• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      限時進食在小鼠和細胞模型中通過溶酶體生物發(fā)生緩解非酒精性脂肪性肝炎*

      2023-10-11 02:28:40蔣秋艷呂岳要睿昕許凱星宋維芳
      中國病理生理雜志 2023年9期
      關(guān)鍵詞:溶酶體脂質(zhì)脂肪

      蔣秋艷, 呂岳, 要睿昕, 許凱星, 宋維芳

      限時進食在小鼠和細胞模型中通過溶酶體生物發(fā)生緩解非酒精性脂肪性肝炎*

      蔣秋艷, 呂岳, 要睿昕, 許凱星, 宋維芳△

      (山西醫(yī)科大學(xué)汾陽學(xué)院,山西 汾陽 032200)

      探討AMP活化蛋白激酶(AMPK)/轉(zhuǎn)錄因子EB(TFEB)介導(dǎo)的溶酶體生物發(fā)生在限時進食(TRF)對非酒精性脂肪性肝炎(NASH)小鼠肝臟及油酸(OA)誘導(dǎo)的人肝母細胞瘤HepG2細胞損傷的緩解作用及其分子機制。(1)用高脂高膽固醇飲食構(gòu)建小鼠NASH模型,將18只C57BL/6J小鼠分為正常對照(NC)組、模型(model)組和TRF組,每組6只。飼養(yǎng)10周后麻醉小鼠,摘眼球取血,分離血清,檢測小鼠血清中的總膽固醇(TC)、甘油三酯(TG)、丙氨酸氨基轉(zhuǎn)移酶(ALT)和天門冬氨酸氨基轉(zhuǎn)移酶(AST)的水平;收集小鼠肝臟,計算肝臟系數(shù),檢測肝臟TC和TG的水平。蘇木精-伊紅(HE)和Masson馬松染色觀察肝臟形態(tài)學(xué)變化;Western blot法檢測肝臟溶酶體關(guān)聯(lián)膜蛋白1(LAMP1)、AMPK、p-AMPK和核TFEB、腫瘤壞死因子α(TNF-α)和白細胞介素1β(IL-1β)蛋白表達水平。(2)用OA干預(yù)HepG2細胞建立肝損傷模型,用血清剝奪模擬禁食條件。將HepG2細胞分為對照(control)組、血清剝奪(FBS-)組、OA組和OA+FBS-組;用siRNA敲低探討TFEB介導(dǎo)的溶酶體生物發(fā)生與肝細胞脂質(zhì)積累和肝損傷的關(guān)系;用AMPK抑制劑化合物C(CC)抑制AMPK活性研究AMPK與TFEB介導(dǎo)的溶酶體生物發(fā)生的關(guān)系。油紅O染色檢測肝細胞脂質(zhì)積累;試劑盒檢測肝細胞TG、TC、ALT和AST水平;Western blot法檢測肝細胞LAMP1、AMPK、p-AMPK和核TFEB蛋白表達水平。(1)TRF干預(yù)顯著降低了NASH小鼠的血清TC、TG、ALT和AST水平及肝臟中IL-1β、TNF-α、TG和TC的表達,緩解了肝組織中的脂肪變性和炎癥浸潤(<0.05);(2)血清剝奪干預(yù)減少了OA誘導(dǎo)的HepG2細胞中的脂滴數(shù)量以及TG、ALT和AST水平(<0.01);(3)Western blot結(jié)果顯示,TRF干預(yù)后NASH小鼠肝臟中TFEB核易位水平、LAMP1蛋白水平和AMPK磷酸化水平顯著升高(<0.01);血清剝奪干預(yù)后,OA誘導(dǎo)的HepG2細胞中TFEB核易位水平、LAMP1蛋白水平和AMPK磷酸化水平顯著增加(<0.01);(4)siRNA干預(yù)后,TFEB和LAMP1蛋白水平降低,血清剝奪對OA組脂肪積累和肝損傷的改善作用被顯著削弱(<0.05);(5)CC干預(yù)后,AMPK磷酸化水平、LAMP1蛋白水平和TFEB核易位水平顯著降低(<0.01)。(1)TRF能夠減輕NASH小鼠肝臟的脂質(zhì)積累和炎癥;(2)TRF對NASH小鼠肝臟的有益作用可能與其促進AMPK/TFEB介導(dǎo)的溶酶體生物發(fā)生有關(guān)。

      非酒精性脂肪性肝炎;限時進食;溶酶體生物發(fā)生;AMP活化蛋白激酶;轉(zhuǎn)錄因子EB

      非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease, NAFLD)目前是全球肝病的主要原因,影響全球近四分之一的人口[1]。非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)是NAFLD較為嚴重的亞型,可導(dǎo)致肝硬化、肝細胞癌和死亡,是一個日益嚴重的公共衛(wèi)生問題[2]。因此,有效治療NASH是減輕肝臟疾病負擔的關(guān)鍵。但是目前并沒有藥物被批準用于治療NASH[3]。飲食成分,包括高脂肪飲食和高熱量飲食,與NASH的發(fā)生和發(fā)展風(fēng)險增加相關(guān),所以特定的飲食干預(yù)是治療NASH有希望的策略[4]。

