• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-speed directly modulated distributed feedback laser based on detuned loading and photon–photon resonance effect

    2023-10-11 07:55:32YunShanZhang張?jiān)粕?/span>YiFanXu徐逸帆JiLinZheng鄭吉林LianYanLi李連艷TaoFang方濤andXiangFeiChen陳向飛
    Chinese Physics B 2023年9期
    關(guān)鍵詞:云山吉林

    Yun-Shan Zhang(張?jiān)粕?, Yi-Fan Xu(徐逸帆), Ji-Lin Zheng(鄭吉林), Lian-Yan Li(李連艷),Tao Fang(方濤), and Xiang-Fei Chen(陳向飛),?

    1College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Communications Engineering,PLA Army Engineering University,Nanjing 210007,China

    3College of Engineering and Applied Sciences,Nanjing University,Nanjing 210023,China

    Keywords: directly modulated laser(DML),detuned loading effect, photon–photon resonance(PPR)effect,reconstruction-equivalent-chirp(REC)technique

    1.Introduction

    Because of the explosive development of data communication services such as cloud computing, the data traffic over networks and the demands for large network bandwidth have been increasing rapidly.As the light sources of optical communication systems, high-speed modulated lasers are crucial in solving these problems.Compared with externally modulated lasers like electro-absorption modulator integrated lasers,[1,2]directly modulated lasers(DMLs)have the advantages of cost-effectiveness, small size, low power consumption,and high efficiency.Therefore,it is attractive to improve the modulation bandwidth of DML.

    In order to realize high-speed DML, it is essential to increase the relaxation oscillation frequency of the laser.For this purpose,AlGaInAs is usually used instead of InGaAsP in the active region of the DML to obtain high differential gain.[3]Besides, by using buried heterostructure[4,5]and shortening the cavity length of the lasers[6–9]to reduce the volume of the active region,the relaxation oscillation frequency can also be enhanced.However, the buried heterostructure brings about the problem of active region oxidation and increases the manufacturing cost.Moreover,in order to obtain an extremely short cavity length,it is usually necessary to combine various complex processes or structures.Through integrating a distributed feedback(DFB)laser with a passive waveguide[7,8]or passive distributed reflectors,[9]the length of the active region can be reduced beyond the limit of the cleaving process.While the necessary butt-joint regrowth process when fabricating these structures increases fabrication cost and difficulty.

    In addition to reducing the active region of the laser,other modulation bandwidth enhancement methods can be used to design high-speed DML.One of them is the detuned loading effect,[10]which is common in conventional distributed Bragg reflector (DBR) lasers.[11,12]When lasing occurs on the long wavelength flank of the DBR mirror, the detuned loading effect can increase the resonance frequency of the laser.[13]The photon–photon resonance(PPR)effect is also widely utilized to improve the bandwidth of DML.[14–16]The interaction between the main mode and an adjacent cavity mode can produce a second resonance peak with a much higher frequency than relaxation oscillation.In a passive feedback laser (PFL),[14]the DFB laser is integrated with a passive feedback section.The PPR effect is generated by injecting current into the feedback section to optimize the phase.The above two effects can coexist in both DBR laser[17]and distributed reflector (DR)laser.[18,19]Therefore, the combination of the two effects can further increase the modulation bandwidth.Similarly, the integration of the active section and the passive section increases the difficulty and cost of chip manufacturing.

    In this paper,we propose and demonstrate theoretically a two-section DFB(TS-DFB)laser with sampled Bragg gratings(SBGs).The TS-DFB laser consists of two sections:one plays a role of a general DFB laser,and the other acts as a grating reflector.For simplicity,they are called section I and section II,respectively.Both sections share the same active layer,so the butt-joint regrowth is not required.In order to enhance the modulation bandwidth of the laser, the grating period of the two sections needs to be controlled accurately to achieve the detuned loading effect and PPR effect.The SBGs in the TSDFB laser are used to realize the equivalent change of the period of the seed grating by using the reconstruction-equivalentchirp(REC)technique.[20–22]Consequently,the cost of manufacturing can be greatly reduced.The simulation results show that the direct modulation bandwidth of TS-DFB laser can be improved by 21 GHz or more compared with the conventional one-section DFB(OS-DFB)laser.

    2.Principle and model

    2.1.Principle of REC technique

    In order to improve the characteristics of the DFB lasers, various complicated grating structures (e.g.multiple phase shifts gratings, corrugation-pitch-modulated gratings,and asymmetric gratings)have been developed and used.Yet high-precision control mechanism is indispensable to the fabrication of these sophisticated gratings.Through changing the period or duty cycle of the SBGs,the REC technique can design equivalent subgratings with many complicated structures.Besides,the fabrication of SBGs only needs the conventional holographic exposure and photolithography technology with micrometer-level control accuracy.The principle of the REC technique will be briefly introduced below.[23,24]

    Mathematically, the index modulation changes Δn(z) of an SBG can be written as

    where,s(z) is a sampling function andΛis the period of the seed grating.Based on the Fourier series expansion,s(z)can be expressed as

    whereFmis them-th order Fourier coefficient corresponding to them-th order channel of the SBG, andPis the sampling period of the sampling function.So, equation (1) can be expressed as

    It can be obtained from Eq.(3)that the SBG is actually a superposition of many subgratings with different grating periods,and every subgrating has a spectral response corresponding to one of the multiple channels.These periods can be expressed as

    From Eq.(4), the channel spacing is determined by the sampling periodP.In actual design,the+1st or-1st subgrating is used as the working resonator.An appropriate sampling periodPshould be selected such that the +1st or-1st channel falls within the gain spectrum of the semiconductor material,while the others are located outside the gain region.As a result, the laser will lase at the wavelength within the +1st or-1st order channel of the SBG.

