褚珍珍, 周栩萱, 劉力豪, 張鮑歡, 姚楠△
· 論著 ·
天冬酰胺合成酶通過促進β-catenin核轉位驅動膽管癌轉移*
褚珍珍1,2, 周栩萱1,2, 劉力豪1, 張鮑歡3△, 姚楠1,2△
(1暨南大學基礎醫(yī)學院病理生理學系,廣東 廣州 510632;2國家中醫(yī)藥管理局病理生理科研實驗室,廣東 廣州 510632;3暨南大學基礎醫(yī)學院形態(tài)學實驗教學中心,廣東 廣州 510632)
檢測天冬酰胺合成酶(ASNS)在膽管癌(CCA)中的表達情況,探討ASNS在CCA轉移中的作用及其機制。通過公共數(shù)據(jù)庫分析各腫瘤組織中ASNS的mRNA表達;收集CCA患者病理組織(=27),構建硫代乙酰胺誘導的大鼠自發(fā)CCA模型和左中位膽管結扎聯(lián)合二乙基亞硝胺誘導的小鼠自發(fā)CCA模型,通過免疫組化、Western blot和免疫熒光法檢測ASNS蛋白表達。采用CCK8、劃痕和Transwell實驗檢測ASNS對人CCA細胞HuCCT1和HCCC-9810增殖、遷移和侵襲的影響。構建穩(wěn)定敲減的CCA細胞株HuCCT1shNC、HuCCT1shASNS、HCCC-9810shNC和HCCC-9810shASNS,通過肝原位種植和尾靜脈注射研究ASNS對CCA細胞肝內生長和肺轉移的影響。利用公共數(shù)據(jù)庫富集與ASNS相關的信號通路,并用免疫熒光和Western blot驗證相關分子機制。無論在人或動物CCA組織中,ASNS表達水平均高于癌旁組織(<0.01)。ASNS以酶活性非依賴性方式促進CCA細胞HuCCT1和HCCC-9810的增殖、遷移與侵襲。生物信息學分析顯示,β-catenin在ASNS高表達的CCA組織中富集,ASNS通過促進β-catenin核轉位,啟動CCA細胞上皮-間充質轉化(EMT)。β-catenin抑制劑XAV-939可顯著抑制CCA細胞的侵襲與遷移。ASNS在CCA中高表達,通過促進β-catenin核轉位,介導EMT,驅動CCA轉移。
膽管癌;腫瘤轉移;天冬酰胺合成酶;β-catenin信號通路;上皮-間充質轉化
膽管癌(cholangiocarcinoma, CCA)是一種死亡率極高的上皮來源惡性腫瘤[1],發(fā)病隱匿,極易轉移[2]?;颊咄谕砥陔A段確診,錯過手術治療的最佳時機。晚期CCA患者主要接受化療,但效果欠佳,毒副作用較大。此外,CCA異質性高,發(fā)病機制復雜,靶向治療手段欠缺。尋找更加有效的治療靶點和方法以改善CCA患者的生存質量具有重要的現(xiàn)實意義。腫瘤從營養(yǎng)匱乏的環(huán)境中獲取必需的營養(yǎng)物質,以適應缺氧的腫瘤微環(huán)境,為增殖、侵襲和遷移等生物活動提供物質支持[3-4]。天冬酰胺合成酶(asparagine synthetase, ASNS)催化谷氨酰胺合成天冬酰胺(asparagine, Asn),并參與腫瘤生物學過程[5-6]。研究表明,ASNS是腫瘤細胞增殖與轉移的關鍵調控因子[7-8]。天冬酰胺酶通過耗竭Asn抑制腫瘤進程,是臨床治療急性淋巴細胞白血病的一線藥物[9]。ASNS也被報道具有酶活性非依賴功能,參與腫瘤上皮-間充質轉化(epithelial-mesenchymal transition, EMT)的調控[8],但機制尚不明確。此外,ASNS在CCA中的作用尚未有報道。因此,本研究旨在檢測ASNS在CCA中的表達變化,探討其在CCA轉移中作用及其機制。
本研究所涉及的27例人CCA標本來自中山大學第一附屬醫(yī)院,對應的患者信息見表1。癌旁組織取離腫瘤邊緣至少5 mm。手術取出樣本后,立即冷凍在液氮中運輸。隨即經福爾馬林固定,石蠟包埋保存,對于不立即包埋樣本在液氮中長期保存。本研究獲得中山大學第一附屬醫(yī)院倫理委員會批準并遵循相關的倫理規(guī)定(倫理編號為[2021]678)。
表1 27例膽管癌患者基本信息
從廣東省醫(yī)學實驗動物中心購入28只SPF級4~6周齡雄性BALB/c-nu無胸腺裸鼠(18~22 g),許可證號為SCXK(粵)2022-0002;14只SPF級8~9周齡雄性SD大鼠(330~370 g)和14只SPF級7周齡雄性BALB/c小鼠(18~22 g)均購于南方醫(yī)科大學動物實驗中心,許可證號為SCXK(粵)2016-0041。飼養(yǎng)條件:溫度(21±2) ℃,相對濕度45%~55%,光/暗循環(huán)12 h/12 h,自由獲取鼠糧和無菌水。本研究通過暨南大學實驗動物中心動物倫理審查會的審查并遵守《實驗動物的護理和使用指南》。