      限時進食(time-restricted feeding, TRF)是將一天的進食時間限制在6~8 h的飲食模式[5],常用于治療代謝疾?。?]。動物實驗表明,TRF可以防止高脂飲食引起的小鼠體重過度增加、肝脂肪變性和肝損傷[7- 8]。臨床研究表明,TRF可以改善NAFLD患者的肥胖并減少肝臟脂質(zhì)和炎癥標志物[9]。因此,TRF可能是治療NASH的有效方法,但是TRF對肝臟產(chǎn)生有益作用的具體機制未知。

      研究表明溶酶體可以通過降解膳食來源的脂質(zhì)調(diào)節(jié)肝臟的脂質(zhì)代謝,且其脂質(zhì)降解能力取決于充足數(shù)量的溶酶體和激活的溶酶體酸性水解酶[10-11]。轉(zhuǎn)錄因子EB(transcription factor EB, TFEB)是調(diào)控溶酶體功能和生物發(fā)生的關(guān)鍵調(diào)控因子[12],在NASH患者和動物模型中其活性降低[13],激活TFEB能夠促進溶酶體生物發(fā)生和減少肝脂肪變性[14],表明了TFEB介導(dǎo)的溶酶體生物發(fā)生在NASH治療中的潛在作用。研究顯示,禁食可以通過激活A(yù)MP活化蛋白激酶(AMP-activated protein kinase, AMPK)調(diào)控TFEB的活性,促進溶酶體生物發(fā)生[15]。但是目前對TRF和溶酶體生物發(fā)生的相關(guān)研究較少,TRF對肝臟的保護作用是否與TFEB介導(dǎo)的溶酶體生物發(fā)生有關(guān)鮮有報道。本研究采用16/8的TRF干預(yù)方式,利用高脂高膽固醇飲食誘導(dǎo)NASH小鼠模型,初步觀察TRF對NASH小鼠的治療作用,以及該作用與溶酶體生物發(fā)生的可能關(guān)系。

      材料和方法

      1 動物和細胞

      18只SPF級雄性C57BL/6J小鼠,4~6周齡,18~20 g,購于山西省人民醫(yī)院,許可證號為SCXK(晉)2019-0001。人肝母細胞瘤細胞系HepG2由山西醫(yī)科大學(xué)汾陽學(xué)院劉玉玲老師惠贈。

      2 主要試劑

      TFEB抗體、溶酶體關(guān)聯(lián)膜蛋白1(lysosomal-associated membrance protein 1, LAMP1)抗體、白細胞介素1β(interleukin-1β, IL-1β)抗體、腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)抗體和β-actin抗體(武漢愛博泰克生物科技有限公司);AMPK抗體和p-AMPK抗體(江蘇親科生物研究中心有限公司);丙氨酸氨基轉(zhuǎn)移酶(alanine aminotransferase, ALT)、天門冬氨酸氨基轉(zhuǎn)移酶(aspartate aminotransferase, AST)、總膽固醇(total cholesterol, TC)及甘油三酯(triglyceride, TG)試劑盒(南京建成生物工程研究所);改良Masson三色染色試劑盒和油紅O染色試劑盒(北京索萊寶科技有限公司);胎牛血清(fetal bovine serum, FBS)、DMEM高糖培養(yǎng)液、0.25%胰蛋白酶溶液和青霉素-鏈霉素溶液(武漢博士德生物工程有限公司);細胞核蛋白與細胞質(zhì)蛋白抽提試劑盒(上海碧云天生物技術(shù)有限公司);化合物C(compound C, CC; MedChemExpress)。

      3 主要方法

      3.1動物實驗根據(jù)本課題組前期研究[16-17],本實驗采取高脂高膽固醇飼料(45%普通高脂飼料+2%膽固醇)喂養(yǎng)建立NASH小鼠模型。18只小鼠常規(guī)適應(yīng)性喂養(yǎng)1周后,按體重隨機均衡地分為喂食普通飼料的正常對照(normal control, NC)組,喂食高脂高膽固醇飼料的模型(model)組和TRF組,每組6只。NC組和model組小鼠每日可以自由攝食;TRF組小鼠每日攝食8 h,禁食16 h,期間均可自由飲水。每日記錄小鼠攝食量,每周記錄小鼠體重。飼喂10周后,小鼠禁食不禁水24 h,稱重,麻醉后摘眼球取血,分離血清用于TG、TC、ALT和AST測定。隨后分離小鼠肝臟,用生理鹽水清洗肝臟后稱重,統(tǒng)一剪取肝臟右葉置于4%多聚甲醛溶液中進行固定,液氮速凍其他肝組織,保存于-80 ℃冰箱。

      3.2細胞實驗HepG2細胞接種在培養(yǎng)瓶中,在由DMEM高糖、10% FBS和1%青霉素-鏈霉素組成的標準培養(yǎng)液中生長,于37 ℃、5%的CO2培養(yǎng)箱中進行常規(guī)培養(yǎng)。當細胞數(shù)量生長適宜時,將HepG2細胞接種至6孔板,用500 μmol/L油酸(oleic acid, OA)作用細胞建立肝損傷模型,用血清剝奪模擬禁食環(huán)境[18-19]。細胞隨機分為:對照(control)組(標準培養(yǎng)液培養(yǎng))、血清剝奪(FBS-)組(血清剝奪16 h)、OA組(OA干預(yù)24 h)和OA+FBS-組(OA干預(yù)24 h+血清剝奪16 h)。