    Now, +1st channel is taken as an example.Based on Eq.(4),the period of seed gratingΛand the sampling periodPsatisfy

    whereneffis the effective refractive index,andλis the lasing wavelength.

    2.2.Model of the simulation

    The time-domain traveling-wave model consists of the time-dependent coupled-wave equations and the carrier rate equation to simulate the lasing characteristics of the proposed TS-DFB laser.[25,26]The electrical field in the waveguide can be described as

    whereφ(x,y)is the model function in the waveguide,F(z,t)andR(z,t) represent the forward wave and backward wave propagating in the waveguide respectively,β0is the propagation constant at Bragg frequency, andω0is the reference frequency corresponding to the Bragg wavelengthλ0.The fieldsF(z,t) andR(z,t) satisfy the time-dependent coupledwave equations:

    Here,vgis the group velocity.Gandδare the field gain and the detuning factor respectively, andκis the coupling coefficient between forward and backward waves.In this work,we consider only index coupling.ThesF(z,t)andsR(z,t)are the spontaneous emission noise coupled into the forward and backward fields.The noise terms each have a Gaussian distribution and the phase of the noise is assumed to change randomly.

    The carrier densityNis described by the time-dependent carrier rate equation as

    whereJis the current injection density,eis the electron charge,dis the thickness of the active layer,Ais the linear recombination coefficient,Bis the bimolecular recombination coefficient,Cis the Auger recombination coefficient,gis the gain coefficient,N0is the transparency carrier density,εis the gain compression factor,andSis the photon density which is related to the magnitude of the propagating wave amplitudes as

    The field gainGin Eqs.(7a)and(7b)is expressed as

    whereΓis the confinement factor of the active layer, andαis the waveguide loss caused by free electron scattering and absorption.

    The detuning factorδin Eqs.(7a)and(7b)represents the deviation from the Bragg condition due to the change of the refractive index in the waveguide and can be defined as

    whereneff0is the effective refractive index at transparency,Δnis the change of the refractive index and can be written as

    whereαHis the linewidth enhancement factor.

    Ifz=0 at the facet on the left-hand side, the boundary condition for the forward and backward propagating wave at the facet satisfies

    whererlandrrare the amplitude of the reflectivity at the facets on the left-and the right-hand sides,respectively,φl(shuí)andφrare the phase at the facets on the left-and the right-hand sides,andLis the laser cavity length.

    In this work, we focus on the DFB lasers fabricated by REC technology.Hence, the grating in the simulation is a sampled grating.In the part without change of the refractive index, we set the coupling coefficientκ=0.According to Eq.(5),it satisfies in our simulation that

    whereP1is the sampling period of section I and can be calculated from the Bragg wavelengthλ0and the period of seed gratingΛthrough Eq.(14).

    For section II,only the sampling period instead of the period of the seed gratingΛneeds to be changed,thereby reducing the difficulty of fabrication.

    3.Design principle and simulation results

    3.1.Design of TS-DFB laser

    The proposed structure of the TS-DFB laser is shown in Fig.1(a).It consists of two sections separated by electrical isolation.Therefore, two regions can be independently injected by different currentsI1andI2.Section I works as a general DFB laser, and the other serves as a detuned grating reflector.Moreover, the two sections share the same active layer,so the butt-joint regrowth process is avoidable.The facet of section I is high-reflection (HR) coated and the facet of section II is anti-reflection(AR)coated.The light is output after passing through the grating reflector.The reflectivity of the HR coating is set to 0.92.Figure 1(b)shows the grating structure fabricated by the REC technique in the two sections.The SBGs in the two sections have the identical coupling coefficientκand seed grating periodΛ.The only difference is that the gratings of the two sections have distinct sampling periods,denoted asP1andP2respectively.In the simulation,the equivalent normalized coupling coefficient of the SBGs is set to 1,where the duty cycle of the sampled gratings is considered.The duty cycle of the SBGs is 0.5.Other parameters used in the simulation are given in Table 1.

    Fig.1.Schematic diagram of(a)proposed TS-DFB laser and(b)grating structure of the TS-DFB laser.

