaptation can improve energy deficiency-induced cardiac dysfunction, the metabolic balance of cardiomyocytes can also be affected, thereby increasing the risk of cardiac dysfunction. This review summarizes the cardiac metabolic changes that occur during heart failure and the effects of cardiac metabolism manipulation on heart failure. It also explores the possibility of cardiac metabolic remodeling as a treatment for heart failure.
cardiac metabolism; heart failure; metabolism remodeling; energy substrate
R514.6; R363
A
10.3969/j.issn.1000-4718.2023.09.015
1000-4718(2023)09-1658-08
2023-01-16
2023-05-10
國家自然科學(xué)基金資助項目(No. 81711530050);湖南省教育廳重點項目(No. 20A418)
Tel: 18173460780; E-mail: mtang2014@163.com
(責(zé)任編輯:李淑媛,羅森)