人正常膽管上皮細胞系HIBEpiC和人CCA細胞系QBC939購于深圳震科生物科技有限公司;人CCA細胞系RBE和HCCC-9810購于北京綠源伯德生物科技有限公司;人CCA細胞系HuCCT1購于廣州素研生物科技有限公司。
RPMI-1640培養(yǎng)液、胎牛血清、雙抗(青霉素和鏈霉素)和胰蛋白酶購于Gibco;嘌呤霉素和Tween-20購于北京索萊寶科技有限公司;逆轉錄試劑盒和實時定量PCR檢測試劑盒購于APExBIO;小干擾RNA(small interfering RNA, siRNA)、對應陰性對照(negative control, NC) siRNA、shASNS和過表達慢病毒由北京擎科生物科技有限公司構建;LipofectamineTM3000購于Invitrogen;TRIzol試劑購于北京全式金生物科技有限公司;抗ASNS兔單克隆抗體(貨號:92479)、抗E-cadherin抗體(貨號:3195s)、抗β-catenin抗體(貨號:8480s)和抗GAPDH抗體(貨號:5174s)購自Cell Signaling Technology;抗vimentin兔單克隆抗體(貨號:ab92547)購自Abcam;封閉用山羊血清和羊抗兔組化Ⅱ抗試劑盒購于北京中杉金橋生物技術有限公司;熒光Ⅱ抗和細胞核染色劑DAPI購于Thermo Fisher Scientific;蘇木素-伊紅(hematoxylin-eosin, HE)染色劑購于珠海貝索生物技術有限公司;抗熒光淬滅封片劑、SDS-PAGE凝膠配制試劑盒、RIPA細胞裂解液、細胞質蛋白與細胞核蛋白抽取試劑盒、BCA蛋白定量試劑盒和ECL發(fā)光液購于上海碧云天生物技術有限公司;基質膠購于Corning;4%多聚甲醛、PBS和TBS購于廣州市永津生物科技有限公司;β-catenin抑制劑XAV-939購于Selleck;異氟烷購于深圳市瑞沃德生命科技有限公司。其余化學試劑均購于Sigma-Aldrich。
5.1生物信息學分析從基因表達綜合數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/geo; GSE107943)下載相關表達數(shù)據(jù)。采用R語言軟件對初始數(shù)據(jù)進行差異倍數(shù)(fold change>2.0)的篩選,利用基因集富集分析(gene set enrichment analysis, GSEA)預測CCA患者中與ASNS相關的信號通路[10]。
5.2HE染色和免疫組織化學染色將CCA組織從液氮中取出進行石蠟包埋。對于HE染色,切4 μm厚度病理切片置于烘箱中烘烤,脫蠟與水化后蘇木素染核,隨后用鹽酸乙醇進行分化并采用氨水返藍,進行伊紅染色。經95%乙醇調色、無水乙醇脫水和二甲苯浸泡后封片。對于免疫組織化學染色,將4 μm厚度病理切片置于烘箱中烘烤,進行脫蠟水化、過氧化氫酶消除和微波修復。山羊血清封閉后滴加相應Ⅰ抗4 ℃孵育過夜,孵育Ⅱ抗后進行二氨基聯(lián)苯胺顯色,蘇木素染核,脫水封片。由3名實驗人員對染色切片進行評分,染色細胞陽性率評定:同一組織中,取多個染色強度不同的高倍鏡視野,分別計算CCA陽性細胞數(shù),取其平均值,用百分率表示。染色強度評定:0分(無著色)、弱陽性1分(淡黃色)、中陽性2分(棕黃色)和強陽性3分(棕褐色)。根據(jù)以上免疫組化的結果,將染色細胞陽性率和染色強度評分相乘,獲得每個切片的總評分[11]。
5.3組織免疫熒光染色前處理步驟同免疫組織化學染色,完成后滴加相應Ⅰ抗(5% BSA+0.5% Triton X-100稀釋),4 ℃孵育過夜。滴加熒光標記Ⅱ抗,室溫孵育1 h;將切片置于PBS中漂洗,每張切片用PBS稀釋后的DAPI工作液室溫孵育10 min。隨后將切片置于PBS中漂洗,滴加特定熒光封片劑封片。4 ℃避光保存,使用免疫熒光顯微鏡觀察并拍照。
5.4RT-qPCR實驗采用Trizol提取總RNA,隨后用逆轉錄試劑盒合成cDNA,按照實時定量PCR試劑盒說明書,在Bioer LineGene 9600 Thermal Cycler中進行相對定量,以GAPDH為內參對照,按照2-ΔΔCt的計算方式算出目的基因的mRNA水平。GAPDH的上游引物序列為5'-TGCACCACCAACTGCTTAGC-3',下游引物序列為5'-GGCATGGACTGTGGTCATGAG-3';ASNS的上游引物序列為5'-GGAAGACAGCCCCGATTTACT-3',下游引物序列為5'-AGCACGAACTGTTGTAATGTCA-3'[12]。