    In order to make better use of the detuned loading and the PPR effects to enhance the modulation bandwidth of the TS-DFB laser, the SBGs in the two sections need different sampling periods,that is,detuning between the grating Bragg wavelengths in the two sections is realized.Figure 2 shows the reflection spectrum of the grating reflector and the round trip phase of the laser,which are calculated by the transfer matrix method[27,28]after the effective refractive index and gain distribution in the laser cavity have been obtained from the timedomain traveling-wave model.The detuning of the gratings can make the main mode fall on the long wavelength flank of the reflection spectrum.Under modulation,the frequency upchirp of the TS-DFB laser shifts the main mode to the Bragg peak of section II.The longitudinal confinement factor is increased.As a result, the detuned loading effect can increase the resonance frequency.[11]Moreover, the side mode which is close to the main mode can resonantly amplify the modulation sidebands.Thus,PPR effect can further improve the 3-dB bandwidth.

    Table 1.Parameters used in simulations.

    Fig.2.Reflection spectrum of detuned grating reflector and round trip phase of the laser,with the positions of the modes in profiles represented by circles.

    3.2.Static characteristics of the TS-DFB laser

    Figure 3(a)shows the longitudinal photon density distribution of the TS-DFB laser when the injection currentI1is 100 mA.Since the light of the TS-DFB laser is output from the grating reflector side, the photon density will be reduced due to the absorption loss and reflection, implying a lower output power.The bias currentI2can be added to the reflector section to compensate for the loss and increase the output.Thus, the photon density at the output facet of the TS-DFB laser will become higher.The light–current characteristics of the TS-DFB laser are shown in Fig.3(b).It can be seen that the bias currentI2has a great influence on the light–current characteristics of the TS-DFB laser.WhenI2increases, the threshold current decreases and the slope efficiency increases.The threshold currents of the TS-DFB laser are about 22 mA forI2=0 mA and 9 mA forI2=10 mA,and correspondingly the slope efficiencies are about 0.248 mW/mA and 0.277 mW/mA.

    Fig.3.(a)Calculated photon density distribution of TS-DFB laser with injection current of 100 mA and(b)light–current characteristics of TSDFB laser for I2=0 mA and 10 mA.

    The spectrum of the TS-DFB laser is shown in Fig.4,which is calculated based on the model proposed in Ref.[29].The side mode suppression ratio(SMSR)is 42 dB.Moreover,it can be seen that there is a side mode at about 0.2 nm off the main mode, which is named PPR mode.The PPR mode can improve the modulation bandwidth effectively, which is consistent with the laser design in Fig.2.

    Fig.4.Lasing spectrum of TS-DFB laser,with injection current being 100 mA.

    3.3.Dynamic characteristics of TS-DFB laser

    To calculate the small-signal modulation response of the TS-DFB laser, a small sinusoidal current is added to the bias current of section I.Figure 5 shows the response curves of the TS-DFB laser with different detunings of the grating Bragg wavelengths in the two sections.It is obvious that the detuning between the SBGs in the two sections has a significant influence on the modulation bandwidth of the TS-DFB laser.The larger detuning can make the main mode fall on the steeper Bragg wavelength flank of section II, which can enhance the detuned loading effect.Therefore,the resonance frequency is improved.Moreover, it can generate and strengthen the PPR mode, so that the PPR effect can better generate a resonance frequency at high frequency.

    Fig.5.Response curves of TS-DFB laser with different detunings between SBGs in the two sections,with I1 being 100 mA.

    The small-signal response curves of the TS-DFB laser with different values of injection currentI2are shown in Fig.6(a).For comparison, the response of the conventional OS-DFB laser with a cavity length of 400 μm is also given.The 3-dB modulation bandwidth of the OS-DFB laser is only about 16 GHz.However,for the TS-DFB laser,it can be seen that the detuned loading effect enhances the resonance frequency,and the PPR effect forms a second resonance peak on the response curve.The modulation bandwidth increases from 34 GHz to 37 GHz whenI2is tuned from 0 mA to 15 mA.The increase of the reflection of the grating reflector enhances the resonance strength of the PPR peak.WhenI2is 20 mA, the mode hops from the long wavelength flank of the Bragg peak to the short wavelength flank as shown in Fig.6(b).This is because with the increase ofI2, the effective index of section II decreases,and the reflection spectrum moves towards the short wavelength.In this situation,the detuned loading effect is absent.The mode spacing is too large, so the PPR effect does not work.Therefore, the modulation bandwidth is attenuated to 15.5 GHz.Hence, a current large than 20 mA only makes the effective refractive index smaller and cannot improve the direct modulation bandwidth.

    Fig.6.(a) Response curves of TS-DFB laser, with I1 being 100 mA and injection current I2 having different values, and (b) reflection spectrum of grating reflector and round trip phase of the laser,with I2 being 20 mA.

    Fig.7.Response curves of TS-DFB laser with different lengths of section II,with I1 being 100 mA and I2 being 10 mA.

    The influence of the grating reflector length on the modulation response is illustrated in Fig.7.

    The separation between the main mode and the PPR mode is determined by the cavity length of grating reflector.The longer the grating reflector,the closer the PPR mode is to the main mode,and the overlap between the two resonance peaks becomes more and more.As shown in Fig.7,when the cavity length of section II is 600 μm,the PPR mode is very close to the main mode,and the second resonance is very strong.When the length of section II is 400 μm,the spacing of the PPR mode from the main mode becomes larger,so the second resonance peak is at a higher frequency.However,the resonance strength is weaker,due to the weaker feedback of the shorter grating reflector.When the length is further reduced, the PPR mode is too far away and too weak to increase the modulation bandwidth.Therefore,the length of the grating reflector should be appropriately designed to maximize the enhancement of the modulation bandwidth brought by the PPR effect.