      3.3脂質(zhì)指標和肝功能指標檢測TG、TC、ALT和AST按照試劑盒說明方法檢測。

      3.4病理學(xué)檢測

      3.4.1HE染色肝臟組織常規(guī)脫蠟至水后,蘇木素染液染色1 min;蒸餾水沖洗30 s;1%鹽酸乙醇溶液分化3 s;自來水沖洗5 min回藍;伊紅染液染色1 min;蒸餾水沖洗數(shù)秒;經(jīng)95%乙醇中調(diào)色2~3 s;再經(jīng)無水乙醇Ⅰ、Ⅱ中各脫水1~2 min;二甲苯Ⅰ、Ⅱ中各透明2 min;中性樹膠封片,在顯微鏡下觀察。

      3.4.2Masson染色肝臟組織常規(guī)脫蠟至水后,按照改良Masson三色染色試劑盒說明書進行染色,中性樹膠封片后鏡檢。

      3.5油紅O染色將HepG2細胞接種于小皿,待細胞生長到合適豐度,對其進行OA和血清剝奪干預(yù),干預(yù)結(jié)束后移除細胞培養(yǎng)基,用磷酸鹽緩沖液洗兩次,根據(jù)說明書進行后續(xù)染色。

      3.6siRNA轉(zhuǎn)染取對數(shù)生長期的細胞,接種于6孔板中,直至細胞密度達到30%~40%,將稀釋后的GP-transfect-Mate轉(zhuǎn)染試劑與siRNA按1∶1的比例在室溫下混合15 min,然后添加到板中孵育6 h,換正常培養(yǎng)基培養(yǎng)42 h,再進行OA和血清剝奪干預(yù)。本實驗的陰性對照siRNA(negative control siRNA, siNC)和siRNA (siTFEB)序列由吉瑪基因合成。siNC的正義鏈序列為5'-UUCUCCGAACGUGUCACGUTT-3',反義鏈序列為5'-ACGUGACACGUUCGGAGAATT-3';siTFEB的正義鏈序列為5'-GACGAAGGUUCAACAUCAATT-3',反義鏈序列為5'-UUGAUGUUGAACCUUCGUCTT-3'。

      3.7抑制劑CC干預(yù)將生長適宜的細胞接種在6孔板中,直至細胞密度達到70%~80%,將細胞分為OA組,OA+FBS-組,CC/OA組和CC/OA+FBS-組,提前2 h加入CC(10 μmol/L)[20]進行預(yù)處理,然后進行OA和血清剝奪干預(yù),干預(yù)過程中在CC/OA組和CC/OA+FBS-組持續(xù)加入CC。

      3.8NAFLD活動度評分(NAFLD activity score, NAS)NAS評分標準如下:(1)肝細胞脂肪變:0分(<5%)、1分(5%~33%)、2分(34%~66%)和3分(>66%);(2)小葉內(nèi)炎癥(20倍鏡計數(shù)壞死灶):0分(無)、1分(<2個)、2分(2~4個)和3分(>4個);(3)肝細胞氣球樣變:0分(無)、1分(少見)和2分(多見)。NAS≥5提示存在NASH。

      4 統(tǒng)計學(xué)處理

      用GraphPad Prism 8統(tǒng)計軟件進行分析。數(shù)據(jù)均采用均數(shù)±標準差(mean±SD)表示,多組間比較采用單因素方差分析,組間兩兩比較采用最小顯著性差異法(LSD法),以<0.05為差異有統(tǒng)計學(xué)意義,所有實驗均獨立重復(fù)3次。

      結(jié)果

      1 TRF減輕高脂高膽固醇飲食誘導(dǎo)的小鼠脂質(zhì)積累和肝損傷

      如圖1A所示,model組和TRF組小鼠的相對累計攝食量無顯著差異。圖1B結(jié)果顯示,與NC組相比,model組小鼠肝臟的TNF-α和IL-1β蛋白表達顯著升高(<0.01),相較model組,TRF組的TNF-α和IL-1β蛋白表達顯著降低(<0.05)。圖1C和圖1D顯示,相較NC組,model組小鼠的肝臟系數(shù)和體重顯著增加(<0.01),TRF干預(yù)緩解了高脂高膽固醇飲食引起的體重增長和肝臟系數(shù)升高(<0.01)。HE染色和Masson染色顯示(圖1E),與NC組相比,model組小鼠肝臟結(jié)構(gòu)紊亂,肝細胞體積明顯增大,胞質(zhì)出現(xiàn)大泡性脂肪滴,肝小葉內(nèi)可見炎癥細胞浸潤,肝索之間可見絲狀纖維沉積,TRF干預(yù)顯著緩解了肝臟損傷。NAS表明,相較于model組,TRF組小鼠的NASH嚴重程度顯著減少(<0.01),見圖1F。表1顯示,TRF干預(yù)可顯著降低model組小鼠升高的血清TC、TG、ALT和AST水平及肝臟TC和TG水平(<0.05或<0.01)。

      Figure 1. Changes in lipid accumulation and liver injury-related indexes in mice of each group. A: food intake of mice in model group and TRF group; B: expression levels of TNF-α and IL-1β in the liver of mice; C: liver index of mice; D: body weight of mice; E: HE and Masson staining of liver tissues, the yellow arrows represent lipid droplets, the green arrows represent inflammatory infiltration, and the black arrows represent fibrosis; F: non-alcoholic fatty liver disease activity score. Mean±SD. n=6. ##P<0.01 vs NC group;*P<0.05,**P<0.01 vs model group.