5.5Western blot實驗消化收集細胞,采用RIPA裂解液提取細胞總蛋白。對于核質蛋白分離實驗,消化收集細胞,隨后按照細胞核質蛋白提取試劑盒步驟提取細胞質蛋白與細胞核蛋白。采用BCA法測定蛋白濃度,取20~40 μg蛋白樣品進行SDS-PAGE分離和轉膜后,于室溫在5%脫脂奶粉中封閉1 h,加入相應Ⅰ抗[ASNS、E-cadherin、vimentin、β-catenin和lamin B1(細胞核蛋白的內參照)抗體均1∶1 000稀釋,GAPDH(總蛋白和細胞質蛋白的內參照)抗體1∶4 000稀釋]4 ℃孵育過夜。加入HRP標記的對應Ⅱ抗,室溫孵育1 h,采用ECL發(fā)光液進行顯影拍照。
5.6細胞培養(yǎng)與轉染用含10%胎牛血清和1%雙抗的RPMI-1640完全培養(yǎng)液,置于37 ℃、5% CO2的培養(yǎng)箱內培養(yǎng)細胞。瞬時轉染siRNA時,待細胞生長至融合度為50%~60%時,將LipofectamineTM3000與siRNA按照說明書混合并加入培養(yǎng)板中。siASNS的正義鏈序列為5'-GGAUACUGCCAAUAAGAAA-3',反義鏈序列為5'-UUUCUUAUUGGCAGUAUCC-3'[13]。穩(wěn)定轉染時,待細胞融合度為30%~40%時,按照慢病毒轉染說明書操作。轉染完成后,加入嘌呤霉素(5 μg/mL)篩選穩(wěn)定轉染的CCA細胞株。
5.7細胞增殖實驗按每孔3×103個將CCA細胞接種于96孔板,待細胞完全貼壁后進行相應的處理。加入檢測試劑100 μL(RPMI-1640培養(yǎng)液與CCK8按10∶1配制),置于培養(yǎng)箱中繼續(xù)孵育2 h,采用酶標儀讀取450 nm處的吸光度()。
5.8細胞遷移和侵襲實驗將Transwell小室置于24孔板內,將無血清細胞懸液接種于Transwell小室上室,下室中加入含10%胎牛血清的RPMI-1640培養(yǎng)液,置于培養(yǎng)箱內孵育14 h后,4%多聚甲醛固定,DAPI染色后于顯微鏡下觀察并拍照。在侵襲實驗中,Transwell上室預先加入基質膠和RPMI-1640培養(yǎng)液(1∶8)的混合液,并放入培養(yǎng)箱凝固2 h,后續(xù)步驟同遷移實驗。用ImageJ軟件統(tǒng)計穿膜細胞數(shù)。
5.9細胞劃痕實驗將對數(shù)生長期CCA細胞接種至6孔板中,待細胞融合度達90%以上時,使用1 mL吸頭沿孔板中心劃一條直線,用PBS洗去漂浮細胞。向孔內加入無血清RPMI-1640培養(yǎng)液,分別于處理后0、24和48 h在顯微鏡下觀察細胞遷移情況。與0 h的初始間距作對比,用ImageJ軟件計算遷移面積。
5.10細胞免疫熒光染色將CCA細胞接種至24孔板中,經處理后加入4%多聚甲醛固定,再加入0.3% Triton X-100孵育10~15 min后,加入5% BSA封閉液孵育20 min。隨后將滴有Ⅰ抗(E-cadherin和vimentin抗體均1∶200稀釋)的爬片蓋在細胞上孵育過夜;孵育結束后,移除Ⅰ抗,滴加對應的熒光Ⅱ抗(1∶1 000稀釋),室溫避光孵育1 h。DAPI染色后采用Olympus BX51倒置熒光顯微鏡觀察并拍照。
5.11人CCA細胞裸鼠肝原位移植模型將雄性BALB/c-nu無胸腺裸鼠隨機分為4組,每組7只。采用異氟烷吸入麻醉,將HuCCT1shNC、HuCCT1shASNS、HCCC-9810shNC和HCCC-9810shASNS細胞懸液以1∶1混合至基質膠中(20 μL,含約2×106個細胞),然后原位注射到裸鼠中葉肝囊下區(qū)[14]。5周后處死裸鼠,切除肝臟,計數(shù)腫瘤個數(shù),并進行石蠟包埋用于后續(xù)免疫組化檢測。
5.12人CCA細胞裸鼠尾靜脈注射肺轉移模型將6×106個處于對數(shù)生長期的HuCCT1shNC、HuCCT1shASNS、HCCC-9810shNC或HCCC-9810shASNS細胞懸浮于50 μL PBS中,經尾靜脈注射入雄性BALB/c-nu無胸腺裸鼠體內,每組7只裸鼠[15]。6周后處死所有裸鼠,切除肺部計數(shù)轉移性結節(jié)。
5.13大鼠自發(fā)CCA模型的構建將雄性SD大鼠隨機分為實驗組[7只,每天飲用含0.03%硫代乙酰胺(thioacetamide, TAA)的飲用水]和空白對照組(7只,正常飲水),于第24周末處死大鼠[16],切取病變肝臟組織,中性福爾馬林固定,常規(guī)石蠟包埋。