    In the above calculations,the random phase of the grating at the HR facet was set to 0.However, in practice, the phase randomness of the grating is uncontrollable.Therefore, facet phaseφis changed to study its effect on the high-speed modulation characteristics.Figure 8(a)shows the response curves of the TS-DFB laser whenφis varied from 0 to 0.8π.It can be seen that under certain phase conditions,mode hopping occurs and the modulation bandwidth is attenuated.Whenφis 0.6π,the 3-dB bandwidth is only 21 GHz.In order to study the effect of the random phase on mode hopping, the normalized threshold gain margin between the eigenmode at the shorter wavelength side and the lasing mode is calculated,and the results are shown in Fig.8(b).It can be seen that when the random phase is 0, the normalized threshold gain margin is less than 0.25.Therefore, when the current of the reflection section is too large,mode hopping occurs as shown in Fig.6.The normalized threshold gain margin is 0 when the random phase is changed from 0.7πto 0.9π,which means that the lasing occurs at the eigenmode on the shorter wavelength side.Thus,the small-signal modulation response deteriorates.

    Fig.8.(a) Response curves of TS-DFB laser with different values of facet phase φ with I1 being 100 mA and I2 being 15 mA.(b)Normalized threshold gain margin between the main mode and the eigenmode on the shorter wavelength side versus facet phase φ.

    Figure 9(a)shows the lasing spectrum whenφis 0.6π.It can be seen that the main mode lases within the stopband due to the random phase of the grating.As a result, the spacing between the main mode and the PPR mode becomes larger.As can be seen from Fig.9(b), the PPR frequency, in this case,is about 65 GHz,which is about 55 GHz larger than the first resonance peak.Because the two resonance peaks are too far apart, the response curve is attenuated below 3 dB before reaching the second resonance peak.Therefore,the PPR effect cannot improve the modulation bandwidth effectively.By increasing the currentI2,the loss of the grating reflector section is compensated for and the reflectivity is increased.Then the resonance strength of the PPR peak is enhanced,which counteracts the roll-off of the response.Consequently, the modulation bandwidth can reach around 73 GHz.Obviously,there are two PPR peaks in the response curves.The reason is that the multi-mode rate equation is used in the simulation,another resonance peak is caused by another side mode.

    Fig.9.(a) Lasing spectrum of TS-DFB laser, with φ being 0.6π.(b)Response curves of TS-DFB laser with I2 having different values, I1 being 100 mA,and φ being 0.6π.

    In order to better demonstrate the high-speed characteristics of the TS-DFB laser,the eye diagrams under direct modulation are calculated and compared.Figure 10 shows the eye diagrams of the TS-DFB laser and the OS-DFB laser under 25-Gb/s,40-Gb/s,and 55-Gb/s direct modulations.The lasers are biased at 100 mA and the modulation amplitude is 20 mA.The optimal bandwidth condition of the TS-DFB laser is selected,and the random phase of the grating is 0.It can be seen that the eye diagrams of the TS-DFB lasers have larger opening extent than those of the OS-DFB laser.Under 25-Gb/s direct modulation,the clear eye-openings of two kinds of DFB lasers can be obtained owing to the enough modulation bandwidths.Obviously, the OS-DFB laser cannot meet the higher modulation rates.In contrast, the TS-DFB laser can achieve clear eye-openings and large mask margins under all three modulation rates.These results are consistent with the calculations of their modulation bandwidth in Fig.6.

    Fig.10.Eye diagrams under direct modulation at 25 Gb/s,40 Gb/s,and 55 Gb/s by(a)conventional OS-DFB laser and(b)TS-DFB laser.

    4.Conclusions

    A directly modulated two-section DFB laser with sampled gratings is proposed and investigated theoretically.Since the two sections share the same active layer and the gratings are fabricated by the REC technique, the difficulty in manufacturing the lasers is greatly reduced.High-speed DML is realized by exploiting the detuned loading, and PPR effects.Compared with the OS-DFB laser,the TS-DFB laser has large direct modulation bandwidth.Therefore, the proposed laser can be used as a light source for high-speed optical communication systems.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFB2205804),the National Natural Science Foundation of China (Grant Nos.61974165 and Grant 61975075), and the National Natural Science Foundation of China for the Youth,China(Grant No.62004105).