      表1 TRF對小鼠ALT、AST、TC和TG的影響

      ##<0.01NC group;*<0.05,**<0.01model group.

      2 TRF減弱OA誘導(dǎo)的脂質(zhì)積累和肝損傷

      油紅O染色顯示(圖2A),OA顯著增加了肝細胞內(nèi)脂滴的積累,與血清剝奪聯(lián)合孵育后,這種影響被抑制。與control組相比,OA組細胞的TC、TG、ALT和AST水平顯著增加;血清剝奪干預(yù)后,細胞模型中的TG、ALT和AST含量顯著降低(<0.01),TC含量變化無顯著差異(圖2B)。

      Figure 2. Changes in lipid accumulation and liver injury-related indexes in HepG2 cells. A: oil red O staining, red represents lipid droplets, and blue represents cell nuclei; B: changes of TC, TG, ALT, and AST levels in HepG2 cells after serum deprivation and oleic intervention. Mean±SD. n=3. ##P<0.01 vs control group;**P<0.01 vs OA group.

      3 NASH損害溶酶體功能,TRF通過誘導(dǎo)TFEB核易位刺激溶酶體生物發(fā)生

      圖3A結(jié)果顯示,與NC組小鼠相比,model組小鼠肝臟中TFEB的核易位顯著減少,LAMP1蛋白水平顯著降低;而TRF干預(yù)恢復(fù)了NASH小鼠肝臟LAMP1蛋白水平,促進了TFEB的核易位(<0.01)。圖3B結(jié)果顯示,與control組相比,OA刺激HepG2細胞后可顯著降低細胞內(nèi)LAMP1的蛋白水平,抑制TFEB核易位;對細胞實施血清剝奪后,OA對HepG2細胞的溶酶體損害得到改善(<0.01)。

      Figure 3. The effect of time-restricted feeding on the level of TFEB nuclear translocation and the level of LAMP1 protein expression in mouse liver tissue and HepG2 cells. A: Western blot results showed TFEB nuclear translocation levels and LAMP1 protein expression levels in liver tissues of NC mice, model mice, and TRF mice.n=6; B: effects of oleic acid (OA) and serum deprivation intervention on the expression of LAMP1 and nuclear TFEB proteins in HepG2 cells.n=3. Mean±SD. △△P<0.01 vs NC group;▲▲P<0.01 vs model group;##P<0.01 vs control group;**P<0.01 vs OA group.

      4 TRF通過激活TFEB介導(dǎo)的溶酶體生物發(fā)生改善肝細胞的脂質(zhì)堆積和肝損傷

      圖4A結(jié)果表明,在血清存在條件下,與siNC/OA組相比,siTFEB/OA組TFEB蛋白水平降低(<0.01),LAMP1蛋白水平也顯著降低(<0.01),被成功敲除;在血清剝奪條件下,缺乏抑制了血清剝奪對細胞模型LAMP1蛋白水平的促進作用。圖4B顯示,血清剝奪對OA誘導(dǎo)的細胞模型中TC、TG、ALT和AST水平具有改善作用(<0.05);被敲除后,這種改善作用被抑制。

      Figure 4. Serum deprivation improves oleic acid-induced lipid accumulation and liver injury in HepG2 cells by activating TFEB-mediated lysosomal biogenesis. A: effects of oleic and serum deprivation on LAMP1 and nuclear TFEB protein expression in HepG2 cells after intervention with TFEB-specific siRNA; B: effects of oleic acid and serum deprivation on the expression levels of TC, TG, ALT, and AST in HepG2 cells after TFEB specific siRNA intervention. Mean±SD. n=3. #P<0.05,##P<0.01 vs siNC/OA group.

      5 TRF通過AMPK/TFEB途徑調(diào)控溶酶體生物發(fā)生

      圖5A結(jié)果顯示,相較于NC組小鼠,model組小鼠AMPK磷酸化受到抑制,TRF干預(yù)后,AMPK磷酸化得到恢復(fù)(<0.01)。同樣,圖5B結(jié)果顯示,血清剝奪緩解了OA對AMPK磷酸化的抑制(<0.01)。為了進一步揭示血清剝奪條件下,AMPK在TFEB表達中的重要作用,在血清存在條件下,用AMPK抑制劑CC和OA聯(lián)合干預(yù)HepG2細胞,與OA組相比,CC顯著抑制AMPK磷酸化的表達(<0.01);與CC/OA組相比,CC/OA+FBS-組的TFEB核易位水平、LAMP1蛋白水平和AMPK磷酸化水平變化無顯著差異,見圖5C。

      Figure 5. The effect of time-restricted feeding on AMPK phosphorylation in mouse liver and HepG2 cells, and the impact of AMPK inhibitor CC on lysosomal biogenesis-related proteins. A: Western blot measurement of AMPK phosphorylated protein expression in mice; B: Western blot measurement of AMPK phosphorylated protein expression in HepG2 cells; C: effects of oleic acid, serum deprivation, and CC intervention on the expression of AMPK phosphorylation, nuclear TFEB, and LAMP1 proteins in HepG2 cells. Mean±SD. n=3. △△P<0.01 vs NC group;▲▲P<0.01 vs model group;#P<0.05,##P<0.01 vs OA group.

