劉敏, 賴敏, 曾云, 祝珊珊, 尤梅桂, 高暢
蛋白激酶CβII通過調(diào)控翻譯起始介導(dǎo)上皮-間充質(zhì)轉(zhuǎn)化促進(jìn)肝細(xì)胞癌轉(zhuǎn)移*
劉敏1△, 賴敏1, 曾云1, 祝珊珊2, 尤梅桂1, 高暢3
(1廈門醫(yī)學(xué)院基礎(chǔ)醫(yī)學(xué)部,福建 廈門 361023;2廈門醫(yī)學(xué)院藥學(xué)系,福建 廈門 361023;3廈門大學(xué)附屬翔安醫(yī)院肝膽外科,福建 廈門 361023)
研究蛋白激酶C β II(protein kinase C β II, PKCβII)上調(diào)Snail和Twist蛋白表達(dá)介導(dǎo)上皮-間充質(zhì)轉(zhuǎn)化的分子機(jī)制。采用[35S]-甲硫氨酸摻入實(shí)驗(yàn)和核糖體分離實(shí)驗(yàn)觀察PKCβII對(duì)Snail和Twist mRNA翻譯的影響。敲減真核翻譯起始因子4E(eukaryotic translation initiation factor 4E,)通過核糖體分離實(shí)驗(yàn)、Western blot及RT-qPCR觀察對(duì)PKCβII調(diào)控Snail和Twist表達(dá)的影響。利用Western blot觀察PKCβII對(duì)調(diào)控eIF4E活性的相關(guān)信號(hào)通路的影響。利用Western blot觀察應(yīng)用絲裂原活化蛋白激酶相互作用激酶1(mitogen-activated protein kinase-interacting kinase 1, MNK1)抑制劑或雷帕霉素對(duì)PKCβII調(diào)控Snail和Twist蛋白表達(dá)的影響。利用Transwell實(shí)驗(yàn)觀察敲減對(duì)PKCβII調(diào)控肝癌細(xì)胞侵襲的影響。[35S]-甲硫氨酸摻入實(shí)驗(yàn)和核糖體分離實(shí)驗(yàn)表明,相比β-actin,PKCβII顯著上調(diào)Snail和Twist mRNA的翻譯(<0.01)。敲減抑制PKCβII介導(dǎo)的Snail和Twist mRNA翻譯和蛋白表達(dá)的上調(diào)(<0.01),但對(duì)Snail和Twist的轉(zhuǎn)錄沒有影響。高表達(dá)PKCβII激活細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase, ERK)/MNK1及蛋白激酶B(protein kinase B, PKB/AKT)/哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)/eIF4E結(jié)合蛋白1(eIF4E-binding protein 1, 4E-BP1)通路上調(diào)eIF4E的活性(<0.01)。應(yīng)用MNK1抑制劑或雷帕霉素可抑制PKCβII介導(dǎo)的Snail和Twist蛋白表達(dá)上調(diào)(<0.01)。敲減抑制PKCβII介導(dǎo)的肝癌細(xì)胞侵襲能力的增強(qiáng)(<0.01)。PKCβII通過激活ERK/MNK1通路和AKT/mTOR/4E-BP1通路上調(diào)eIF4E的活性,優(yōu)先促進(jìn)Snail和Twist mRNA的翻譯,介導(dǎo)上皮-間充質(zhì)轉(zhuǎn)化,從而促進(jìn)肝細(xì)胞癌的轉(zhuǎn)移。這提示PKCβII作為肝細(xì)胞癌治療靶點(diǎn)的潛力。
肝細(xì)胞癌;蛋白激酶C β II;翻譯起始;上皮-間充質(zhì)轉(zhuǎn)化;轉(zhuǎn)移
肝細(xì)胞癌(hepatocellular carcinoma, HCC)是臨床上最常見的肝癌類型,是世界范圍內(nèi)第三大腫瘤致死原因,也是最具侵襲性的實(shí)體瘤之一[1]。目前HCC的治療以手術(shù)切除、肝移植、放化療和靶向治療為主,然而較高的復(fù)發(fā)和轉(zhuǎn)移是影響肝癌患者生存期的重要因素[2]。深入研究HCC轉(zhuǎn)移的分子機(jī)制,探尋更加有效的治療靶點(diǎn),對(duì)于提高治療效果、延長(zhǎng)患者生存時(shí)間具有重要的意義。
在胚胎發(fā)育、細(xì)胞分化及應(yīng)激等過程中,蛋白質(zhì)翻譯都被精密地調(diào)控。翻譯失調(diào)參與腫瘤的發(fā)生發(fā)展,與增殖、血管生成、免疫反應(yīng)改變和能量代謝有關(guān)[3-4]。翻譯起始是翻譯的限速步驟,翻譯起始的改變?cè)谀[瘤的發(fā)展中具有重要作用[5],多種因子調(diào)控翻譯起始,如真核翻譯起始因子2(eukaryotic translation initiation factor 2, eIF2)、eIF6、eIF4E等,eIF4E可以與mRNA的5'帽結(jié)合,是帽依賴翻譯的限速因子,在翻譯起始中發(fā)揮關(guān)鍵性的作用。提高的eIF4E的表達(dá)或活性與腫瘤發(fā)展和預(yù)后密切相關(guān)[6-7],抑制eIF4E磷酸化[8]、抑制eIF4E/eIF4G結(jié)合[9]都被證實(shí)可以抑制腫瘤的進(jìn)展。