    猜你喜歡
    云山吉林
    13.吉林卷
    云山圖
    金秋(2020年16期)2020-12-09 01:41:48
    A Spring Coat for Sarah
    Accident Analysis and Emergency Response Effect Research of the Deep Foundation Pit in Taiyuan Metro
    云山萬(wàn)重歸故鄉(xiāng),疾風(fēng)千里嘆離愁
    吉林卷
    吉林卷
    解讀“吉林大米現(xiàn)象”
    云山的樹(shù)
    趙學(xué)敏書法作品《五云山》
    旅游縱覽(2015年6期)2015-06-29 09:10:51
    手机成人av网站| 1024香蕉在线观看| 日日摸夜夜添夜夜添小说| 午夜激情福利司机影院| 一夜夜www| 在线免费观看的www视频| 人人妻,人人澡人人爽秒播| 欧美日韩精品网址| 香蕉国产在线看| 一进一出抽搐gif免费好疼| 国产成+人综合+亚洲专区| 日本一本二区三区精品| 欧美一级毛片孕妇| 国产成人一区二区三区免费视频网站| a在线观看视频网站| av超薄肉色丝袜交足视频| 久久天堂一区二区三区四区| 在线观看一区二区三区| 男人舔奶头视频| 欧美又色又爽又黄视频| 亚洲成人久久性| 一本大道久久a久久精品| 一级毛片女人18水好多| 午夜久久久久精精品| 可以免费在线观看a视频的电影网站| 欧美中文日本在线观看视频| 亚洲色图 男人天堂 中文字幕| 天堂√8在线中文| 丰满的人妻完整版| 久久香蕉精品热| 老司机深夜福利视频在线观看| 亚洲第一欧美日韩一区二区三区| 午夜精品在线福利| 国产精品 国内视频| 视频区欧美日本亚洲| 久久亚洲精品不卡| 欧美三级亚洲精品| 日本熟妇午夜| 黑人操中国人逼视频| 九色国产91popny在线| 欧美成人免费av一区二区三区| 少妇裸体淫交视频免费看高清 | 真人一进一出gif抽搐免费| 国产精品一区二区三区四区久久 | 在线观看66精品国产| 免费搜索国产男女视频| 精品不卡国产一区二区三区| 男人操女人黄网站| 久久婷婷人人爽人人干人人爱| 久久精品亚洲精品国产色婷小说| 女警被强在线播放| 久久久久久大精品| 亚洲成人免费电影在线观看| 国产在线精品亚洲第一网站| av超薄肉色丝袜交足视频| 欧美日韩精品网址| 色av中文字幕| 一级作爱视频免费观看| 麻豆成人午夜福利视频| 国产黄a三级三级三级人| 国产伦在线观看视频一区| 看免费av毛片| 欧美色欧美亚洲另类二区| 欧美黑人巨大hd| 国产一区二区在线av高清观看| 国产高清激情床上av| 亚洲精品在线美女| 久久久久免费精品人妻一区二区 | 熟女少妇亚洲综合色aaa.| 国产精品久久视频播放| 午夜a级毛片| 999久久久国产精品视频| 无限看片的www在线观看| 久久久久久亚洲精品国产蜜桃av| 久久久久久久午夜电影| 精品久久久久久,| 一边摸一边做爽爽视频免费| 午夜福利成人在线免费观看| 中国美女看黄片| 久久久水蜜桃国产精品网| www.自偷自拍.com| 亚洲午夜精品一区,二区,三区| 亚洲在线自拍视频| 久9热在线精品视频| 国内揄拍国产精品人妻在线 | 国产麻豆成人av免费视频| 一级a爱视频在线免费观看| 夜夜夜夜夜久久久久| 99热只有精品国产| 老熟妇乱子伦视频在线观看| 黄色丝袜av网址大全| 满18在线观看网站| 亚洲av五月六月丁香网| 天堂影院成人在线观看| 亚洲第一欧美日韩一区二区三区| 桃红色精品国产亚洲av| 一进一出好大好爽视频| 日韩中文字幕欧美一区二区| 亚洲天堂国产精品一区在线| 午夜免费激情av| 亚洲片人在线观看| 黑人巨大精品欧美一区二区mp4| 看免费av毛片| 免费人成视频x8x8入口观看| 久久久久久人人人人人| 日韩欧美在线二视频| 亚洲熟妇熟女久久| 看黄色毛片网站| 久久久久国内视频| 国产亚洲精品第一综合不卡| 首页视频小说图片口味搜索| 国产av不卡久久| 欧美日韩精品网址| 久久久国产成人免费| 欧美黑人精品巨大| 麻豆一二三区av精品| 怎么达到女性高潮| 精品日产1卡2卡| 亚洲成人久久爱视频| 色精品久久人妻99蜜桃| 亚洲国产欧美日韩在线播放| 我的亚洲天堂| 精品无人区乱码1区二区| 日韩大码丰满熟妇| 视频区欧美日本亚洲| 欧美在线黄色| 国产三级在线视频| 亚洲avbb在线观看| 美女午夜性视频免费| 亚洲色图av天堂| 日本熟妇午夜| 少妇熟女aⅴ在线视频| 欧美日韩精品网址| 美女扒开内裤让男人捅视频| 国产亚洲欧美98| 精品第一国产精品| 日韩欧美在线二视频| 波多野结衣巨乳人妻| 一级a爱视频在线免费观看| 欧美在线黄色| 亚洲九九香蕉| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品永久免费网站| 