• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-speed directly modulated distributed feedback laser based on detuned loading and photon–photon resonance effect

    2023-10-11 07:55:32YunShanZhang張?jiān)粕?/span>YiFanXu徐逸帆JiLinZheng鄭吉林LianYanLi李連艷TaoFang方濤andXiangFeiChen陳向飛
    Chinese Physics B 2023年9期
    關(guān)鍵詞:云山吉林

    Yun-Shan Zhang(張?jiān)粕?, Yi-Fan Xu(徐逸帆), Ji-Lin Zheng(鄭吉林), Lian-Yan Li(李連艷),Tao Fang(方濤), and Xiang-Fei Chen(陳向飛),?

    1College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Communications Engineering,PLA Army Engineering University,Nanjing 210007,China

    3College of Engineering and Applied Sciences,Nanjing University,Nanjing 210023,China

    Keywords: directly modulated laser(DML),detuned loading effect, photon–photon resonance(PPR)effect,reconstruction-equivalent-chirp(REC)technique

    1.Introduction

    Because of the explosive development of data communication services such as cloud computing, the data traffic over networks and the demands for large network bandwidth have been increasing rapidly.As the light sources of optical communication systems, high-speed modulated lasers are crucial in solving these problems.Compared with externally modulated lasers like electro-absorption modulator integrated lasers,[1,2]directly modulated lasers(DMLs)have the advantages of cost-effectiveness, small size, low power consumption,and high efficiency.Therefore,it is attractive to improve the modulation bandwidth of DML.

    In order to realize high-speed DML, it is essential to increase the relaxation oscillation frequency of the laser.For this purpose,AlGaInAs is usually used instead of InGaAsP in the active region of the DML to obtain high differential gain.[3]Besides, by using buried heterostructure[4,5]and shortening the cavity length of the lasers[6–9]to reduce the volume of the active region,the relaxation oscillation frequency can also be enhanced.However, the buried heterostructure brings about the problem of active region oxidation and increases the manufacturing cost.Moreover,in order to obtain an extremely short cavity length,it is usually necessary to combine various complex processes or structures.Through integrating a distributed feedback(DFB)laser with a passive waveguide[7,8]or passive distributed reflectors,[9]the length of the active region can be reduced beyond the limit of the cleaving process.While the necessary butt-joint regrowth process when fabricating these structures increases fabrication cost and difficulty.

    In addition to reducing the active region of the laser,other modulation bandwidth enhancement methods can be used to design high-speed DML.One of them is the detuned loading effect,[10]which is common in conventional distributed Bragg reflector (DBR) lasers.[11,12]When lasing occurs on the long wavelength flank of the DBR mirror, the detuned loading effect can increase the resonance frequency of the laser.[13]The photon–photon resonance(PPR)effect is also widely utilized to improve the bandwidth of DML.[14–16]The interaction between the main mode and an adjacent cavity mode can produce a second resonance peak with a much higher frequency than relaxation oscillation.In a passive feedback laser (PFL),[14]the DFB laser is integrated with a passive feedback section.The PPR effect is generated by injecting current into the feedback section to optimize the phase.The above two effects can coexist in both DBR laser[17]and distributed reflector (DR)laser.[18,19]Therefore, the combination of the two effects can further increase the modulation bandwidth.Similarly, the integration of the active section and the passive section increases the difficulty and cost of chip manufacturing.

    In this paper,we propose and demonstrate theoretically a two-section DFB(TS-DFB)laser with sampled Bragg gratings(SBGs).The TS-DFB laser consists of two sections:one plays a role of a general DFB laser,and the other acts as a grating reflector.For simplicity,they are called section I and section II,respectively.Both sections share the same active layer,so the butt-joint regrowth is not required.In order to enhance the modulation bandwidth of the laser, the grating period of the two sections needs to be controlled accurately to achieve the detuned loading effect and PPR effect.The SBGs in the TSDFB laser are used to realize the equivalent change of the period of the seed grating by using the reconstruction-equivalentchirp(REC)technique.[20–22]Consequently,the cost of manufacturing can be greatly reduced.The simulation results show that the direct modulation bandwidth of TS-DFB laser can be improved by 21 GHz or more compared with the conventional one-section DFB(OS-DFB)laser.

    2.Principle and model

    2.1.Principle of REC technique

    In order to improve the characteristics of the DFB lasers, various complicated grating structures (e.g.multiple phase shifts gratings, corrugation-pitch-modulated gratings,and asymmetric gratings)have been developed and used.Yet high-precision control mechanism is indispensable to the fabrication of these sophisticated gratings.Through changing the period or duty cycle of the SBGs,the REC technique can design equivalent subgratings with many complicated structures.Besides,the fabrication of SBGs only needs the conventional holographic exposure and photolithography technology with micrometer-level control accuracy.The principle of the REC technique will be briefly introduced below.[23,24]

    Mathematically, the index modulation changes Δn(z) of an SBG can be written as

    where,s(z) is a sampling function andΛis the period of the seed grating.Based on the Fourier series expansion,s(z)can be expressed as

    whereFmis them-th order Fourier coefficient corresponding to them-th order channel of the SBG, andPis the sampling period of the sampling function.So, equation (1) can be expressed as

    It can be obtained from Eq.(3)that the SBG is actually a superposition of many subgratings with different grating periods,and every subgrating has a spectral response corresponding to one of the multiple channels.These periods can be expressed as

    From Eq.(4), the channel spacing is determined by the sampling periodP.In actual design,the+1st or-1st subgrating is used as the working resonator.An appropriate sampling periodPshould be selected such that the +1st or-1st channel falls within the gain spectrum of the semiconductor material,while the others are located outside the gain region.As a result, the laser will lase at the wavelength within the +1st or-1st order channel of the SBG.