蛋白激酶C β II(protein kinase C β II, PKCβII)屬于絲/蘇氨酸蛋白激酶C家族,作為細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的主要組成部分,參與增殖、凋亡、遷移及分化等過程。研究表明,PKCβII參與多種腫瘤的發(fā)展如白血?。?0]、乳腺癌[11]和黑素瘤[12]等,其高表達(dá)與復(fù)發(fā)、低存活率密切關(guān)聯(lián)[13]。我們前期的研究結(jié)果表明,PKCβII通過轉(zhuǎn)錄水平下調(diào)上皮標(biāo)志物E-cadherin及上調(diào)間充質(zhì)標(biāo)志物N-cadherin的表達(dá),上調(diào)Snail和Twist的蛋白表達(dá),從而誘導(dǎo)上皮-間充質(zhì)轉(zhuǎn)化,促進(jìn)肝癌轉(zhuǎn)移,然而RT-qPCR和放線菌酮追蹤實(shí)驗(yàn)顯示PKCβII對(duì)Snail和Twist的轉(zhuǎn)錄及穩(wěn)定性均無影響[14]。本研究在前期研究的基礎(chǔ)上,進(jìn)一步探究PKCβII上調(diào)Snail和Twist蛋白表達(dá)的分子機(jī)制,以期為深入研究肝癌轉(zhuǎn)移的機(jī)制及尋找新的藥物靶點(diǎn)提供理論依據(jù)。
人HCC細(xì)胞株Huh7和Hep3B購(gòu)自中國(guó)科學(xué)院典型培養(yǎng)物保藏委員會(huì)細(xì)胞庫(kù)/中國(guó)科學(xué)院上海生命科學(xué)研究院細(xì)胞資源中心。
[35S]-methionine購(gòu)自Perkin Elmer;Protein-G Agarose購(gòu)自Roche;蔗糖購(gòu)自Amresco;兔源性eIF4E結(jié)合蛋白1(eIF4E-binding protein 1, 4E-BP1)、p-4E-BP1、eIF4E、p-eIF4E、絲裂原活化蛋白激酶相互作用激酶1(mitogen-activated protein kinase-interacting kinase 1, MNK1)、p-MNK1、Snail、細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase, ERK)、p-ERK、p38絲裂原活化蛋白激酶(mitogen activated protein kinase, MAPK)、p-p38 MAPK、蛋白激酶B(protein kinase B, PKB/AKT)、phospho-AKT、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)、p-JNK、哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)和p-mTOR抗體購(gòu)自Cell Signaling Technology;CGP57380和放線菌酮購(gòu)自Sigma;Twist抗體、siRNA、GAPDH抗體、辣根過氧化物酶(horseradish peroxidase, HRP)標(biāo)記的羊抗鼠Ⅱ抗和HRP標(biāo)記的羊抗兔Ⅱ抗購(gòu)自Santa Cruz;雷帕霉素(rapamycin)購(gòu)自Merck;Costar?Transwell小室(8 μm)購(gòu)自Corning;基質(zhì)膠購(gòu)自BD。
3.1[35S]-甲硫氨酸摻入實(shí)驗(yàn)細(xì)胞用無甲硫氨酸培養(yǎng)基孵育30 min,每皿加入10 μL的35S(劑量為50 μCi/mL)混勻,37 ℃、5% CO2培養(yǎng)箱孵育60 min。預(yù)冷PBS沖洗細(xì)胞2次,加入1 mL IP裂解液刮下細(xì)胞4 ℃輪轉(zhuǎn)3 h,細(xì)胞裂解液4 ℃、12 000×離心3 min,取上清與處理后的Protein-G珠子4 ℃輪轉(zhuǎn)過夜。4 ℃、2 000×離心3 min,取上清與2 μg抗體4 ℃輪轉(zhuǎn)2 h,裂解液-抗體混合物與處理后的Protein-G珠子,4 ℃輪轉(zhuǎn)2 h,4 ℃、2 000×離心3 min,棄掉上清,加入30 μL 2× Loading Buffer,煮沸10 min,4 ℃、12 000×離心3 min,蛋白電泳。每組上樣量均為20 μL,電泳完畢切去積層膠,留下分離膠,室溫置于固定液緩搖30 min,之后轉(zhuǎn)入soak液緩搖15 min,玻璃紙包好放于溫箱內(nèi)40 ℃干燥過夜,去磁,壓片,磷屏掃描。