久久国产亚洲av麻豆专区| 人人妻人人看人人澡| 久久精品国产综合久久久| 亚洲电影在线观看av| 老熟妇仑乱视频hdxx| 精品电影一区二区在线| 色在线成人网| av中文乱码字幕在线| 妹子高潮喷水视频| 亚洲专区字幕在线| 搡老熟女国产l中国老女人| 久久精品国产综合久久久| 757午夜福利合集在线观看| 日本成人三级电影网站| 亚洲精品中文字幕在线视频| 精品福利观看| 亚洲三区欧美一区| 午夜福利高清视频| 身体一侧抽搐| 国产伦一二天堂av在线观看| 免费在线观看日本一区| 亚洲第一电影网av| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲真实| 美女高潮到喷水免费观看| 免费在线观看完整版高清| 成人国产一区最新在线观看| 国产亚洲精品一区二区www| 看黄色毛片网站| 精品国产国语对白av| 一级毛片女人18水好多| 国产在线精品亚洲第一网站| 精品久久久久久成人av| 亚洲一区高清亚洲精品| 久久久国产成人免费| 一本一本综合久久| а√天堂www在线а√下载| a级毛片a级免费在线| 国产精品日韩av在线免费观看| 一a级毛片在线观看| 精品人妻1区二区| 久久久国产欧美日韩av| 日韩免费av在线播放| 波多野结衣高清无吗| av免费在线观看网站| 欧美日本视频| 亚洲自偷自拍图片 自拍| 国产伦在线观看视频一区| 人妻丰满熟妇av一区二区三区| 国产激情欧美一区二区| 精品久久久久久久久久免费视频| 最近最新中文字幕大全电影3 | 久久亚洲精品不卡| 黄片小视频在线播放| 岛国视频午夜一区免费看| 亚洲第一青青草原| 亚洲国产看品久久| 欧美日本亚洲视频在线播放| 亚洲 国产 在线| 18禁观看日本| 国产爱豆传媒在线观看 | 亚洲av成人av| 最好的美女福利视频网| 一二三四在线观看免费中文在| 不卡av一区二区三区| svipshipincom国产片| 成人18禁高潮啪啪吃奶动态图| 精品第一国产精品| 在线播放国产精品三级| 啦啦啦观看免费观看视频高清| 国产成人av激情在线播放| 在线观看舔阴道视频| 两性午夜刺激爽爽歪歪视频在线观看 | 99在线视频只有这里精品首页| 免费看美女性在线毛片视频| 欧美日韩乱码在线| 满18在线观看网站| 青草久久国产| 操出白浆在线播放| 国产麻豆成人av免费视频| 桃红色精品国产亚洲av| 久久香蕉激情| 男人操女人黄网站| 麻豆成人午夜福利视频| 国产成人一区二区三区免费视频网站| 免费搜索国产男女视频| cao死你这个sao货| 一夜夜www| 国产精品久久视频播放| 久久午夜亚洲精品久久| 久久香蕉激情| 亚洲一区高清亚洲精品| 精品欧美一区二区三区在线| 亚洲成a人片在线一区二区| 特大巨黑吊av在线直播 | 动漫黄色视频在线观看| 侵犯人妻中文字幕一二三四区| 亚洲精品一卡2卡三卡4卡5卡| 少妇 在线观看| 在线观看66精品国产| 免费在线观看视频国产中文字幕亚洲| 亚洲国产中文字幕在线视频| 欧洲精品卡2卡3卡4卡5卡区| 国产单亲对白刺激| 亚洲第一电影网av| 久久伊人香网站| 可以免费在线观看a视频的电影网站| 免费在线观看成人毛片| 欧美日韩一级在线毛片| 欧美色欧美亚洲另类二区| 国产日本99.免费观看| 国产成人欧美在线观看| 好男人在线观看高清免费视频 | 黄色a级毛片大全视频| svipshipincom国产片| 50天的宝宝边吃奶边哭怎么回事| 黑人操中国人逼视频| 免费无遮挡裸体视频| 黑人巨大精品欧美一区二区mp4| 手机成人av网站| 黄色成人免费大全| 国产高清视频在线播放一区| 2021天堂中文幕一二区在线观 | 成人免费观看视频高清| 99在线人妻在线中文字幕| 性色av乱码一区二区三区2| 高清毛片免费观看视频网站| 一区二区三区精品91| 亚洲精品国产精品久久久不卡| 一夜夜www| 国产一区二区激情短视频| 满18在线观看网站| 日韩一卡2卡3卡4卡2021年| 亚洲人成网站高清观看| 曰老女人黄片| 亚洲av成人不卡在线观看播放网| 99在线人妻在线中文字幕| 日本 欧美在线| 成人18禁在线播放| 国产精品一区二区精品视频观看| 婷婷精品国产亚洲av在线| 亚洲精品美女久久av网站| 高清毛片免费观看视频网站| 在线看三级毛片| 窝窝影院91人妻| 一边摸一边做爽爽视频免费| 亚洲国产毛片av蜜桃av| 19禁男女啪啪无遮挡网站| 欧美zozozo另类| 国产熟女午夜一区二区三区| 久久久精品国产亚洲av高清涩受| 国产精品永久免费网站| 亚洲 欧美一区二区三区| 一级毛片精品| 婷婷亚洲欧美| 日韩欧美 国产精品| 日本五十路高清| 久久精品人妻少妇| 精品国产一区二区三区四区第35| 欧美午夜高清在线| 国产高清有码在线观看视频 | 可以免费在线观看a视频的电影网站| 99久久精品国产亚洲精品| 黑人欧美特级aaaaaa片| 