      討論

      NASH是NAFLD病程中的過度階段且可逆轉(zhuǎn),其病理特征是肝小葉內(nèi)出現(xiàn)中重度彌漫性肝細胞脂肪變性,伴有炎癥細胞浸潤,脂質(zhì)代謝失調(diào)是導(dǎo)致其進展的主要原因[21]。研究表明,溶酶體在調(diào)控肝臟的脂質(zhì)代謝中發(fā)揮著重要作用[22]。在肝臟中,膳食來源的脂質(zhì)被包裝成乳糜微粒殘余物和脂蛋白顆粒,被溶酶體接收,經(jīng)溶酶體酸性脂肪酶水解為游離膽固醇和游離脂肪酸,通過溶酶體蛋白或胞吐作用輸送到胞質(zhì)溶膠或其他細胞區(qū)室發(fā)揮功能[22]。而肝細胞脂質(zhì)過載會降低溶酶體水解酶的活性[23],造成溶酶體脂質(zhì)積聚,損害肝臟脂質(zhì)代謝并引起免疫反應(yīng),使得肝臟促炎細胞因子和趨化因子增加,促進肝巨噬細胞的浸潤,加重肝臟炎癥[24]。溶酶體脂質(zhì)過載會引起溶酶體膜透化,使溶酶體內(nèi)容物泄露到細胞質(zhì)中,導(dǎo)致細胞死亡[25]。溶酶體生物發(fā)生能夠降解破損的細胞器和細胞內(nèi)增多的脂質(zhì),恢復(fù)肝臟的脂質(zhì)代謝[26]。TRF作為一種將每日能量攝入限制在一定時間段的飲食模式,可以在不產(chǎn)生負面影響(包括飲食失調(diào)、胃腸道或神經(jīng)系統(tǒng)相關(guān)的不良事件)的前提下,減輕肥胖受試者的體重并改善代謝[27]。Hafez等[28]的實驗觀察到,TRF可以改善白化老年大鼠的肝脂肪變性和炎癥。本研究的動物實驗結(jié)果顯示,在組間攝食量/100 g小鼠體重無顯著差異的前提下,10周的TRF干預(yù)緩解了NASH小鼠的體重增長,改善了小鼠的肥胖和肝臟脂質(zhì)蓄積,減輕了肝小葉內(nèi)的炎癥浸潤和纖維沉積。與此一致的是,細胞實驗中觀察到,16 h的血清剝奪能夠減少OA誘導(dǎo)的HepG2細胞的脂滴數(shù)量,降低細胞中的TG、ALT和AST水平,緩解細胞的脂質(zhì)積累和肝損傷。表明TRF通過減輕肝脂肪變性、纖維化及肝臟炎癥來發(fā)揮其對肝臟的有益作用,接下來探究TRF對肝臟有益作用的機制變得尤為重要。

      TFEB是亮氨酸拉鏈轉(zhuǎn)錄因子小眼轉(zhuǎn)錄因子家族的成員,是調(diào)控溶酶體功能和生物發(fā)生的主要轉(zhuǎn)錄因子[29],其啟動子處特定的E-box位點與CLEAR元件(富集溶酶體蛋白基因的基因網(wǎng)絡(luò))高度重合,TFEB可以通過在細胞核中靶向CLEAR元件,促進溶酶體基因的轉(zhuǎn)錄[12]。文獻報道,TFEB在肝脂肪變性和NASH患者中活性受到損害[30]。利拉魯肽可以通過激活TFEB介導(dǎo)的溶酶體生物發(fā)生,清除肝臟內(nèi)受損的溶酶體,改善溶酶體功能,減輕棕櫚酸誘導(dǎo)的細胞脂質(zhì)積累[31]。LAMP1是溶酶體膜上大量表達的糖蛋白,是溶酶體數(shù)量的常用標記物[32]。本研究結(jié)果表明,在高脂高膽固醇飲食誘導(dǎo)的NASH小鼠模型中,核TFEB和LAMP1蛋白表達水平降低,肝臟溶酶體功能受到損害,而長期TRF干預(yù)能夠緩解高脂高膽固醇飲食對肝臟溶酶體的損害。同樣,細胞實驗結(jié)果也表明,16 h的血清剝奪促進了HepG2細胞的溶酶體生物發(fā)生。為了進一步研究TRF是否通過TFEB介導(dǎo)的溶酶體生物發(fā)生發(fā)揮對肝臟的有益作用,本研究將特異性siRNA導(dǎo)入HepG2細胞中,觀察細胞模型在有無血清條件下脂質(zhì)積累及肝損傷的情況。結(jié)果顯示,敲除后,LAMP1蛋白水平降低,溶酶體數(shù)量減少,血清剝奪對HepG2細胞脂質(zhì)堆積和肝損傷的有益作用被抑制。以上結(jié)果表明,TFEB介導(dǎo)的溶酶體生物發(fā)生在TRF保護肝臟損傷中占據(jù)重要作用,接下來本實驗探究了TRF如何調(diào)控TFEB的活性。近期研究表明,TFEB的激活依賴AMPK的磷酸化[15, 20, 33]。AMPK是所有真核細胞中能量狀態(tài)的主要傳感器,在低營養(yǎng)期間被激活,維持能量穩(wěn)態(tài)和執(zhí)行適應(yīng)性反應(yīng)[34]。運動可以通過AMPK信號激活TFEB介導(dǎo)的溶酶體生物發(fā)生改善大腦的溶酶體功能[35]。刺芒柄花素通過激活A(yù)MPK從而促進TFEB的核易位,促進肝臟溶酶體生物發(fā)生,改善肝臟脂肪變性[36]。以上研究均表明了AMPK在溶酶體生物發(fā)生中的重要性。本研究的動物和細胞實驗顯示,TRF和血清剝奪能夠促進NASH小鼠和肝損傷模型中的AMPK發(fā)生磷酸化。為了進一步明確AMPK在溶酶體生物發(fā)生的作用,在OA和血清剝奪干預(yù)的條件下,對HepG2細胞加上AMPK抑制劑CC干預(yù)。CC干預(yù)后,細胞AMPK磷酸化水平降低,血清剝奪對溶酶體生物發(fā)生的促進作用被抑制。表明TRF可能通過促進AMPK磷酸化,進而調(diào)控TFEB介導(dǎo)的溶酶體生物發(fā)生。