    Now, +1st channel is taken as an example.Based on Eq.(4),the period of seed gratingΛand the sampling periodPsatisfy

    whereneffis the effective refractive index,andλis the lasing wavelength.

    2.2.Model of the simulation

    The time-domain traveling-wave model consists of the time-dependent coupled-wave equations and the carrier rate equation to simulate the lasing characteristics of the proposed TS-DFB laser.[25,26]The electrical field in the waveguide can be described as

    whereφ(x,y)is the model function in the waveguide,F(z,t)andR(z,t) represent the forward wave and backward wave propagating in the waveguide respectively,β0is the propagation constant at Bragg frequency, andω0is the reference frequency corresponding to the Bragg wavelengthλ0.The fieldsF(z,t) andR(z,t) satisfy the time-dependent coupledwave equations:

    Here,vgis the group velocity.Gandδare the field gain and the detuning factor respectively, andκis the coupling coefficient between forward and backward waves.In this work,we consider only index coupling.ThesF(z,t)andsR(z,t)are the spontaneous emission noise coupled into the forward and backward fields.The noise terms each have a Gaussian distribution and the phase of the noise is assumed to change randomly.

    The carrier densityNis described by the time-dependent carrier rate equation as

    whereJis the current injection density,eis the electron charge,dis the thickness of the active layer,Ais the linear recombination coefficient,Bis the bimolecular recombination coefficient,Cis the Auger recombination coefficient,gis the gain coefficient,N0is the transparency carrier density,εis the gain compression factor,andSis the photon density which is related to the magnitude of the propagating wave amplitudes as

    The field gainGin Eqs.(7a)and(7b)is expressed as

    whereΓis the confinement factor of the active layer, andαis the waveguide loss caused by free electron scattering and absorption.

    The detuning factorδin Eqs.(7a)and(7b)represents the deviation from the Bragg condition due to the change of the refractive index in the waveguide and can be defined as

    whereneff0is the effective refractive index at transparency,Δnis the change of the refractive index and can be written as

    whereαHis the linewidth enhancement factor.

    Ifz=0 at the facet on the left-hand side, the boundary condition for the forward and backward propagating wave at the facet satisfies

    whererlandrrare the amplitude of the reflectivity at the facets on the left-and the right-hand sides,respectively,φl(shuí)andφrare the phase at the facets on the left-and the right-hand sides,andLis the laser cavity length.

    In this work, we focus on the DFB lasers fabricated by REC technology.Hence, the grating in the simulation is a sampled grating.In the part without change of the refractive index, we set the coupling coefficientκ=0.According to Eq.(5),it satisfies in our simulation that

    whereP1is the sampling period of section I and can be calculated from the Bragg wavelengthλ0and the period of seed gratingΛthrough Eq.(14).

    For section II,only the sampling period instead of the period of the seed gratingΛneeds to be changed,thereby reducing the difficulty of fabrication.

    3.Design principle and simulation results

    3.1.Design of TS-DFB laser

    The proposed structure of the TS-DFB laser is shown in Fig.1(a).It consists of two sections separated by electrical isolation.Therefore, two regions can be independently injected by different currentsI1andI2.Section I works as a general DFB laser, and the other serves as a detuned grating reflector.Moreover, the two sections share the same active layer,so the butt-joint regrowth process is avoidable.The facet of section I is high-reflection (HR) coated and the facet of section II is anti-reflection(AR)coated.The light is output after passing through the grating reflector.The reflectivity of the HR coating is set to 0.92.Figure 1(b)shows the grating structure fabricated by the REC technique in the two sections.The SBGs in the two sections have the identical coupling coefficientκand seed grating periodΛ.The only difference is that the gratings of the two sections have distinct sampling periods,denoted asP1andP2respectively.In the simulation,the equivalent normalized coupling coefficient of the SBGs is set to 1,where the duty cycle of the sampled gratings is considered.The duty cycle of the SBGs is 0.5.Other parameters used in the simulation are given in Table 1.

    Fig.1.Schematic diagram of(a)proposed TS-DFB laser and(b)grating structure of the TS-DFB laser.