3.2核糖體分離實(shí)驗(yàn)(polysome profiling)處理完畢的各組細(xì)胞,用含放線菌酮(濃度為100 mg/L)的培養(yǎng)基37 ℃、5% CO2孵育30 min,將細(xì)胞刮下4 ℃、300×離心3 min。加入細(xì)胞裂解液,4 ℃輪轉(zhuǎn)2 h,4 ℃、16 000×離心5 min,細(xì)胞裂解液置于冰上,4 ℃保存?zhèn)溆谩O燃?0%蔗糖,再加45%蔗糖密度梯度制備儀獲得等密度梯度,將細(xì)胞裂解液加于其上,4 ℃、36 000 r/min離心3 h,使用密度梯度分析儀收集不同蔗糖梯度組分。核糖體組分加入200 μg的Proteinase K,37 ℃烘箱1 h,加入1 mL Trizol,酸性酚-氯仿-異戊醇抽提,按照提取RNA的步驟進(jìn)行操作,RT-qPCR檢測(cè)各基因表達(dá)。
3.3Western blot實(shí)驗(yàn)細(xì)胞用冷PBS洗3次,加入SDS細(xì)胞裂解液提取總蛋白,BCA法測(cè)定蛋白濃度,進(jìn)行SDS-PAGE。以濕式轉(zhuǎn)膜法將蛋白轉(zhuǎn)到PVDF膜上,5%脫脂奶粉室溫緩搖2 h,加入抗eIF4E、Snail、Twist、p-ERK/ERK、p-p38/p38、p-JNK/JNK、p-MNK1/MNK1、p-eIF4E/eIF4E、p-AKT/AKT、p-4E-BP1/4E-BP1和p-mTOR/mTOR抗體4 ℃孵育過夜,TBST洗3次,HRP標(biāo)記的羊抗鼠IgG、羊抗兔IgG室溫孵育1 h,TBST洗3次,ECL發(fā)光液顯影。
3.4RT-qPCR實(shí)驗(yàn)細(xì)胞處理后提取各組RNA,用TaKaRa RNA PCR Kit進(jìn)行逆轉(zhuǎn)錄,熒光定量PCR采用StepOne Plus 熒光定量PCR儀。Snail的正向引物序列為5'-TCTGAGGCCAAGGATCTCCA-3',反向引物序列為5'-TGGCTTCGGATGTGCATCTT-3';Twist的正向引物序列為5'-TCTACCAGGTCCTCCAGAGC-3',反向引物序列為5'-CTCCATCCTCCAGACCGAGA-3';β-actin的正向引物序列為5'-ACCGAGCGCGGCTACAG-3',反向引物序列為5'-CTTAATGTCACGCACGATTTCC-3'。反應(yīng)程序:預(yù)孵育95 ℃ 600 s;95 ℃ 10 s,56 ℃ 20 s,72 ℃ 10 s,共45個(gè)循環(huán);溶解95 ℃ 10 s,65 ℃ 60 s,97 ℃ 1 s。
3.5Transwell實(shí)驗(yàn)基質(zhì)膠按1∶4~1∶6比例用無血清培養(yǎng)基稀釋,充分混勻。上室加入60 μL基質(zhì)膠,培養(yǎng)箱過夜使基質(zhì)膠凝固。細(xì)胞處理完畢,無血清培養(yǎng)基配成細(xì)胞懸液,計(jì)數(shù),細(xì)胞密度在1×109/L左右,上室加入50 μL細(xì)胞懸液(約5×104個(gè)細(xì)胞),下室加入600 μL完全培養(yǎng)基,37 ℃、5% CO2培養(yǎng)箱孵育24 h。取出上室,PBS洗2 min×3次,4%多聚甲醛固定30 min,PBS洗2 min×3次,結(jié)晶紫染色室溫30 min,PBS洗2 min×3次,棉球擦去上室細(xì)胞,顯微鏡下觀察拍照。
采用SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行分析。數(shù)據(jù)均采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。多組間比較采用單因素方差分析,兩組間比較采用檢驗(yàn)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
前期研究結(jié)果發(fā)現(xiàn)PKCβII上調(diào)Snail和Twist的蛋白表達(dá),然而RT-qPCR和放線菌酮追蹤實(shí)驗(yàn)顯示PKCβII對(duì)Snail和Twist的轉(zhuǎn)錄及蛋白穩(wěn)定性均無影響[14],我們猜測(cè)PKCβII上調(diào)Snail和Twist的蛋白表達(dá)是通過影響基因的翻譯實(shí)現(xiàn)的。為了驗(yàn)證這一猜想,我們通過[35S]-甲硫氨酸摻入實(shí)驗(yàn)和免疫沉淀檢測(cè)PKCβII對(duì)Snail和Twist翻譯的影響,結(jié)果顯示,與蛋白表達(dá)水平一致,在穩(wěn)定高表達(dá)PKCβII的肝癌細(xì)胞株Huh7和Hep3B中,PKCβII上調(diào)Snail和Twist的從頭蛋白質(zhì)合成,見圖1A、B。基因翻譯活性依賴于核糖體大小亞基的聚合及mRNA上多聚核糖體(polysomes)的結(jié)合。我們?cè)赑KCβII穩(wěn)轉(zhuǎn)細(xì)胞株Huh7中以核糖體分離實(shí)驗(yàn)觀察Snail、Twist及β-actin的mRNA在多聚核糖體組分中的分布,結(jié)果顯示,PKCβII使得Snail、Twist及β-actin的mRNA出現(xiàn)從light polysomes到heavy polysomes的右移,相比β-actin的mRNA,PKCβII所導(dǎo)致的核糖體組分右移在Snail和Twist的mRNA更加顯著,見圖1C。上述結(jié)果表明,除了影響整體翻譯,PKCβII優(yōu)先促進(jìn)Snail和Twist mRNA的翻譯。