      綜上所述,TRF可以緩解NASH小鼠的脂肪積累和肝臟炎癥,這種改善作用可能與AMPK/TFEB介導(dǎo)的溶酶體生物發(fā)生有關(guān)。

      [1] Eslam M, Sarin SK, Wong VW, et al. The Asian pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease[J]. Hepatol Int, 2020, 14(6):889-919.

      [2]林妙霞,李澤楷,羅敏琪,等. 非酒精性脂肪性肝病與代謝綜合征的關(guān)系研究[J]. 中國病理生理雜志, 2010, 26(12):2465-2466.

      Lin MX, Li ZK, Luo MQ, et al. Association between nonalcoholic liver disease and metabolic syndrome[J]. Chin J Pathophysiol, 2010, 26(12):2465-2466.

      [3] Roeb E, Geier A. Nonalcoholic steatohepatitis (NASH): current treatment recommendations and future developments[J]. Z Gastroenterol, 2019, 57(4):508-517.

      [4] Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade[J]. Hepatology, 2021, 73(2):833-842.

      [5] Varady KA, Cienfuegos S, Ezpeleta M, et al. Clinical application of intermittent fasting for weight loss: progress and future directions[J]. Nat Rev Endocrinol, 2022, 18(5):309-321.

      [6] Charlot A, Hutt F, Sabatier E, et al. Beneficial effects of early time-restricted feeding on metabolic diseases: importance of aligning food habits with the circadian clock[J]. Nutrients, 2021, 13(5):1405.

      [7] Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet[J]. Cell Metab, 2012, 15(6):848-860.

      [8] Ye Y, Xu H, Xie Z, et al. Time-restricted feeding reduces the detrimental effects of a high-fat diet, possibly by modulating the circadian rhythm of hepatic lipid metabolism and gut microbiota[J]. Front Nutr, 2020, 7:596285.

      [9] Kord-Varkaneh H, Salehi-Sahlabadi A, Tinsley GM, et al. Effects of time-restricted feeding (16/8) combined with a low-sugar diet on the management of non-alcoholic fatty liver disease: a randomized controlled trial[J]. Nutrition, 2023, 105:111847.

      [10] Pi H, Liu M, Xi Y, et al. Long-term exercise prevents hepatic steatosis: a novel role of FABP1 in regulation of autophagy-lysosomal machinery[J]. FASEB J, 2019, 33(11):11870-11883.

      [11] Sinha RA, Farah BL, Singh BK, et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice[J]. Hepatology, 2014, 59(4):1366-1380.

      [12] Sardiello M, Palmieri M, di Ronza A, et al. A gene network regulating lysosomal biogenesis and function[J]. Science, 2009, 325(5939):473-477.

      [13] Zhang H, Yan S, Khambu B, et al. Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply[J]. Autophagy, 2018, 14(10):1779-1795.

      [14] Chen X, Chan H, Zhang L, et al. The phytochemical polydatin ameliorates non-alcoholic steatohepatitis by restoring lysosomal function and autophagic flux[J]. J Cell Mol Med, 2019, 23(6):4290-4300.

      [15] Paquette M, El-Houjeiri L, C Zirden L, et al. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3[J]. Autophagy, 2021, 17(12):3957-3975.

      [16] 胡鑫麗,張文慧,王瑞君,等. 膽固醇在高脂高膽固醇誘導(dǎo)非酒精性脂肪性肝炎發(fā)生發(fā)展過程中的動態(tài)作用[J]. 中國生物制品學(xué)雜志, 2021, 34(1):10-19.