5.14小鼠自發(fā)CCA模型的構建將雄性BALB/c小鼠隨機分為實驗組(7只)和空白對照組(7只,不做任何處理)。前2周,實驗組腹腔注射二乙基亞硝胺(diethylnitrosamine, DEN; 100 mg/kg,每周一次);第5周末,在異氟烷麻醉下,開腹進行左中位膽管結扎(left and median bile duct ligation, LMBDL);第6周至第28周,每周進行玉米油DEN灌胃(25 mg/kg)1次[17]。第28周時處死小鼠,切取病變肝臟組織,進行中性福爾馬林固定,常規(guī)石蠟包埋。
采用GraphPad Prism 8.0軟件進行統(tǒng)計分析。所有數(shù)據(jù)均用均數(shù)±標準差(mean±SD)表示。各實驗均獨立重復3次。兩組間均數(shù)比較采用檢驗。以<0.05為差異有統(tǒng)計學意義。
TIMER (Tumor Immune Estimation Resource)和TCGA (The Cancer Genome Atlas)分析顯示,ASNS在多種腫瘤中均表達上調,但在CCA中的差異表達最為顯著(<0.01),見圖1A和B。在人CCA臨床樣本中(病人信息見表1,=27),癌組織中ASNS的表達水平均顯著高于正常膽管組織(<0.01),見圖1C。免疫熒光染色結果顯示,ASNS和CK19(膽道細胞標志物)之間存在顯著的共定位,見圖1D。進一步,本研究也提取了8例新鮮人CCA樣本的總蛋白行Western blot,結果顯示,CCA中ASNS表達顯著高于癌旁正常組織,見圖1E。此外,ASNS在DEN聯(lián)合LMBDL誘導的小鼠自發(fā)CCA組織和TAA誘導的大鼠自發(fā)CCA組織中也表達上調(<0.01),見圖1F。
Figure 1. Asparagine synthetase (ASNS) was up-regulated in cholangiocarcinoma (CCA). A: the mRNA level of ASNS in different types of human cancer was determined using Tumor Immune Estimation Resource (TIMER); B: the mRNA level of ASNS in CCA tissues (T) and non-tumor tissues (N) were examined using The Cancer Genome Atlas (TCGA) database; C: representative images (left panel) and statistical analysis (right panel) of ASNS immunohistichemical (IHC) staining in our cohort (n=27; scale bar=100 μm); D: representative immunofluorescence images of ASNS (green) and CK19 (red) in two clinical CCA tissues from our 27 CCA cohort (scale bar=100 μm); E: Western blot analysis of ASNS expression in tumor tisssues (T) and peritumor normal tissues (N) from 8 fresh human CCA tissues; F: HE staining and CK19 and ASNS IHC staining of the tissues from diethylnitrosamine (DEN)+left and median bile duct ligation (LMBDL)-induced mouse CCA model and thioacetamide (TAA)-induced rat CCA model (left panel; scale bar=100 μm), and the statistical analysis of ASNS IHC staining (right panel;n=7). Mean±SD. *P<0.05,**P<0.01 vs N or non-tumor group;##P<0.01 vs peritumor group.