Figure 1. PKCβII preferentially promoted the translation of Snail and Twist. A and B: the effect of PKCβII on de novo protein synthesis of Snail and Twist in Huh7 (A) and Hep3B (B) cells (after [35S]-methionine labeling, stable PKCβII-overexpressing cell extracts with equal counts per million were subjected to immunoprecipitation); C: the effect of PKCβII on the distribution of Snail and Twist mRNAs in the polysomes (stable PKCβII-overexpressing Huh7 cell lysates were applied to polysome profiling, followed by RT-qPCR analysis; SP: a pool of subpolysome fractions containing 40S, 60S, and 80S ribosomes). Mean±SD. n=3. *P<0.05,**P<0.01 vs vector group.
真核細(xì)胞mRNA的翻譯絕大部分是帽依賴的,eIF4E是帽翻譯起始的限速分子,控制翻譯進(jìn)程。接著我們觀察eIF4E是否參與PKCβII對(duì)Snail和Twist mRNA翻譯的調(diào)控。在PKCβII穩(wěn)轉(zhuǎn)細(xì)胞株Huh7中應(yīng)用si-eIF4E特異性敲減,利用核糖體分離實(shí)驗(yàn)觀察敲減對(duì)PKCβII調(diào)控Snail和Twist翻譯的影響,結(jié)果發(fā)現(xiàn),敲減阻斷了PKCβII介導(dǎo)的Snail和Twist mRNA的右移,而對(duì)β-actin mRNA在核糖體組分中的分布影響甚微,見圖2A;Western blot檢測(cè)也發(fā)現(xiàn)敲減不單抑制了對(duì)照組Snail和Twist的表達(dá),同時(shí)也阻斷了PKCβII介導(dǎo)的Snail和Twist表達(dá)的上調(diào)(<0.01),見圖2B;進(jìn)一步應(yīng)用RT-qPCR檢測(cè)對(duì)Snail和Twist轉(zhuǎn)錄的影響,結(jié)果發(fā)現(xiàn),PKCβII對(duì)Snail和Twist轉(zhuǎn)錄沒有影響,敲減對(duì)PKCβII調(diào)控的Snail和Twist轉(zhuǎn)錄亦沒有影響,見圖2C。上述結(jié)果表明,PKCβII通過eIF4E依賴的方式調(diào)控Snail和Twist mRNA的翻譯。
Figure 2. PKCβII promoted the translation of Snail and Twist in a eIF4E-dependent manner. A: stable PKCβII-overexpressing Huh7 cells were treated with si-eIF4E for 72 h and were applied to polysome profiling, followed by RT-qPCR analysis; B: stable PKCβII-overexpressing Huh7 cells were treated as in A and then cell lysates were applied to Western blot; C: stable PKCβII-overexpressing Huh7 cells were treated as in A and B, and RT-qPCR was used to detect the mRNA levels of Snail and Twist. Mean±SD. n=3. **P<0.01 vs vector group;##P<0.01 vs PKCβII group.