    In order to make better use of the detuned loading and the PPR effects to enhance the modulation bandwidth of the TS-DFB laser, the SBGs in the two sections need different sampling periods,that is,detuning between the grating Bragg wavelengths in the two sections is realized.Figure 2 shows the reflection spectrum of the grating reflector and the round trip phase of the laser,which are calculated by the transfer matrix method[27,28]after the effective refractive index and gain distribution in the laser cavity have been obtained from the timedomain traveling-wave model.The detuning of the gratings can make the main mode fall on the long wavelength flank of the reflection spectrum.Under modulation,the frequency upchirp of the TS-DFB laser shifts the main mode to the Bragg peak of section II.The longitudinal confinement factor is increased.As a result, the detuned loading effect can increase the resonance frequency.[11]Moreover, the side mode which is close to the main mode can resonantly amplify the modulation sidebands.Thus,PPR effect can further improve the 3-dB bandwidth.

    Table 1.Parameters used in simulations.

    Fig.2.Reflection spectrum of detuned grating reflector and round trip phase of the laser,with the positions of the modes in profiles represented by circles.

    3.2.Static characteristics of the TS-DFB laser

    Figure 3(a)shows the longitudinal photon density distribution of the TS-DFB laser when the injection currentI1is 100 mA.Since the light of the TS-DFB laser is output from the grating reflector side, the photon density will be reduced due to the absorption loss and reflection, implying a lower output power.The bias currentI2can be added to the reflector section to compensate for the loss and increase the output.Thus, the photon density at the output facet of the TS-DFB laser will become higher.The light–current characteristics of the TS-DFB laser are shown in Fig.3(b).It can be seen that the bias currentI2has a great influence on the light–current characteristics of the TS-DFB laser.WhenI2increases, the threshold current decreases and the slope efficiency increases.The threshold currents of the TS-DFB laser are about 22 mA forI2=0 mA and 9 mA forI2=10 mA,and correspondingly the slope efficiencies are about 0.248 mW/mA and 0.277 mW/mA.

    Fig.3.(a)Calculated photon density distribution of TS-DFB laser with injection current of 100 mA and(b)light–current characteristics of TSDFB laser for I2=0 mA and 10 mA.

    The spectrum of the TS-DFB laser is shown in Fig.4,which is calculated based on the model proposed in Ref.[29].The side mode suppression ratio(SMSR)is 42 dB.Moreover,it can be seen that there is a side mode at about 0.2 nm off the main mode, which is named PPR mode.The PPR mode can improve the modulation bandwidth effectively, which is consistent with the laser design in Fig.2.

    Fig.4.Lasing spectrum of TS-DFB laser,with injection current being 100 mA.

    3.3.Dynamic characteristics of TS-DFB laser

    To calculate the small-signal modulation response of the TS-DFB laser, a small sinusoidal current is added to the bias current of section I.Figure 5 shows the response curves of the TS-DFB laser with different detunings of the grating Bragg wavelengths in the two sections.It is obvious that the detuning between the SBGs in the two sections has a significant influence on the modulation bandwidth of the TS-DFB laser.The larger detuning can make the main mode fall on the steeper Bragg wavelength flank of section II, which can enhance the detuned loading effect.Therefore,the resonance frequency is improved.Moreover, it can generate and strengthen the PPR mode, so that the PPR effect can better generate a resonance frequency at high frequency.

    Fig.5.Response curves of TS-DFB laser with different detunings between SBGs in the two sections,with I1 being 100 mA.

    The small-signal response curves of the TS-DFB laser with different values of injection currentI2are shown in Fig.6(a).For comparison, the response of the conventional OS-DFB laser with a cavity length of 400 μm is also given.The 3-dB modulation bandwidth of the OS-DFB laser is only about 16 GHz.However,for the TS-DFB laser,it can be seen that the detuned loading effect enhances the resonance frequency,and the PPR effect forms a second resonance peak on the response curve.The modulation bandwidth increases from 34 GHz to 37 GHz whenI2is tuned from 0 mA to 15 mA.The increase of the reflection of the grating reflector enhances the resonance strength of the PPR peak.WhenI2is 20 mA, the mode hops from the long wavelength flank of the Bragg peak to the short wavelength flank as shown in Fig.6(b).This is because with the increase ofI2, the effective index of section II decreases,and the reflection spectrum moves towards the short wavelength.In this situation,the detuned loading effect is absent.The mode spacing is too large, so the PPR effect does not work.Therefore, the modulation bandwidth is attenuated to 15.5 GHz.Hence, a current large than 20 mA only makes the effective refractive index smaller and cannot improve the direct modulation bandwidth.

    Fig.6.(a) Response curves of TS-DFB laser, with I1 being 100 mA and injection current I2 having different values, and (b) reflection spectrum of grating reflector and round trip phase of the laser,with I2 being 20 mA.

    Fig.7.Response curves of TS-DFB laser with different lengths of section II,with I1 being 100 mA and I2 being 10 mA.

    The influence of the grating reflector length on the modulation response is illustrated in Fig.7.

    The separation between the main mode and the PPR mode is determined by the cavity length of grating reflector.The longer the grating reflector,the closer the PPR mode is to the main mode,and the overlap between the two resonance peaks becomes more and more.As shown in Fig.7,when the cavity length of section II is 600 μm,the PPR mode is very close to the main mode,and the second resonance is very strong.When the length of section II is 400 μm,the spacing of the PPR mode from the main mode becomes larger,so the second resonance peak is at a higher frequency.However,the resonance strength is weaker,due to the weaker feedback of the shorter grating reflector.When the length is further reduced, the PPR mode is too far away and too weak to increase the modulation bandwidth.Therefore,the length of the grating reflector should be appropriately designed to maximize the enhancement of the modulation bandwidth brought by the PPR effect.