CCA細胞系HuCCT1、RBE和HCCC-9810中ASNS的mRNA和蛋白表達均顯著高于人正常膽管細胞系HIBEpiC(<0.01),見圖2A。選取ASNS高表達的HuCCT1和HCCC-9810細胞,瞬時轉染siRNA敲減,見圖2B。敲減顯著抑制CCA細胞活力(<0.01),補充外源性Asn沒有逆轉敲減造成的細胞活力抑制,見圖2C。此外,劃痕和Transwell實驗結果顯示,相比于空白對照(siNC)組,敲低后,CCA細胞體外遷移和侵襲的能力減弱,見圖2D~G。外源性補充Asn并不影響siRNA對CCA細胞運動能力的抑制,見圖2H、I。
Figure 2. Asparagine synthetase (ASNS) promoted cholangiocarcinoma (CCA) cell proliferation and metastasis in vitro. A: the mRNA and protein expression levels of ASNS in CCA cells were determined by RT-qPCR and Western blot; B: the protein level of ASNS in HuCCT1 and HCCC-9810 cells treated with siASNS (200 nmol/L) for 72 h was determined by Western blot; C: HuCCT1 and HCCC-9810 cells were transfected with siASNS (200 nmol/L) in the presence or absence of asparagine (Asn; 0.3 mmol/L) for indicated time, and cell viability was determined by CCK8 assay; D and E: HuCCT1 and HCCC-9810 cells were treated with siASNS (200 nmol/L) for 72 h, and the migration ability was determined by wound-healing assay (scale bar=400 μm); F and G: the migration and invasion abilities of HuCCT1 and HCCC-9810 cells were determined after treatment with siASNS (200 nmol/L) for 72 h (scale bar=200 μm); H: wound-healing assay was performed in HuCCT1 cells transfected with siNC or siASNS (200 nmol/L) in the presence or absence of Asn (0.3 mmol/L) for 72 h; I: Transwell migration and invasion assays were performed in HCCC-9810 cells transfected with siNC or siASNS (200 nmol/L) in the presence or absence of Asn (0.3 mmol/L) for 72 h. Mean±SD. n=3. **P<0.01 vs HiBEpiC;#P<0.05,##P<0.01 vs siNC group.
為了進一步研究ASNS在體內能否促進CCA的生長和轉移,利用shRNA穩(wěn)定敲減HuCCT1和HCCC-9810細胞的,見圖3A。CCK8和Transwell實驗結果表明,shASNS可顯著抑制HuCCT1和HCCC-9810細胞的活力、遷移能力和侵襲能力(<0.01),見圖3B~D。敲減后,HuCCT1和HCCC-9810細胞在裸鼠肝原位的成瘤能力顯著減弱(<0.01),見圖3E。與對照組相比,敲減導致HuCCT1和HCCC-9810細胞肺轉移發(fā)生率降低,轉移結節(jié)顯著減少(<0.05),見圖3F。
Figure 3. Stable knockdown of asparagine synthetase (ASNS) inhibited cholangiocarcinoma (CCA) growth and metastasis in vivo. A: stable knockdown of ASNS in HuCCT1 and HCCC-9810 cells was confirmed by Western blot; B: the viability of HuCCT1 and HCCC-9810 cells after stable knockdown of ASNS was determined by CCK8 assay (n=3); C and D: Transwell migration and invasion assays were performed in HuCCT1 and HCCC-9810 cells with stable knockdown of ASNS (scale bar=200 μm;n=3); E: schematic of orthotopic CCA model (left), representative images of tumor morphology of liver tissues in nude mice (middle) and statistical analysis of tumor nodules (right;n=7); F: schematic of tail vein injection model of lung metastasis (left), representative images of tumor morphology of lung tissues in nude mice (middle top), statistical analysis of the incidence of lung metastasis (middle bottom) and statistical analysis of tumor nodules (right;n=7). Mean±SD. *P<0.05,**P<0.01 vs shNC group.