eIF4E的活性受到MAPK信號(hào)通路和磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/AKT/mTOR信號(hào)通路的調(diào)控[15],為了研究PKCβII對(duì)eIF4E的表達(dá)或活性的影響,我們檢測(cè)相關(guān)信號(hào)通路的變化。結(jié)果發(fā)現(xiàn),PKCβII可以磷酸化ERK,進(jìn)而通過磷酸化MNK1介導(dǎo)eIF4E的磷酸化;PKCβII還可以激活PI3K/Akt/mTOR通路促進(jìn)AKT、mTOR及4E-BP1的磷酸化,同時(shí)高表達(dá)PKCβII并沒有上調(diào)eIF4E的蛋白表達(dá),見圖3。上述結(jié)果表明,PKCβII通過ERK/MNK1通路和PI3K/AKT/mTOR通路上調(diào)eIF4E的活性參與對(duì)Snail和Twist的翻譯調(diào)控。
Figure 3. PKCβII activated ERK/MNK1 and AKT/mTOR/4E-BP1 pathways to up-regulate eIF4E activity. Stable PKCβII-overexpressing Huh7 cell lysates were applied to Western blot. Mean±SD. n=3. *P<0.05,**P<0.01 vs vector group.
在PKCβII穩(wěn)轉(zhuǎn)株Huh7中應(yīng)用MNK1抑制劑CGP57380抑制eIF4E的磷酸化,結(jié)果發(fā)現(xiàn)CGP57380可以抑制PKCβII介導(dǎo)的Snail和Twist蛋白表達(dá)的上調(diào),見圖4A;我們又在Huh7和Hep3B穩(wěn)轉(zhuǎn)株中加入哺乳動(dòng)物雷帕霉素靶蛋白復(fù)合物1(mammalian target of rapamycin complex 1, mTORC1)抑制劑雷帕霉素,得到了類似的結(jié)果,見圖4B、C。上述結(jié)果進(jìn)一步證實(shí)PKCβII通過提高eIF4E的活性介導(dǎo)Snail和Twist蛋白表達(dá)的上調(diào)。
Figure 4. The application of MNK1 inhibitor (CGP57380) or rapamycin blocked PKCβII-induced up-regulation of Snail and Twist. A: stable PKCβII-overexpressing Huh7 cells were treated with CGP57380 (10 μmol/L) for 24 h, and then cell lysates were applied to Western blot; B and C: stable PKCβII-overexpressing Huh7 (B) and Hep3B (C) cells were treated with rapamycin (10 nmol/L) for 48 h, and then cell lysates were applied to Western blot. Mean±SD. n=3. *P<0.05,**P<0.01 vs vector group;##P<0.01 vs PKCβII group.
我們前期的研究表明,PKCβII可以提高肝癌細(xì)胞的侵襲能力[14]。接下來我們?cè)贖uh7和Hep3B穩(wěn)轉(zhuǎn)株中轉(zhuǎn)染eIF4E的小干擾RNA敲減的表達(dá),通過Transwell實(shí)驗(yàn)觀察對(duì)肝癌細(xì)胞侵襲的影響。結(jié)果發(fā)現(xiàn),敲減可以抑制PKCβII介導(dǎo)的肝癌細(xì)胞侵襲能力的增強(qiáng),見圖5。
Figure 5. Knockdown of eIF4E(si-eIF4E) blocked PKCβII-induced increased invasive ability of hepatocellular carcinoma cells. Stable PKCβII-overexpressing Huh7 (A) and Hep3B (B) cells were treated with si-eIF4E for 72 h, and then the cells were subjected to Transwell assay (scale bar=100 μm). Mean±SD. n=3. *P<0.05,**P<0.01 vs vector group;##P<0.01 vs PKCβII group.