国语自产精品视频在线第100页| 婷婷丁香在线五月| 好男人在线观看高清免费视频 | 欧美日韩亚洲综合一区二区三区_| 国产精品九九99| 免费看十八禁软件| 国产亚洲av嫩草精品影院| 日韩一卡2卡3卡4卡2021年| 日本一本二区三区精品| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产成人精品二区| 黑人欧美特级aaaaaa片| 日韩大尺度精品在线看网址| 黄色毛片三级朝国网站| 狂野欧美激情性xxxx| svipshipincom国产片| 欧美绝顶高潮抽搐喷水| 日本黄色视频三级网站网址| 亚洲av成人不卡在线观看播放网| 亚洲人成网站高清观看| 国产亚洲精品综合一区在线观看 | 在线观看一区二区三区| 哪里可以看免费的av片| 99riav亚洲国产免费| 97超级碰碰碰精品色视频在线观看| 精品无人区乱码1区二区| 日韩欧美在线二视频| 在线国产一区二区在线| 变态另类成人亚洲欧美熟女| 神马国产精品三级电影在线观看 | 欧美激情高清一区二区三区| 欧美黑人巨大hd| 香蕉丝袜av| 一进一出抽搐动态| 美女扒开内裤让男人捅视频| 亚洲第一欧美日韩一区二区三区| 久久伊人香网站| 久久伊人香网站| 成人精品一区二区免费| 欧美日韩精品网址| 12—13女人毛片做爰片一| 搡老岳熟女国产| 国产黄a三级三级三级人| 欧美激情高清一区二区三区| 十八禁人妻一区二区| 欧美另类亚洲清纯唯美| 91在线观看av| 老汉色∧v一级毛片| 久久国产亚洲av麻豆专区| 精品久久久久久久人妻蜜臀av| 777久久人妻少妇嫩草av网站| 色综合婷婷激情| 老司机靠b影院| 久久精品国产亚洲av香蕉五月| 露出奶头的视频| 青草久久国产| 久久国产精品人妻蜜桃| 在线看三级毛片| 欧美大码av| 午夜久久久久精精品| 中文字幕最新亚洲高清| 无限看片的www在线观看| 99国产极品粉嫩在线观看| 国产精品精品国产色婷婷| 欧美成狂野欧美在线观看| 国产激情久久老熟女| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| 免费高清视频大片| cao死你这个sao货| 97超级碰碰碰精品色视频在线观看| 黄色a级毛片大全视频| 国产爱豆传媒在线观看 | 国产成人一区二区三区免费视频网站| 亚洲在线自拍视频| 又紧又爽又黄一区二区| 国产又爽黄色视频| 午夜福利免费观看在线| 亚洲国产欧美一区二区综合| 亚洲一区高清亚洲精品| 精品人妻1区二区| 国产黄片美女视频| 国产私拍福利视频在线观看| 国产成人av教育| 亚洲va日本ⅴa欧美va伊人久久| 宅男免费午夜| e午夜精品久久久久久久| 国产伦一二天堂av在线观看| 免费看a级黄色片| 丝袜美腿诱惑在线| 国产精品亚洲av一区麻豆| 亚洲欧美日韩高清在线视频| 少妇熟女aⅴ在线视频| 国产精品国产高清国产av| 村上凉子中文字幕在线| 美女高潮到喷水免费观看| 久久亚洲真实| 成人亚洲精品av一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲三区欧美一区| 女人高潮潮喷娇喘18禁视频| 国产av一区二区精品久久| 成人亚洲精品一区在线观看| 给我免费播放毛片高清在线观看| 日本三级黄在线观看| 久久久久免费精品人妻一区二区 | 国产免费男女视频| 国产男靠女视频免费网站| 亚洲国产欧洲综合997久久, | 国产又黄又爽又无遮挡在线| 精品高清国产在线一区| 激情在线观看视频在线高清| 男人舔奶头视频| 欧美黑人欧美精品刺激| 成人午夜高清在线视频 | 国产成人欧美| 变态另类丝袜制服| 欧美一级毛片孕妇| 色哟哟哟哟哟哟| or卡值多少钱| 日韩有码中文字幕| 亚洲色图av天堂| 亚洲人成77777在线视频| 欧美成人免费av一区二区三区| 久久香蕉精品热| 美女高潮到喷水免费观看| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲一级av第二区| 亚洲人成77777在线视频| 国产视频内射| 欧美三级亚洲精品| а√天堂www在线а√下载| 怎么达到女性高潮| 在线视频色国产色| a在线观看视频网站| 热re99久久国产66热| 一区福利在线观看| 中文字幕人妻熟女乱码| 又紧又爽又黄一区二区| 久久久久久国产a免费观看| 午夜久久久在线观看| 男人舔女人的私密视频| 精品国产乱码久久久久久男人| 男女那种视频在线观看| 国产又色又爽无遮挡免费看| 亚洲色图 男人天堂 中文字幕| 国产伦一二天堂av在线观看| 91麻豆精品激情在线观看国产| 亚洲人成电影免费在线| 日本熟妇午夜| 国产午夜精品久久久久久| 成年女人毛片免费观看观看9| 色哟哟哟哟哟哟| 两个人视频免费观看高清| 亚洲av中文字字幕乱码综合 | 午夜激情av网站| 色婷婷久久久亚洲欧美| 