    In the above calculations,the random phase of the grating at the HR facet was set to 0.However, in practice, the phase randomness of the grating is uncontrollable.Therefore, facet phaseφis changed to study its effect on the high-speed modulation characteristics.Figure 8(a)shows the response curves of the TS-DFB laser whenφis varied from 0 to 0.8π.It can be seen that under certain phase conditions,mode hopping occurs and the modulation bandwidth is attenuated.Whenφis 0.6π,the 3-dB bandwidth is only 21 GHz.In order to study the effect of the random phase on mode hopping, the normalized threshold gain margin between the eigenmode at the shorter wavelength side and the lasing mode is calculated,and the results are shown in Fig.8(b).It can be seen that when the random phase is 0, the normalized threshold gain margin is less than 0.25.Therefore, when the current of the reflection section is too large,mode hopping occurs as shown in Fig.6.The normalized threshold gain margin is 0 when the random phase is changed from 0.7πto 0.9π,which means that the lasing occurs at the eigenmode on the shorter wavelength side.Thus,the small-signal modulation response deteriorates.

    Fig.8.(a) Response curves of TS-DFB laser with different values of facet phase φ with I1 being 100 mA and I2 being 15 mA.(b)Normalized threshold gain margin between the main mode and the eigenmode on the shorter wavelength side versus facet phase φ.

    Figure 9(a)shows the lasing spectrum whenφis 0.6π.It can be seen that the main mode lases within the stopband due to the random phase of the grating.As a result, the spacing between the main mode and the PPR mode becomes larger.As can be seen from Fig.9(b), the PPR frequency, in this case,is about 65 GHz,which is about 55 GHz larger than the first resonance peak.Because the two resonance peaks are too far apart, the response curve is attenuated below 3 dB before reaching the second resonance peak.Therefore,the PPR effect cannot improve the modulation bandwidth effectively.By increasing the currentI2,the loss of the grating reflector section is compensated for and the reflectivity is increased.Then the resonance strength of the PPR peak is enhanced,which counteracts the roll-off of the response.Consequently, the modulation bandwidth can reach around 73 GHz.Obviously,there are two PPR peaks in the response curves.The reason is that the multi-mode rate equation is used in the simulation,another resonance peak is caused by another side mode.

    Fig.9.(a) Lasing spectrum of TS-DFB laser, with φ being 0.6π.(b)Response curves of TS-DFB laser with I2 having different values, I1 being 100 mA,and φ being 0.6π.

    In order to better demonstrate the high-speed characteristics of the TS-DFB laser,the eye diagrams under direct modulation are calculated and compared.Figure 10 shows the eye diagrams of the TS-DFB laser and the OS-DFB laser under 25-Gb/s,40-Gb/s,and 55-Gb/s direct modulations.The lasers are biased at 100 mA and the modulation amplitude is 20 mA.The optimal bandwidth condition of the TS-DFB laser is selected,and the random phase of the grating is 0.It can be seen that the eye diagrams of the TS-DFB lasers have larger opening extent than those of the OS-DFB laser.Under 25-Gb/s direct modulation,the clear eye-openings of two kinds of DFB lasers can be obtained owing to the enough modulation bandwidths.Obviously, the OS-DFB laser cannot meet the higher modulation rates.In contrast, the TS-DFB laser can achieve clear eye-openings and large mask margins under all three modulation rates.These results are consistent with the calculations of their modulation bandwidth in Fig.6.

    Fig.10.Eye diagrams under direct modulation at 25 Gb/s,40 Gb/s,and 55 Gb/s by(a)conventional OS-DFB laser and(b)TS-DFB laser.

    4.Conclusions

    A directly modulated two-section DFB laser with sampled gratings is proposed and investigated theoretically.Since the two sections share the same active layer and the gratings are fabricated by the REC technique, the difficulty in manufacturing the lasers is greatly reduced.High-speed DML is realized by exploiting the detuned loading, and PPR effects.Compared with the OS-DFB laser,the TS-DFB laser has large direct modulation bandwidth.Therefore, the proposed laser can be used as a light source for high-speed optical communication systems.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFB2205804),the National Natural Science Foundation of China (Grant Nos.61974165 and Grant 61975075), and the National Natural Science Foundation of China for the Youth,China(Grant No.62004105).