肝細(xì)胞癌是腫瘤相關(guān)性死亡的主要原因,HCC的肝內(nèi)外轉(zhuǎn)移多提示病人預(yù)后不良。轉(zhuǎn)錄因子Snail和Twist是調(diào)控上皮-間充質(zhì)轉(zhuǎn)化的主要因子,通過抑制上皮標(biāo)志物如E-cadherin和claudins等的轉(zhuǎn)錄,促進(jìn)間充質(zhì)標(biāo)志物N-cadherin和vimentin等的轉(zhuǎn)錄介導(dǎo)上皮-間充質(zhì)轉(zhuǎn)化的發(fā)生[16],賦予腫瘤細(xì)胞運(yùn)動(dòng)、侵襲[17]和藥物抵抗[18]的特性。本研究在前期研究的基礎(chǔ)上深入探討PKCβII上調(diào)Snail和Twist蛋白表達(dá)的分子機(jī)制,為深入了解HCC轉(zhuǎn)移機(jī)制及尋找潛在藥物靶點(diǎn)提供實(shí)驗(yàn)基礎(chǔ)。
蛋白質(zhì)翻譯的失調(diào)是腫瘤發(fā)生發(fā)展中重要的驅(qū)動(dòng)因素,通過上調(diào)整體蛋白質(zhì)合成或選擇性的提高某些mRNA的翻譯促進(jìn)腫瘤的惡性進(jìn)展[19]。本研究通過[35S]-甲硫氨酸摻入實(shí)驗(yàn)和核糖體分離實(shí)驗(yàn)發(fā)現(xiàn)在肝癌細(xì)胞中PKCβII可以促進(jìn)轉(zhuǎn)錄因子Snail和Twist mRNA的翻譯。翻譯起始是蛋白質(zhì)合成的限速步驟,eIF4E是翻譯起始的限速因子,我們利用核糖體分離、Western blot及RT-qPCR等實(shí)驗(yàn)證實(shí)了PKCβII調(diào)控Snail和Twist的翻譯和表達(dá)是eIF4E依賴性的。翻譯起始因子(如eIF4E、eIF4A和IF2α)活性或表達(dá)水平的改變參與腫瘤的進(jìn)展[20],接下來我們觀察PKCβII對(duì)eIF4E活性或蛋白表達(dá)的影響,結(jié)果顯示PKCβII通過ERK/MNK1通路促進(jìn)eIF4E的磷酸化。研究表明eIF4E的磷酸化對(duì)于正常發(fā)育不是必需的,但是對(duì)于細(xì)胞的惡變卻是必不可少的條件,eIF4E的磷酸化在Myc和壓力驅(qū)動(dòng)下的腫瘤發(fā)生中扮演重要的角色[21]。在肺癌、胃癌和直腸癌中p-eIF4E水平都明顯升高,并且與病人縮短的生存期密切相關(guān)[6]。本研究還發(fā)現(xiàn)PKCβII可以激活A(yù)KT/mTORC1/4E-BP1通路,促進(jìn)4E-BP1磷酸化以及與eIF4E的解離,自由的eIF4E與eIF4G、eIF4A結(jié)合組成eIF4F翻譯起始復(fù)合物,識(shí)別mRNA的5'端帽結(jié)構(gòu),啟動(dòng)包括癌基因在內(nèi)的翻譯。由于eIF4E不與MNK1直接結(jié)合,eIF4G作為一個(gè)停泊點(diǎn)分別與eIF4E、MNK1結(jié)合,使得MNK1與其底物eIF4E相互靠近進(jìn)而磷酸化eIF4E,因此PKCβII促進(jìn)eIF4E的磷酸化是依賴于AKT/mTORC1/4E-BP1通路激活的。本研究還發(fā)現(xiàn)PKCβII并沒有上調(diào)eIF4E的蛋白表達(dá),因此PKCβII通過ERK/MNK1和AKT/mTORC1/4E-BP1通路提高eIF4E的活性,優(yōu)先上調(diào)轉(zhuǎn)錄因子Snail和Twist的翻譯,進(jìn)而通過在轉(zhuǎn)錄水平調(diào)控E-cadherin和N-cadherin等的表達(dá)介導(dǎo)上皮-間充質(zhì)轉(zhuǎn)化的發(fā)生。MNK1抑制劑CGP57380被證實(shí)可以抑制腫瘤的進(jìn)展以及提高對(duì)放、化療的敏感性[22-23]。我們的研究也發(fā)現(xiàn)CGP57380可以抑制PKCβII介導(dǎo)的Snail和Twist蛋白表達(dá)的上調(diào)。mTOR抑制劑如rapamycin或其類似物是有效的抗腫瘤藥物[24]。同樣在本研究中也發(fā)現(xiàn)應(yīng)用rapamycin可以抑制PKCβII介導(dǎo)的Snail和Twist蛋白表達(dá)的上調(diào)。由于rapamycin可以提高eIF4E的磷酸化使得在初次使用之后便出現(xiàn)藥物抵抗,因此mTOR抑制劑與靶向MNK的藥物聯(lián)用表現(xiàn)出協(xié)同作用,克服了藥物抵抗,表現(xiàn)出良好的抗腫瘤作用[25]。本研究沒有觀察rapamycin處理是否影響肝癌細(xì)胞中eIF4E的磷酸化水平,是不足之處。由于PKCβII可以同時(shí)促進(jìn)MNK1的磷酸化以及激活mTOR通路,因此靶向PKCβII可以同時(shí)抑制MNK以及mTOR的活性,提示PKCβII可能成為有潛力的藥物靶點(diǎn)。
本研究通過進(jìn)一步探討PKCβII調(diào)控Snail和Twist蛋白表達(dá)的分子機(jī)制,為深入了解肝癌中翻譯調(diào)控的復(fù)雜網(wǎng)絡(luò)提供參考,還提示靶向PKCβII作為一個(gè)輔助治療手段與常規(guī)藥物聯(lián)用可能是腫瘤治療的又一有效策略。
[1] Freddie B, Jacques F, Isabelle S, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
[2] Zhou SL, Zhou ZJ, Hu ZQ, et al. Genomic sequencing identifies WNK2 as a driver in hepatocellular carcinoma and a risk factor for early recurrence[J]. J Hepatol, 2019, 71(6):1152-1163.