      Hu XL, Zhang WH, Wang RJ, et al. Dynamic role of cholesterolin pathogenesis and progress of non-alcoholic steatohepatitis induced by high fat and high cholesterol[J]. Chin J Biol, 2021, 34(1):10-19.

      [17] 張文慧,胡鑫麗,宋維芳. 輕斷食對高脂高膽固醇誘導(dǎo)的非酒精性脂肪性肝炎大鼠焦亡的影響[J]. 中國細胞生物學(xué)學(xué)報, 2021, 43(6):1249-1256.

      Zhang WH, Hu XL, Song WF. Effect of intermittent fasting on pyroptosis with non-alcoholic steatohepatitis induced by high fat and high cholesterol in rats[J]. Chin J Cell Biol, 2021, 43(6):1249-1256.

      [18] Traba J, Kwarteng-Siaw M, Okoli TC, et al. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects[J]. J Clin Invest, 2015, 125(12):4592-4600.

      [19] Liu X, Zhang Y, Ma C, et al. Alternate-day fasting alleviates high fat diet induced non-alcoholic fatty liver disease through controlling PPARα/Fgf21 signaling[J]. Mol Biol Rep, 2022, 49(4):3113-3122.

      [20] Zhou F, Ding M, Gu Y, et al. Aurantio-obtusin attenuates non-alcoholic fatty liver disease through AMPK-mediated autophagy and fatty acid oxidation pathways[J]. Front Pharmacol, 2022, 12:826628.

      [21]戴寧,鄒原,王慧芳,等. 紅景天苷對非酒精性脂肪性肝炎大鼠肝組織氧化應(yīng)激的抑制作用[J]. 中國病理生理雜志, 2013, 29(9):1704-1708.

      Dai N, Zou Y, Wang HF, et al. Inhibitory effect of salidroside on liver oxidative stress in rats with non-alcoholic steatohepatitis[J]. Chin J Pathophysiol, 2013, 29(9):1704-1708.

      [22] Pu J. Targeting the lysosome: mechanisms and treatments for nonalcoholic fatty liver disease[J]. J Cell Biochem, 2022, 123(10):1624-1633.

      [23] Carotti S, Lettieri-Barbato D, Piemonte F, et al. Molecular and histological traits of reduced lysosomal acid lipase activity in the fatty liver[J]. Cell Death Dis, 2021, 12(12):1092.

      [24] Leopold C, Duta-Mare M, Sachdev V, et al. Hepatocyte-specific lysosomal acid lipase deficiency protects mice from diet-induced obesity but promotes hepatic inflammation[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(4):500-511.

      [25] Vos DY, van de Sluis B. Function of the endolysosomal network in cholesterol homeostasis and metabolic-associated fatty liver disease (MAFLD)[J]. Mol Metab, 2021, 50:101146.

      [26] Settembre C, De Cegli R, Mansueto G, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop[J]. Nat Cell Biol, 2013, 15(6):647-658.

      [27] Gabel K, Hoddy KK, Varady KA. Safety of 8-h time restricted feeding in adults with obesity[J]. Appl Physiol Nutr Metab, 2019, 44(1):107-109.

      [28] Hafez SMNA, Elbassuoni E. Dysfunction of aged liver of male albino rats and the effect of intermitted fasting; biochemical, histological, and immunohistochemical study[J]. Int Immunopharmacol, 2022, 103:108465.

      [29] Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways[J]. Hum Mol Genet, 2011, 20(19):3852-3866.

      [30] Kim SH, Kim G, Han DH, et al. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition[J]. Autophagy, 2017, 13(10):1767-1781.

      [31] Fang Y, Ji L, Zhu C, et al. Liraglutide alleviates hepatic steatosis by activating the TFEB-regulated autophagy-lysosomal pathway[J]. Front Cell Dev Biol, 2020, 8:602574.

      [32] Emanuel R, Sergin I, Bhattacharya S, et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae[J]. Arterioscler Thromb Vasc Biol, 2014, 34(9):1942-1952.

      [33] Collodet C, Foretz M, Deak M, et al. AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR[J]. FASEB J, 2019, 33(11):12374-12391.

      [34] Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Mol Cell, 2017, 66(6):789-800.

      [35] Huang J, Wang X, Zhu Y, et al. Exercise activates lysosomal function in the brain through AMPK-SIRT1-TFEB pathway[J]. CNS Neurosci Ther, 2019, 25(6):796-807.

      [36] Wang Y, Zhao H, Li X, et al. Formononetin alleviates hepatic steatosis by facilitating TFEB-mediated lysosome biogenesis and lipophagy[J]. J Nutr Biochem, 2019, 73:108214.