鑒于ASNS與CCA轉移有關,利用公共數(shù)據(jù)庫數(shù)據(jù)(GSE107943)進行GSEA,在ASNS高表達的CCA組織中,Wnt/β-catenin通路激活(<0.01),見圖4A。免疫熒光染色顯示,敲減后上皮標志物E-cadherin表達減少,間充質標志物vimentin表達增多,表明EMT激活,見圖4B。Western blot實驗結果顯示,敲減后,E-cadherin表達減少,vimentin表達增多,β-catenin表達水平無顯著變化,見圖4C。但在ASNS低表達的QBC-939細胞中過表達后,細胞質中的β-catenin含量減少,而細胞核中β-catenin的蛋白量顯著增加,見圖4D。同時,通過免疫熒光染色也觀察到,過表達后β-catenin在細胞核中的熒光強度顯著升高,見圖4E。β-catenin核轉位抑制劑XAV-939可阻斷過表達促進的QBC-939細胞的EMT過程(E-cadherin下調,vimentin上調),見圖4F,也可逆轉過表達誘導的CCA細胞的遷移和侵襲(<0.01),見圖4G。這些結果表明ASNS通過促進β-catenin核轉位驅動CCA轉移。
Figure 4. Asparagine synthetase (ASNS) promoted epithelial-mesenchymal transition (EMT) by inducing the nuclear translocation of β-catenin. A: the gene sets of Wnt/β-catenin signaling pathway were enriched in the ASNS high expression group, as determined using the GEO database; B: immunofluorescence assay showed that vimentin (red) expression decreased, while E-cadherin (green) expression increased in HuCCT1shASNS and HCCC-9810shASNS cells compared with their parent cell lines (scale bar=20 μm); C: the protein levels of ASNS, E-cadherin, vimentin and β-catenin in the indicated cells were detected by Western blot; D: β-catenin expression in the cytoplasmic and nuclear fractions of ASNS-overexpressing QBC-939 cells was examined by Western blot; E: subcellular localization of β-catenin in ASNS-overexpressing QBC-939 cells was assessed by immunofluorescence staining assay (scale bar=20 μm); F: the protein levels of ASNS, E-cadherin, vimentin and β-catenin in the indicated cells treated with or without β-catenin inhibitor XAV-939 (20 μmol/L) for 48 h were detected by Western blot; G:ASNS-overexpressing QBC-939 cells treated with XAV-939 (20 μmol/L) for 48 h were subjected to Transwell migration and invasion assays (scale bar=200 μm). Mean±SD. n=3. **P<0.01 vs vector group;##P<0.01 vs ASNS group.
腫瘤細胞依賴不同的營養(yǎng)物質來滿足相同的代謝需求,這種現(xiàn)象稱為代謝物靈活性[18],為其轉移提供充分的條件。ASNS負責催化天冬氨酸合成Asn,為腫瘤提供營養(yǎng)來源[19],促進腫瘤進展[20],并參與腫瘤的轉移[21]。本研究結合臨床標本和動物模型,從表達分析、功能學研究和分子機制研究三個方面闡述ASNS在CCA中的角色及其促進轉移的機制。
公共數(shù)據(jù)庫分析顯示ASNS在人CCA組織中表達升高。此外,在收集的人CCA標本中,不論是大膽管類型還是小膽管類型[22],ASNS表達均高于正常膽管,提示人CCA組織中ASNS表達升高可能是一種普遍現(xiàn)象。自發(fā)腫瘤模型從源頭形成腫瘤,可以較好模擬CCA的發(fā)生發(fā)展過程。CCA主要起源于膽管上皮細胞,也可起源于肝細胞等[23]。據(jù)此,本研究構建了2種自發(fā)CCA模型:(1)DEN加LMBDL小鼠模型。DEN是一種肝損傷化合物,加之膽管結扎,該模型CCA主要起源于膽管上皮細胞和肝細胞。此外,該模型也可很好模擬臨床CCA患者的普遍特征:慢性膽汁淤積[17]。(2)TAA誘導的大鼠自發(fā)CCA模型,TAA引起膽道嚴重的炎癥反應并伴隨纖維增生反應,與CCA患者有相似特征,如大量的腫瘤成纖維細胞浸潤[24]。在以上2種模型中都觀察到了ASNS在腫瘤部位表達升高。由此可見,ASNS在CCA中高表達可能是一種普遍現(xiàn)象,但仍需要大量的臨床標本來驗證。
ASNS可促進結直腸癌、乳腺癌、卵巢癌和肝癌等的轉移[25-26]。在CCA中,敲減也能抑制CCA細胞的增殖與侵襲。ASNS是否通過增加Asn的合成促進CCA細胞的生長和轉移?在敲減的同時補充外源性Asn并沒有恢復CCA細胞的生長和轉移能力,表明Asn含量并不影響CCA的生長和轉移,而與ASNS本身有關。ASNS作為腫瘤代謝酶如何通過非酶功能調控CCA轉移?磷酸化的β-catenin活性形式會由細胞質轉運至細胞核,促進EMT相關因子的轉錄[27-28]。本研究顯示,ASNS通過促進β-catenin入核,激活EMT,從而促進CCA的轉移,該過程不依賴ASNS的酶活性。據(jù)報道,ASNS可以促進GSK3β(Ser9)的磷酸化[8],進而促使三元復合物GSK3β、AXIN和APC[27]解體,激活β-catenin入核[29]。據(jù)此推測,ASNS可能通過GSK3β調控β-catenin的磷酸化進而促進其入核。此外,ASNS是否和β-catenin直接相互作用而促進其入核?ASNS作為調控腫瘤營養(yǎng)來源的重要酶之一,腫瘤是否會在“營養(yǎng)匱乏”的情況下通過ASNS招募β-catenin改善其缺血缺氧環(huán)境?這些問題還需在后續(xù)實驗中繼續(xù)探索。