[3] Morgan LT, Davide R. New frontiers in translational control of the cancer genome[J]. Nat Rev Cancer, 2016, 16(5):288-304.
[4] Huang DD, Sun WJ, Zhou YW, et al. Mutations of key driver genes in colorectal cancer progression and metastasis[J]. Cancer Metastasis Rev, 2018, 37(1):173-187.
[5] Andrea MA, Brenda CV, Victor GG. Translation initiation and its relationship with metabolic mechanisms in cancer development, progression and chemoresistance[J]. Adv Protein Chem Struct Biol, 2022, 132(8):111-141.
[6] Tang YX, Luo JD, Yang Y, et al. Overexpression of p-4EBP1 associates with p-eIF4E and predicts poor prognosis for non-small cell lung cancer patients with resection[J]. PLoS One, 2022, 17(6):e265465.
[7] Lu JM, Zang HJ, Zheng HM, et al. Overexpression of p-Akt, p-mTOR and p-eIF4E proteins associates with metastasis and unfavorable prognosis in non-small cell lung cancer[J]. PLoS One, 2020, 15(2):e227768.
[8] Xu YC, Mauro P, Hyun YJ, et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting[J]. Nat Med, 2019, 25(2):301-311.
[9] Chao F, Xie HS, Zhao J, et al. eIF4E-eIF4G complex inhibition synergistically enhances the effect of sorafenib in hepatocellular carcinoma[J]. Anticancer Drugs, 2021, 32(8):822-828.
[10] Jodie H, Anuradha T, Ailsa KH, et al. PKCβ facilitates leukemogenesis in chronic lymphocytic leukaemia by promoting constitutive BCR-mediated signalling[J]. Cancers (Basel), 2022, 14(23):6006-6024.
[11] Julie AW, Jason RP, Nandini S, et al. Protein kinase C Beta in the tumor microenvironment promotes mammary tumorigenesis[J]. Front Oncol, 2014, 4:87.
[12] Mariana T, Fabiana H MM, Aline H, et al. Timp1 promotes cell survival by activating the PDK1 signaling pathway in melanoma[J]. Cancers (Basel), 2017, 9(4):37.
[13] Ann RH, Mads HH, ?sa K?, et al. Protein kinase C isozymes associated with relapse free survival in non-small cell lung cancer patients[J]. Front Oncol, 2020, 10:590755.
[14] 劉敏,曾云,祝珊珊,等. 蛋白激酶CβⅡ誘導(dǎo)上皮-間質(zhì)轉(zhuǎn)化及血管新生促進(jìn)肝癌發(fā)展[J]. 解剖學(xué)報(bào), 2020, 51(6):912-918.
Liu M, Zeng Y, Zhu SS, et al. Protein kinase CβⅡ promoting the development of hepatocellular carcinoma via inducing epithelial-mesenchymal transition and angiogenesis[J]. Acta Anat Sin, 2020, 51(6):912-918.
[15] Amit JS, Trever GB. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology[J]. Trends Mol Med, 2019, 25(3):185-197.
[16] Samy L, Xu J, Rik D. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
[17] Yang J, Robert AW. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis[J]. Dev Cell, 2008, 14(6):818-829.
[18] 羅楊,童冰杰,趙賓,等. 除痰解毒方通過EMT途徑逆轉(zhuǎn)肺癌吉非替尼耐藥[J]. 中國(guó)病理生理雜志, 2019, 35(1):34-40.