      Time-restricted feeding alleviates non-alcoholic steatohepatitis through lysosomal biogenesis in mouse and cellular models

      JIANG Qiuyan, Lü Yue, YAO Ruixin, XU Kaixing, SONG Weifang△

      (,032200,)

      To investigate the therapeutic effects and molecular mechanisms of time-restricted feeding (TRF) on non-alcoholic steatohepatitis (NASH) mouse liver and oleic acid (OA)-induced damage of human hepatoblastoma HepG2 cells through AMP-activated protein kinase (AMPK)/transcription factor EB (TFEB)-mediated lysosomal biogenesis.(1) A mouse NASH model was constructed with a high-fat and high-cholesterol diet. Eighteen C57BL/6J mice were divided into normal control (NC) group, model group, and TRF group, with 6 mice in each group. After 10 weeks of feeding, mice were anesthetized, the eyeballs were removed for blood collection, and the serum was separated to detect the levels of total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum of the mice. The livers of the mice were collected, and the hepatic coefficients were calculated to detect the hepatic levels of TC and TG. The morphological changes of the livers were observed by hematoxylin-eosin (HE) and Masson staining. The protein expression levels of hepatic lysosomal-associated membrane protein 1 (LAMP1), AMPK, p-AMPK, nuclear TFEB, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were detected by Western blot method. (2)HepG2 cells were intervened with OA to establish a liver injury model and serum deprivation was used to simulate fasting conditions. HepG2 cells were divided into control, serum deprivation (FBS-), OA, and OA+FBS- groups. siRNA knockdown ofwas used to investigate the relationship between TFEB-mediated lysosomal biogenesis and hepatocyte lipid accumulation and liver injury. AMPK inhibitor compound C (CC) was used to inhibit AMPK activity to study the relationship between AMPK and TFEB-mediated lysosomal biogenesis. Hepatocyte lipid accumulation was detected by oil red O staining. Hepatocyte TC, TG, ALT, and AST levels were detected by kits. Hepatocyte LAMP1, AMPK, p-AMPK, and nuclear TFEB protein expression levels were detected by Western blot.(1) TRF intervention significantly reduced serum TC, TG, ALT, and AST levels and the expression of IL-1β, TNF-α, TG, and TC in the liver of NASH mice, and alleviated hepatic steatosis and inflammatory infiltration (<0.05). (2) Serum deprivation intervention reduced the number of lipid droplets, as well as TG, ALT, and AST levels of OA-induced HepG2 cells (<0.01). (3) Western blot results showed that TFEB nuclear translocation level, LAMP1 protein levels, and AMPK phosphorylation levels were significantly increased in the liver of NASH mice after TRF intervention (<0.01).While TFEB nuclear translocation level, LAMP1 protein level, and AMPK phosphorylation level were significantly increased in OA-induced HepG2 cells after serum deprivation intervention (<0.01). (4) After the siRNA intervention, TFEB and LAMP1 protein levels were decreased, and the ameliorative effects of serum deprivation on lipid accumulation and liver injury in the OA group were significantly attenuated (<0.05). (5) After CC intervention, the AMPK phosphorylation level, LAMP1 protein level, and TFEB nuclear translocation level were significantly reduced (<0.01).(1) TRF can alleviate lipid accumulation and inflammation in the liver of NASH mice. (2) The beneficial effects of TRF on the liver of NASH mice may be related to its contribution to AMPK/TFEB-mediated lysosomal biogenesis.

      non-alcoholic steatohepatitis; time-restricted feeding; lysosomal biogenesis; AMP-activated protein kinase; transcription factor EB

      R575.5; R363.2

      A

      10.3969/j.issn.1000-4718.2023.09.010

      1000-4718(2023)09-1611-09

      2023-05-18

      2023-07-31

      山西醫(yī)科大學(xué)汾陽學(xué)院院級科研項目(No. 2020B06);呂梁市重點研發(fā)項目(No. 2021SHFZ-2-96)

      Tel: 13994808560; E-mail: bsswf@163.com

      (責任編輯:宋延君,李淑媛)

      猜你喜歡
      溶酶體脂質(zhì)脂肪
      減肥后脂肪去哪兒了
      英語世界(2022年9期)2022-10-18 01:11:24
      脂肪竟有“好壞”之分
      脂肪的前世今生
      肝博士(2021年1期)2021-03-29 02:32:10
      溶酶體功能及其離子通道研究進展
      生物化工(2021年2期)2021-01-19 21:28:13
      反派脂肪要逆襲
      溶酶體及其離子通道研究進展
      生物化工(2020年1期)2020-02-17 17:17:58
      高中階段有關(guān)溶酶體的深入分析
      讀與寫(2019年35期)2019-11-05 09:40:46
      復(fù)方一枝蒿提取物固體脂質(zhì)納米粒的制備
      中成藥(2018年9期)2018-10-09 07:18:36
      淺談溶酶體具有高度穩(wěn)定性的原因
      白楊素固體脂質(zhì)納米粒的制備及其藥動學(xué)行為
      中成藥(2018年1期)2018-02-02 07:19:53
      甘德县| 滦平县| 万山特区| 耒阳市| 海伦市| 江口县| 绥棱县| 惠水县| 康定县| 大同县| 峡江县| 龙泉市| 安仁县| 龙海市| 腾冲县| 营口市| 宜章县| 株洲市| 筠连县| 溧水县| 台东县| 赞皇县| 册亨县| 普宁市| 延寿县| 岢岚县| 青龙| 赤壁市| 宁陵县| 韶关市| 连平县| 阿合奇县| 沐川县| 凯里市| 临沧市| 友谊县| 龙州县| 昌平区| 门源| 仪征市| 兴业县|