基于本研究的結果,ASNS是一個潛在的CCA治療靶點,但針對ASNS本身,并沒有理想的治療方式。天冬酰胺酶可耗竭Asn,但對ASNS的表達水平或酶活性并無影響。因此,想要靶向ASNS干預CCA轉移就必須抑制其表達。近年來,核酸藥物在臨床應用方面獲得一定成功,該藥物具有良好的特異性和安全性,可靶向無法被小分子藥物靶向的靶點[30]。DNA/RNA異源雙鏈寡核苷酸(heteroduplex oligonucleotide, HDO)是新近開發(fā)的一種新型小核酸藥物,其雙鏈結構和兩端鎖核苷酸加成增加了體內的穩(wěn)定性[31]。偶聯(lián)膽固醇的HDO可用于特定肝臟治病基因的敲減[32]。本研究后續(xù)可考慮設計偶聯(lián)膽固醇的HDO靶向CCA中的ASNS,但其治療CCA的生物學意義仍然需要進一步探索。
綜上所述,本研究揭示了ASNS在CCA中的表達變化及其對CCA增殖、侵襲和遷移的影響,初步探討了ASNS調控CCA轉移的分子機制,主要涉及激活Wnt/β-catenin通路調控腫瘤細胞EMT從而介導CCA的轉移。該研究有望為CCA治療提供新的靶點,也為揭示CCA轉移的機制提供理論參考。
[1] Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014, 383(9935):2168-2179.
[2] Chang TT, Tsai HW, Ho CH. Fucosyl-agalactosyl IgG1induces cholangiocarcinoma metastasis and early recurrence by activating tumor-associated macrophage[J]. Cancers, 2018, 10(11):406.
[3] Jin L, Chun J, Pan C, et al. The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer[J]. Mol Cell, 2018, 69(1):87-99.e7.
[4] Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces[J]. Cancer Discov, 2012, 2(10):881-898.
[5] Balasubramanian MN, Butterworth EA, Kilberg MS. Asparagine synthetase: regulation by cell stress and involvement in tumor biology[J]. Am J Physiol Endocrinol Metab, 2013, 304(8):E789-E799.
[6] Zhang J, Fan J, Venneti S, et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion[J]. Mol Cell, 2014, 56(2):205-218.
[7] Knott SRV, Wagenblast E, Khan S, et al. Asparagine bioavailability governs metastasis in a model of breast cancer[J]. Nature, 2018, 554(7692):378-381.
[8] Cai DJ, Zhang ZY, Bu Y, et al. Asparagine synthetase regulates lung-cancer metastasis by stabilizing the β-catenin complex and modulating mitochondrial response[J]. Cell Death Dis, 2022, 13(6):566.
[9] Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia[J]. N Engl J Med, 2006, 354(2):166-178.
[10] Reimand J, Isserlin R, Voisin V, et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap[J]. Nat Protoc,2019, 14(2):482-517.
[11] Gao CQ, Chu ZZ, Zhang D, et al. Serine/threonine kinase TBK1 promotes cholangiocarcinoma progression via direct regulation of β-catenin[J]. Oncogene,2023, 42(18):1492-1507.
[12] Hettmer S, Schinzel AC, Tchessalova D, et al. Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma[J]. Elife, 2015, 4:e09436.
[13] Lorenzi PL, Reinhold WC, Rudelius M, et al.Asparagine synthetase as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cells[J]. Mol Cancer Ther, 2006, 5(11):2613-2623.
[14] Kasashima H, Duran A, Cid-Diaz T, et al. An orthotopic implantation mouse model of hepatocellular carcinoma with underlying liver steatosis[J]. STAR Protoc, 2020, 1(3):100185.
[15] Yang S, Zhang JJ, Huang XY. Mouse models for tumor metastasis[J]. Methods Mol Biol, 2012, 928:221-228.
[16] Loeuillard E, Fischbach SR, Gores GJ, et al. Animal models of cholangiocarcinoma[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(5):982-992.
[17] Yang H, Li TW, Peng J, et al. A mouse model of cholestasis-associated cholangiocarcinoma and transcription factors involved in progression[J]. Gastroenterology, 2011, 141(1):378-388.e4.