Luo Y, Tong BJ, Zhao B, et al. Chutan-Jiedu decoction reverses resistance of lung cancer to gefitinib by processing EMT[J]. Chin J Pathophysiol, 2019, 35(1):34-40.
[19] Michael J, Laura L, Matthew L, et al. Translational control of breast cancer plasticity[J]. Nat Commun, 2020,11(1):2498.
[20] Hao PQ, Yu JJ, Richard W, et al. Eukaryotic translation initiation factors as promising targets in cancer therapy[J]. Cell Commun Signal, 2020, 18(1):175.
[21] Ruan H, Li XY, Xu X, et al. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis[J]. Elife, 2020, 9(11):60151-60176.
[22] Michal G, Jan S, Daniel H, et al. Inhibition of MNK pathways enhances cancer cell response to chemotherapy with temozolomide and targeted radionuclide therapy[J]. Cell Signal, 2016, 28(9):1412-1421.
[23] Wang WY, Wen QY, Luo JD, et al. Suppression of β- catenin nuclear translocation by CGP57380 decelerates poor progression and potentiates radiation-induced apoptosis in nasopharyngeal carcinoma[J]. Theranostics, 2017, 7(7):2134-2149.
[24] Blagosklonny MV. Cancer prevention with rapamycin[J]. Oncotarget, 2023, 14:342-350.
[25] Dorota G, Marta Z, Joanna P, et al. Dual targeting of melanoma translation by MNK/eIF4E and PI3K/mTOR inhibitors[J]. Cell Signal, 2023, 109:110742.
Protein kinase C β II mediates epithelial-mesenchymal transition and hepatocellular carcinoma metastasis by modulating translation initiation
LIU Min1△, LAI Min1, ZENG Yun1, ZHU Shanshan2, YOU Meigui1, GAO Chang3
(1,,361023,;2,,361023,;3,,361023,)
To investigate the molecular mechanism of protein kinase C β II (PKCβII) mediating epithelial-mesenchymal transition by up-regulation of Snail and Twist expression.[35S]-methionine incorporation assay and polysome profiling were performed to observe the effect of PKCβII on the translation of Snail and Twist mRNA. The impact of eukaryotic translation initiation factor 4E () knockdown on the expression of Snail and Twist regulated by PKCβII was examined by polysome profiling, Western blot and RT-qPCR. Western blot was used to observe the effect of PKCβII on signaling pathways modulating the eIF4E activity. Western blot was used to observe the effect of a mitogen-activated protein kinase-interacting kinase 1 (MNK1) inhibitor or rapamycin on PKCβII-regulated expression of Snail and Twist. Transwell assay was used to observe the impact ofknockdown on PKCβII-regulated invasion of hepatocellular carcinoma cells.[35S]-methionine incorporation assay and polysome profiling showed that PKCβII significantly promoted the translation of Snail and Twist compared with that of β-actin (<0.01). Knockdown ofinhibited PKCβII-mediated up-regulation of Snail and Twist mRNA translation and protein expression (<0.01). However, it caused no statistically significant changes in Snail and Twist mRNA levels. Overexpression of PKCβII activated extracellular signal-regulated kinase (ERK)/MNK1 and protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR)/eIF4E-binding protein 1 (4E-BP1) pathways to up-regulate the eIF4E activity (<0.01). The application of MNK1 inhibitor or rapamycin blocked PKCβII-induced up-regulation of Snail and Twist protein expression (<0.01). Knockdown ofinhibited the increased invasive ability of hepatocellular carcinoma cells induced by PKCβII (P<0.01).PKCβII up-regulates the activity of eIF4E through ERK/MNK1 and AKT/mTOR/4E-BP1 pathways, leading to preferential translation of Snail and Twist mRNA to mediate epithelial-mesenchymal transition and promote hepatocellular carcinoma metastasis. These findings suggest that PKCβII has potential as a therapeutic target for hepatocellular carcinoma.
hepatocellular carcinoma; protein kinase C β II; translation initiation; epithelial-mesenchymal transition; metastasis
R735.7; R363
A
10.3969/j.issn.1000-4718.2023.09.002
1000-4718(2023)09-1547-08
2023-06-20
2023-08-04
廈門市自然科學(xué)基金資助項(xiàng)目(No. 3502Z20227229);福建省自然科學(xué)基金面上項(xiàng)目(No. 2022J011403);福建省大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃項(xiàng)目(No. S202212631001)
Tel: 13779925194; E-mail: 654289363@qq.com
(責(zé)任編輯:宋延君,李淑媛)