99精品欧美一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 亚洲 欧美 日韩 在线 免费| 欧美成人性av电影在线观看| 国内精品久久久久精免费| 国产野战对白在线观看| or卡值多少钱| 久久久久精品国产欧美久久久| 2021天堂中文幕一二区在线观 | 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 成年免费大片在线观看| 少妇 在线观看| 久久中文字幕人妻熟女| 精品久久久久久久久久久久久 | 亚洲自拍偷在线| 国产熟女午夜一区二区三区| 色婷婷久久久亚洲欧美| 国产精品爽爽va在线观看网站 | 国产伦在线观看视频一区| 国产一卡二卡三卡精品| 黄色片一级片一级黄色片| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 精品国产乱子伦一区二区三区| 黄色女人牲交| 午夜老司机福利片| 黄网站色视频无遮挡免费观看| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 国语自产精品视频在线第100页| 一个人免费在线观看的高清视频| svipshipincom国产片| 亚洲真实伦在线观看| 亚洲黑人精品在线| 国产亚洲精品av在线| 久久久久久久久久黄片| 十分钟在线观看高清视频www| 一边摸一边做爽爽视频免费| 久久精品国产清高在天天线| 香蕉国产在线看| 婷婷亚洲欧美| 国产精品av久久久久免费| 成人一区二区视频在线观看| 国产欧美日韩一区二区三| 免费看日本二区| 天天躁夜夜躁狠狠躁躁| 亚洲黑人精品在线| 久久 成人 亚洲| 久久99热这里只有精品18| 午夜激情福利司机影院| 日韩中文字幕欧美一区二区| 欧美成人性av电影在线观看| 一级毛片高清免费大全| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 日本免费一区二区三区高清不卡| 中亚洲国语对白在线视频| 国产伦一二天堂av在线观看| 亚洲国产欧洲综合997久久, | 亚洲精品中文字幕在线视频| 久久精品91无色码中文字幕| 久久久久国产精品人妻aⅴ院| 国产午夜精品久久久久久| 91大片在线观看| 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 悠悠久久av| 十八禁人妻一区二区| 国语自产精品视频在线第100页| 日韩欧美免费精品| 国产精品野战在线观看| 久久精品影院6| 伦理电影免费视频| 丰满的人妻完整版| 色综合欧美亚洲国产小说| 欧美日本亚洲视频在线播放| 1024手机看黄色片| 国产亚洲精品久久久久久毛片| 精品免费久久久久久久清纯| 色播在线永久视频| 琪琪午夜伦伦电影理论片6080| 午夜免费鲁丝| 亚洲第一青青草原| 天堂影院成人在线观看| 国产野战对白在线观看| 精品无人区乱码1区二区| 亚洲精品中文字幕在线视频| 久久九九热精品免费| 女同久久另类99精品国产91| 国产高清有码在线观看视频 | 亚洲天堂国产精品一区在线| avwww免费| 国产亚洲欧美精品永久| 午夜福利欧美成人| 欧美丝袜亚洲另类 | 国产精品一区二区免费欧美| 亚洲自拍偷在线| 两人在一起打扑克的视频| 久久香蕉精品热| 亚洲精品中文字幕一二三四区| 99国产精品99久久久久| av有码第一页| 成人欧美大片| 国产主播在线观看一区二区| 成人国语在线视频| 久久欧美精品欧美久久欧美| 成在线人永久免费视频| 久久草成人影院| 婷婷精品国产亚洲av在线| 亚洲欧美激情综合另类| 欧美又色又爽又黄视频| 免费在线观看成人毛片| 大型黄色视频在线免费观看| 18美女黄网站色大片免费观看| 看片在线看免费视频| 国产精品香港三级国产av潘金莲| 亚洲一卡2卡3卡4卡5卡精品中文| 日日夜夜操网爽| 国产高清激情床上av| 女警被强在线播放| www日本在线高清视频| АⅤ资源中文在线天堂| 老司机福利观看| 老熟妇仑乱视频hdxx| 麻豆av在线久日| 国产亚洲精品综合一区在线观看 | 人人澡人人妻人| 国产精品久久久av美女十八| 国产色视频综合| 99国产精品一区二区三区| 在线免费观看的www视频| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 97碰自拍视频| 1024视频免费在线观看| 欧美绝顶高潮抽搐喷水| 一二三四社区在线视频社区8| 欧美成人免费av一区二区三区| 亚洲全国av大片| 老鸭窝网址在线观看| 欧美日本视频| 国产欧美日韩精品亚洲av| 午夜免费鲁丝| 久久久久久久午夜电影| 国产伦一二天堂av在线观看| 成人午夜高清在线视频 | 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 午夜福利免费观看在线|