[18] Smith RL, Soeters MR, Wüst RCI, et al. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease[J]. Endocr Rev, 2018, 39(4):489-517.
[19] Krall AS, Xu S, Graeber TG, et al. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor[J]. Nat Commun, 2016, 7:11457.
[20] Zhang W, Lin Y. The mechanism of asparagine endopeptidase in the progression of malignant tumors: a review[J]. Cells, 2021, 10(5):1153.
[21] Du F, Chen J, Liu H, et al. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis[J]. Cell Death Dis, 2019, 10(3):239.
[22] Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9):557-588.
[23] Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma[J]. Gastroenterology, 2013, 145(6):1215-1229.
[24] Calvisi DF, Boulter L, Vaquero J, et al. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(7):462-480.
[25] Shen X, Jain A, Aladelokun O, et al. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: a narrative review[J]. Front Mol Biosci, 2022, 9:958666.
[26] Zeng L, Wang Q, Gu C, et al. Asparagine synthetase and filamin a have different roles in ovarian cancer[J]. Front Oncol, 2019, 9:1072.
[27] Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer[J]. Oncogene, 2017, 36(11):1461-1473.
[28] Xu C, Liu F, Xiang G, et al. β-Catenin nuclear localization positively feeds back on EGF/EGFR-attenuated AJAP1 expression in breast cancer[J]. J Exp Clin Cancer Res, 2019, 38(1):238.
[29] Ren X, Rong Z, Liu X, et al. The protein kinase activity of NME7 activates Wnt/β-Catenin signaling to promote one-carbon metabolism in hepatocellular carcinoma[J]. Cancer Res, 2022, 82(1):60-74.
[30] Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics[J]. Nat Nanotechnol, 2021,16(6):630-643.
[31] Hara RI, Yoshioka K, Yokota T. DNA-RNA heteroduplex oligonucleotide for highly efficient gene silencing[J]. Methods Mol Biol, 2020, 21(76):113-119.
[32] Nagata T, Dwyer CA, Yoshida-Tanaka K, et al. Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood-brain barrier and knock down genes in the rodent CNS[J]. Nat Biotechnol, 2021, 39(12):1529-1536.
Asparagine synthetase promotes cholangiocarcinoma metastasis by facilitating nuclear translocation of β-catenin
CHU Zhenzhen1,2, ZHOU Xuxuan1,2, LIU Lihao1, ZHANG Baohuan3△, YAO Nan1,2△
(1,,,510632,;2,,,510632,;3,,,510632,)
To investigate the expression of asparagine synthetase (ASNS) in cholangiocarcinoma (CCA), and to explore the potential role and molecular mechanisms of ASNS in CCA metastasis.A public database was used to analyze ASNS mRNA expression in various tumor tissues. Immunohistochemistry, Western blot and immunofluorescence were used to detect ASNS protein expression in human CCA specimens and murine spontaneous CCA models. The CCK8, wound-healing and Transwell assays were performed to examine the effects of ASNS on CCA cell proliferation, migration and invasion. The effects of ASNS on CCA intrahepatic growth and lung metastasis were investigated by orthotopic implantation and tail vein injection of stableknockdown CCA cell lines. The ASNS-related pathways in CCA were examined using gene set enrichment analysis, and the underlying molecular mechanisms were verified by immunofluorescence and Western blot.The expression of ASNS in both human and murine CCA tissues was higher than that in adjacent noncancerous tissues. ASNS promoted the proliferation, migration and invasion of human CCA HuCCT1 and HCCC-9810 cells in an enzyme activity-independent manner. Bioinformatics analysis showed that β-catenin was enriched in CCA tissues with high expression of ASNS, and ASNS initiated epithelial-mesenchymal transition (EMT) of CCA by promoting the nuclear translocation of β-catenin. Blocking the nuclear translocation of β-catenin with XAV-939 significantly inhibited the invasion and migration of CCA cells.ASNS is highly expressed in CCA and promotes EMT by meditating the nuclear translocation of β-catenin.
cholangiocarcinoma; tumor metastasis; asparagine synthetase; β-catenin signaling pathway; epithelial-mesenchymal transition
R575.7; R363
A
10.3969/j.issn.1000-4718.2023.09.001
1000-4718(2023)09-1537-10
2023-06-28
2023-09-14
國家自然科學基金資助項目(No. 82172602);廣東省自然科學基金資助項目(No. 2023A1515011892)
姚楠 Tel: 15914377490; E-mail: yaon107@jnu.edu.cn;張鮑歡 Tel: 13802440186; E-mail: zhangbh@jnu.edu.cn
(責任編輯:李淑媛,羅森)