    猜你喜歡
    云山吉林
    13.吉林卷
    云山圖
    金秋(2020年16期)2020-12-09 01:41:48
    A Spring Coat for Sarah
    Accident Analysis and Emergency Response Effect Research of the Deep Foundation Pit in Taiyuan Metro
    云山萬(wàn)重歸故鄉(xiāng),疾風(fēng)千里嘆離愁
    吉林卷
    吉林卷
    解讀“吉林大米現(xiàn)象”
    云山的樹(shù)
    趙學(xué)敏書法作品《五云山》
    旅游縱覽(2015年6期)2015-06-29 09:10:51
    12—13女人毛片做爰片一| 女人爽到高潮嗷嗷叫在线视频| 国产精品1区2区在线观看. | 12—13女人毛片做爰片一| 他把我摸到了高潮在线观看 | 侵犯人妻中文字幕一二三四区| 国产野战对白在线观看| 精品国产乱码久久久久久男人| 免费在线观看黄色视频的| 久久热在线av| 久久久久久免费高清国产稀缺| 精品国产一区二区三区四区第35| 亚洲成人国产一区在线观看| 日韩欧美三级三区| videosex国产| 人成视频在线观看免费观看| 视频在线观看一区二区三区| 精品福利永久在线观看| 久久久久国内视频| 中文字幕人妻熟女乱码| 亚洲成国产人片在线观看| 黄色丝袜av网址大全| 久久青草综合色| xxxhd国产人妻xxx| 中文字幕最新亚洲高清| svipshipincom国产片| 亚洲欧美日韩高清在线视频 | 亚洲久久久国产精品| 国产一区二区三区在线臀色熟女 | 成人影院久久| 国产人伦9x9x在线观看| 99精品在免费线老司机午夜| 香蕉久久夜色| 在线观看免费视频日本深夜| 欧美+亚洲+日韩+国产| 国产成人系列免费观看| 欧美午夜高清在线| 国产精品.久久久| a级毛片在线看网站| 久久久国产成人免费| 老司机午夜福利在线观看视频 | 美女扒开内裤让男人捅视频| 亚洲一区二区三区欧美精品| 1024视频免费在线观看| 男女边摸边吃奶| 久久99一区二区三区| 久久天躁狠狠躁夜夜2o2o| 久久九九热精品免费| 国产有黄有色有爽视频| 久久99一区二区三区| 老汉色av国产亚洲站长工具| 亚洲国产看品久久| 老熟女久久久| 亚洲少妇的诱惑av| 国产片内射在线| 亚洲avbb在线观看| 最新的欧美精品一区二区| 国产精品.久久久| av欧美777| 午夜精品国产一区二区电影| 老司机在亚洲福利影院| 真人做人爱边吃奶动态| 777米奇影视久久| 国产精品美女特级片免费视频播放器 | 久久人人爽av亚洲精品天堂| 亚洲av成人一区二区三| 久热爱精品视频在线9| 纯流量卡能插随身wifi吗| 男女无遮挡免费网站观看| 国产欧美日韩精品亚洲av| 18禁美女被吸乳视频| 免费观看a级毛片全部| 一级片'在线观看视频| xxxhd国产人妻xxx| 黄色 视频免费看| 老汉色av国产亚洲站长工具| 桃花免费在线播放| 激情在线观看视频在线高清 | a级毛片在线看网站| 免费av中文字幕在线| 久久国产精品影院| 91麻豆精品激情在线观看国产 | av网站免费在线观看视频| www.熟女人妻精品国产| 不卡一级毛片| 国产精品自产拍在线观看55亚洲 | 一本综合久久免费| 日韩成人在线观看一区二区三区| 天天操日日干夜夜撸| 亚洲国产中文字幕在线视频| 国产精品1区2区在线观看. | 丝袜美腿诱惑在线| 最新在线观看一区二区三区| 亚洲专区国产一区二区| 日韩欧美三级三区| 最黄视频免费看| 中文字幕高清在线视频| 国产真人三级小视频在线观看| 国产成人精品久久二区二区91| 免费av中文字幕在线| 建设人人有责人人尽责人人享有的| 深夜精品福利| 夜夜夜夜夜久久久久| 欧美性长视频在线观看| 一本一本久久a久久精品综合妖精| 男人操女人黄网站| 成人精品一区二区免费| 亚洲国产毛片av蜜桃av| 母亲3免费完整高清在线观看| 免费av中文字幕在线| 亚洲欧美激情在线| 90打野战视频偷拍视频| 中文字幕色久视频| 老熟妇乱子伦视频在线观看| 捣出白浆h1v1| 亚洲第一欧美日韩一区二区三区 | 叶爱在线成人免费视频播放| 少妇的丰满在线观看| 亚洲色图av天堂| 宅男免费午夜| 99热国产这里只有精品6| 成人精品一区二区免费| 亚洲精品久久成人aⅴ小说| 1024视频免费在线观看| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 亚洲国产欧美一区二区综合| 亚洲情色 制服丝袜| 狠狠精品人妻久久久久久综合| 叶爱在线成人免费视频播放| 精品第一国产精品| 国产野战对白在线观看| 电影成人av| 亚洲情色 制服丝袜| 18禁观看日本| 啪啪无遮挡十八禁网站| 国产1区2区3区精品| 91成人精品电影| 纵有疾风起免费观看全集完整版| 中文字幕av电影在线播放| 91成人精品电影| 国产精品 国内视频| 黄色怎么调成土黄色| 嫩草影视91久久| 国产伦人伦偷精品视频| xxxhd国产人妻xxx| 一区福利在线观看| 在线观看免费日韩欧美大片| 一区二区三区国产精品乱码| 丁香六月天网| 欧美精品人与动牲交sv欧美| 美女福利国产在线| av欧美777| 国产精品成人在线| 在线十欧美十亚洲十日本专区| 国产一卡二卡三卡精品| 国产区一区二久久| 在线观看www视频免费| 女人久久www免费人成看片| 国产单亲对白刺激| 亚洲国产欧美日韩在线播放| 母亲3免费完整高清在线观看| 天堂8中文在线网| 日韩制服丝袜自拍偷拍| 电影成人av| 国产av国产精品国产| 亚洲国产毛片av蜜桃av| 日本av免费视频播放| 午夜91福利影院| 成年动漫av网址| 成人黄色视频免费在线看| 午夜日韩欧美国产| 宅男免费午夜| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 女性生殖器流出的白浆| 国产aⅴ精品一区二区三区波| 狠狠精品人妻久久久久久综合| 精品免费久久久久久久清纯 | 婷婷成人精品国产| 满18在线观看网站| 久久久精品免费免费高清| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 午夜福利乱码中文字幕| 老司机午夜十八禁免费视频| 亚洲欧美激情在线| 久久99一区二区三区| 国产成人av激情在线播放| 女人高潮潮喷娇喘18禁视频| 1024视频免费在线观看| 免费在线观看视频国产中文字幕亚洲| 黄片小视频在线播放| aaaaa片日本免费| 亚洲五月色婷婷综合| 美女高潮到喷水免费观看| 大码成人一级视频| av线在线观看网站| 久久精品亚洲av国产电影网| 久久精品亚洲精品国产色婷小说| 捣出白浆h1v1| 搡老乐熟女国产| 韩国精品一区二区三区| 十八禁人妻一区二区| 王馨瑶露胸无遮挡在线观看| 亚洲成av片中文字幕在线观看| 久久精品国产99精品国产亚洲性色 | 国产免费av片在线观看野外av| 99热国产这里只有精品6| 下体分泌物呈黄色| 日韩欧美免费精品| 啦啦啦在线免费观看视频4| 啦啦啦免费观看视频1| 亚洲国产精品一区二区三区在线| 2018国产大陆天天弄谢| xxxhd国产人妻xxx| 嫁个100分男人电影在线观看| 国产精品亚洲av一区麻豆| av一本久久久久| 不卡av一区二区三区| 午夜精品国产一区二区电影| 国产成人精品在线电影| 亚洲人成伊人成综合网2020| 真人做人爱边吃奶动态| 国产无遮挡羞羞视频在线观看| 亚洲精品美女久久av网站| 国产欧美日韩综合在线一区二区| 成人永久免费在线观看视频 | 日韩人妻精品一区2区三区| 久久ye,这里只有精品| 亚洲精品国产区一区二| www.999成人在线观看| 嫁个100分男人电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| av不卡在线播放| 在线观看一区二区三区激情| 性色av乱码一区二区三区2| 老司机午夜福利在线观看视频 | 91麻豆精品激情在线观看国产 | avwww免费| 中国美女看黄片| 黄色怎么调成土黄色| 男人舔女人的私密视频| 成人亚洲精品一区在线观看| 国产97色在线日韩免费| 高清欧美精品videossex| 精品亚洲成国产av| 69av精品久久久久久 | 国内毛片毛片毛片毛片毛片| 黄色毛片三级朝国网站| www.999成人在线观看| 欧美另类亚洲清纯唯美| 丁香欧美五月| 色婷婷av一区二区三区视频| 男人舔女人的私密视频| 久久精品亚洲av国产电影网| 变态另类成人亚洲欧美熟女 | 亚洲成人免费电影在线观看| 亚洲av欧美aⅴ国产| 99九九在线精品视频| 国产精品二区激情视频| 一级片'在线观看视频| 嫩草影视91久久| 一区二区三区精品91| 亚洲自偷自拍图片 自拍| 日本黄色日本黄色录像| 黄片播放在线免费| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| 亚洲美女黄片视频| av片东京热男人的天堂| 亚洲精品在线观看二区| 国产成人一区二区三区免费视频网站| 在线亚洲精品国产二区图片欧美| 国产欧美日韩一区二区精品| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 国产日韩一区二区三区精品不卡| 一进一出好大好爽视频| 午夜久久久在线观看| 久久久国产欧美日韩av| 极品人妻少妇av视频| 999久久久精品免费观看国产| 满18在线观看网站| 色婷婷久久久亚洲欧美| 少妇裸体淫交视频免费看高清 | 最新在线观看一区二区三区| 国产亚洲av高清不卡| 蜜桃国产av成人99| 最新美女视频免费是黄的| 久久精品亚洲精品国产色婷小说| 亚洲精品在线观看二区| 国产av精品麻豆| 成人国产av品久久久| av线在线观看网站| 国产精品一区二区在线观看99| 日韩中文字幕视频在线看片| 亚洲午夜精品一区,二区,三区| 少妇被粗大的猛进出69影院| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 99久久人妻综合| 亚洲七黄色美女视频| 欧美国产精品一级二级三级| 亚洲午夜精品一区,二区,三区| 欧美在线黄色| 男女下面插进去视频免费观看| 亚洲avbb在线观看| 激情在线观看视频在线高清 | 99re6热这里在线精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看日本一区| 国产欧美日韩一区二区三区在线| 亚洲中文av在线| 操美女的视频在线观看| 757午夜福利合集在线观看| 国产在线一区二区三区精| 男女下面插进去视频免费观看| 色尼玛亚洲综合影院| 欧美成人午夜精品| 电影成人av| 久久久久网色| 欧美精品一区二区大全| 亚洲一区中文字幕在线| 纵有疾风起免费观看全集完整版| 老司机亚洲免费影院| 91av网站免费观看| 超碰成人久久| 日本a在线网址| 9191精品国产免费久久| 丝袜美腿诱惑在线| 欧美 亚洲 国产 日韩一| 免费高清在线观看日韩| 国产亚洲精品一区二区www | 亚洲免费av在线视频| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 999久久久精品免费观看国产| 十八禁人妻一区二区| 侵犯人妻中文字幕一二三四区| 亚洲一码二码三码区别大吗| 成年人午夜在线观看视频| 性色av乱码一区二区三区2| 一本久久精品| 国产免费福利视频在线观看| 在线 av 中文字幕| 久久久久久久精品吃奶| 亚洲精品一卡2卡三卡4卡5卡| 欧美精品人与动牲交sv欧美| 亚洲专区国产一区二区| 超色免费av| 国产精品亚洲一级av第二区| 十八禁人妻一区二区| 国产视频一区二区在线看| 久久精品91无色码中文字幕| 欧美成人午夜精品| tocl精华| 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 精品亚洲乱码少妇综合久久| 操美女的视频在线观看| 国产一区有黄有色的免费视频| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 黄色片一级片一级黄色片| 午夜视频精品福利| 国产一区二区在线观看av| 久久精品国产a三级三级三级| 亚洲国产av新网站| 少妇精品久久久久久久| 亚洲avbb在线观看| 久久久欧美国产精品| svipshipincom国产片| 久久精品国产亚洲av香蕉五月 | 精品少妇一区二区三区视频日本电影| 国产成人影院久久av| 亚洲欧美激情在线| 麻豆国产av国片精品| 成人av一区二区三区在线看| 国产国语露脸激情在线看| 日韩制服丝袜自拍偷拍| 久久久久久亚洲精品国产蜜桃av| 欧美av亚洲av综合av国产av| 国产激情久久老熟女| 久久精品熟女亚洲av麻豆精品| 欧美另类亚洲清纯唯美| 1024香蕉在线观看| 亚洲情色 制服丝袜| 十八禁网站网址无遮挡| 精品少妇内射三级| 性色av乱码一区二区三区2| 色婷婷久久久亚洲欧美| 中国美女看黄片| 一区二区三区激情视频| av福利片在线| 亚洲精品在线观看二区| 十分钟在线观看高清视频www| 国产一区有黄有色的免费视频| 91麻豆av在线| 蜜桃在线观看..| 人人澡人人妻人| 亚洲精品美女久久久久99蜜臀| 亚洲精品av麻豆狂野| 大香蕉久久网| av电影中文网址| 狠狠狠狠99中文字幕| 曰老女人黄片| 亚洲五月婷婷丁香| 亚洲国产成人一精品久久久| e午夜精品久久久久久久| 亚洲欧美色中文字幕在线| 大片电影免费在线观看免费| 一进一出好大好爽视频| av国产精品久久久久影院| 国产一区二区激情短视频| 亚洲国产欧美网| 久久人妻福利社区极品人妻图片| 午夜激情av网站| 嫁个100分男人电影在线观看| 婷婷成人精品国产| 极品人妻少妇av视频| 欧美av亚洲av综合av国产av| 久久久精品94久久精品| 日本精品一区二区三区蜜桃| 真人做人爱边吃奶动态| 18禁美女被吸乳视频| 午夜激情av网站| 黄片大片在线免费观看| 伊人久久大香线蕉亚洲五| 久久久久久亚洲精品国产蜜桃av| 久久亚洲精品不卡| 高潮久久久久久久久久久不卡| 性高湖久久久久久久久免费观看| 一本综合久久免费| 男女边摸边吃奶| 欧美日韩黄片免| 免费在线观看黄色视频的| 亚洲少妇的诱惑av| 欧美日韩亚洲国产一区二区在线观看 | av天堂在线播放| 国产单亲对白刺激| 欧美午夜高清在线| 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲伊人色综图| 婷婷丁香在线五月| 欧美午夜高清在线| 日日夜夜操网爽| 极品教师在线免费播放| www日本在线高清视频| 日韩人妻精品一区2区三区| 妹子高潮喷水视频| 久久这里只有精品19| 天天影视国产精品| 一级片'在线观看视频| 1024香蕉在线观看| 日日摸夜夜添夜夜添小说| 久久人妻福利社区极品人妻图片| 精品福利观看| 免费看十八禁软件| 一二三四在线观看免费中文在| 日本a在线网址| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| 国产aⅴ精品一区二区三区波| 精品一品国产午夜福利视频| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩一区二区三区在线| 欧美成狂野欧美在线观看| 欧美日韩av久久| 免费观看人在逋| 亚洲av片天天在线观看| 精品人妻熟女毛片av久久网站| 国产亚洲午夜精品一区二区久久| 丝袜喷水一区| aaaaa片日本免费| 久久人人97超碰香蕉20202| 亚洲一区二区三区欧美精品| 岛国在线观看网站| 免费观看av网站的网址| 亚洲精品久久午夜乱码| 成年动漫av网址| 亚洲第一欧美日韩一区二区三区 | 欧美在线一区亚洲| 动漫黄色视频在线观看| 日本vs欧美在线观看视频| 精品一品国产午夜福利视频| 日本av手机在线免费观看| 午夜福利免费观看在线| 下体分泌物呈黄色| 国产熟女午夜一区二区三区| 亚洲国产毛片av蜜桃av| 91大片在线观看| 露出奶头的视频| 老司机在亚洲福利影院| 99精品久久久久人妻精品| 国产成人系列免费观看| 两个人看的免费小视频| 午夜福利在线免费观看网站| 国产精品99久久99久久久不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香欧美五月| 青青草视频在线视频观看| 俄罗斯特黄特色一大片| 国产视频一区二区在线看| 久久久精品国产亚洲av高清涩受| 在线观看免费视频网站a站| 精品一区二区三区av网在线观看 | 国产xxxxx性猛交| 青青草视频在线视频观看| 国内毛片毛片毛片毛片毛片| 麻豆乱淫一区二区| 国产麻豆69| 午夜福利一区二区在线看| 一级毛片精品| 国产亚洲精品久久久久5区| 国产亚洲av高清不卡| 国产麻豆69| 国产精品久久久人人做人人爽| 啦啦啦在线免费观看视频4| 高清黄色对白视频在线免费看| 精品国产超薄肉色丝袜足j| 最新在线观看一区二区三区| 黄片小视频在线播放| 女人爽到高潮嗷嗷叫在线视频| 久久久久国内视频| 国产男靠女视频免费网站| 久久ye,这里只有精品| 精品久久久久久久毛片微露脸| 久热爱精品视频在线9| 精品国产一区二区久久| 久久精品aⅴ一区二区三区四区| 中文字幕av电影在线播放| 交换朋友夫妻互换小说| 女人被躁到高潮嗷嗷叫费观| 亚洲avbb在线观看| 成人免费观看视频高清| 夜夜骑夜夜射夜夜干| 欧美在线一区亚洲| 精品少妇一区二区三区视频日本电影| 精品国产乱码久久久久久男人| 亚洲精品中文字幕一二三四区 | 欧美午夜高清在线| 首页视频小说图片口味搜索| 精品亚洲成国产av| 多毛熟女@视频| 黄片小视频在线播放| 热re99久久国产66热| 国产成人精品无人区| 国产精品99久久99久久久不卡| 一区二区三区精品91| 亚洲专区中文字幕在线| 成人国产av品久久久| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月 | 手机成人av网站| 大香蕉久久成人网| 国产深夜福利视频在线观看| 91麻豆av在线| 欧美老熟妇乱子伦牲交| 热re99久久国产66热| 在线看a的网站| 欧美日韩精品网址| 狠狠狠狠99中文字幕| 亚洲av片天天在线观看| 99精国产麻豆久久婷婷| 在线十欧美十亚洲十日本专区| cao死你这个sao货| 精品一区二区三区视频在线观看免费 | 亚洲 国产 在线| 欧美成狂野欧美在线观看| 老熟妇仑乱视频hdxx| 国产成人一区二区三区免费视频网站| 新久久久久国产一级毛片| 老司机福利观看| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 天堂动漫精品| 色播在线永久视频| 亚洲精品中文字幕一二三四区 | 久久精品91无色码中文字幕| 建设人人有责人人尽责人人享有的| 99精品久久久久人妻精品| 极品少妇高潮喷水抽搐| 亚洲国产欧美在线一区| 80岁老熟妇乱子伦牲交| 日本av手机在线免费观看| 精品久久久久久久毛片微露脸| 久久精品亚洲熟妇少妇任你| 午夜福利在线观看吧| 免费在线观看影片大全网站| 日本wwww免费看| 国产日韩欧美在线精品| 久久午夜综合久久蜜桃| 精品免费久久久久久久清纯 | 国产精品一区二区在线观看99| 建设人人有责人人尽责人人享有的| 91麻豆av在线| 一个人免费在线观看的高清视频| 国产亚洲一区二区精品| 欧美另类亚洲清纯唯美| 黄色视频,在线免费观看| 久久久久久免费高清国产稀缺| 欧美另类亚洲清纯唯美| 黑丝袜美女国产一区| 老汉色∧v一级毛片| 免费av中文字幕在线| 国产亚洲精品久久久久5区| 999久久久国产精品视频| 亚洲精品国产色婷婷电影| 国产亚洲精品久久久久5区| 久久久久久久国产电影| 久久ye,这里只有精品|