• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalised tanh-shaped hyperbolic potential: Klein-Gordon equation’s bound state solution

    2023-09-28 06:21:30BadalovandBadalov
    Communications in Theoretical Physics 2023年7期
    關鍵詞:實際收入年終獎金養(yǎng)老保險費

    V H Badalovand S V Badalov

    1 Institute for Physical Problems,Baku State University,1148 Baku,Azerbaijan

    2 Theoretical Materials Physics,Paderborn University,D-33098 Paderborn,Germany

    3 Theoretical Physics VII,University of Bayreuth,D-95440 Bayreuth,Germany

    Abstract

    The development of potential theory heightens the understanding of fundamental interactions in quantum systems.In this paper,the bound state solution of the modified radial Klein-Gordon equation is presented for generalised tanh-shaped hyperbolic potential from the Nikiforov-Uvarov method.The resulting energy eigenvalues and corresponding radial wave functions are expressed in terms of the Jacobi polynomials for arbitrary l states.It is also demonstrated that energy eigenvalues strongly correlate with potential parameters for quantum states.Considering particular cases,the generalised tanh-shaped hyperbolic potential and its derived energy eigenvalues exhibit good agreement with the reported findings.Furthermore,the rovibrational energies are calculated for three representative diatomic molecules,namely H2,HCl and O2.The lowest excitation energies are in perfect agreement with experimental results.Overall,the potential model is displayed to be a viable candidate for concurrently prescribing numerous quantum systems.

    Supplementary material for this article is available online

    Keywords: Klein-Gordon equation,hyperbolic potential,Nikiforov-Uvarov method,diatomic molecules

    1.Introduction

    Following quantum mechanics’ genesis,the study of precisely solvable problems plays a critical role in comprehending the underlying quantum-mechanical systems [1-3].Analytical solutions of the Schr?dinger,Klein-Gordon(KG),and Dirac equations are of particular importance in quantum mechanics because the wave function contains all the information necessary for a complete description of a particle’s behaviour in a force field [3-8].

    In any n radial and l orbital quantum states,a limited number of physical potentials can be solved exactly for the Schr?dinger,KG,and Dirac equations[2,3].Generally,many quantum systems can only be solved numerically or through approximation techniques [7-9].Therefore,several methods including the supersymmetry method [10],the factorisation method [3],the Laplace transform approach [11],the path integral method [12],the Nikiforov-Uvarov (NU) method[13],asymptotic iteration method [14,15] and the quantisation rule method [16-18] have been developed so far and they have been applied for the solution of the quantum wave equation.The NU method yields more practicality to solve second-order differential equations by transforming them into hypergeometric-type equations.Furthermore,the various exponential and hyperbolic potentials are analytically solved by using different approximation schemes with the NU method.

    In principle,the exponential potential models always draw considerable attention and are widely used in various physical systems,including quantum cosmology,nuclear physics,molecular physics,elementary particle physics,and condensed matter physics [19-29].Up to now,many exponential-type potentials,including the Morse[30,31],Hulthén[32-38],Woods-Saxon [27,39-43],Rosen-Morse [44-48],Eckart-type [49-51],Manning-Rosen [52-54],Deng-Fan[55,56],P?schl-Teller like [57],Mathieu [58],sine-type hyperbolic [59] and Schi?berg [60-63] potentials have been investigated,and some analytical bound state solutions were obtained using an approximation for these models in l ≠0 state.Some known exponential potentials can also be transformed into a hyperbolic potential model,which can help understand quantum systems’ natural dynamics [64-76].For instance,the thermodynamic properties of some molecules have been successfully predicted using the improved Rosen-Morse potential and the Fu-Wang-Jia potential to describe the internal vibrations of molecules [77-82].

    Motivated by the simplicity and applicability of the generalisations of the hyperbolic potentials,the generalised tanh-shaped hyperbolic potential (GTHP) [83] was recently proposed as follows:

    where V1,V2,V3are the depths of potential well and α is the adjustable parameter representing the properties of the interaction potential.For clarity about potential,see also the S2 section4.GTHP is the general case of the significant physical potential such as the standard and generalised Woods-Saxon[39,42],Rosen-Morse [44],Manning-Rosen type,generalised and standard Morse[30],Schi?berg[60],four-parametric exponential-type [67-69],Williams-Poulios potential[84,85],and the sum of the linear and harmonic oscillator potentials,see S2 section in4See supplementary material,which includes[29,56,and 63],for additional details of potential information and theoretical derivations..As it seems,GTHP’s characteristics can be used to explain the interactions of molecular,atomic,and nuclear particles.

    In this study,we extend our study of GTHP by considering it in the KG equation.We apply the NU method to analytically solve KG and obtain the bound state for this potential,and we compare the results with the previously reported ones in particular cases.Then,the potential is modelled for several diatomic molecules,and the obtained results are in good agreement with experimental ones.This study allows us to correctly explain a broad variety of quantum systems’ characteristics and behaviour,including retardation effects,without needing a great deal of complex derivation or massive computing resources.The remainder of this study covers the following sections: the bound-state solution of the radial KG equation is presented in section 2.In section 3,we explore the results for energy levels and the corresponding normalised eigenfunctions in some special cases and diatomic molecules.Finally,some concluding remarks are stated in section 4.

    2.Bound state solutions

    The time-independent KG equation with scalar and vector potentials S(r)and V(r)a spin-zero particles takes the general form: [2]

    where E is the relativistic energy system an M denotes the rest mass of the particle.To denote the radial and angular components of the wave function ψnlm(r,θ,φ),the concept of variable separation is defined as:

    and substituting it into equation (2),the modified radial KG equation is obtained as follows:

    After choosing of equal scalar and vector potentials,that is,S(r)=V(r),equation (4) becomes in the following form:

    Considering the expression of 2V(r) equal as equation (1),that is

    It should be noted that this choice the potential enables us to reduce the resulting relativistic states to their non-relativistic limit under appropriate transformations.Therefore,we obtain it as:

    This equation cannot be solved analytically for l ≠0 due to the centrifugal term.Therefore,the Pekeris approximation[40-42,83,86]which is the most widely used and convenient for our purposes can be taken to solve this equation.According to the Pekeris approximation scheme to deal with the centrifugal term is used [83]

    where the parameters A0,A1and A2were found as: [83]

    After inserting the equation (8) into equation (7),and further using a new variabletanh(αr)=s,s ?[0,1],we obtain it as:

    where

    with the boundary conditions χ(0)=0 and χ(1)=0.Now for implementing the NU method,equation (10) should be rewritten as the hypergeometric type equation form as:

    After comparing equation (10) and equation (12),we obtain:

    The new function π(s) as given in [13] can be obtained by substituting equation(13)and takingσ′ (s)=-2s.Hence,the function π(s) is defined as:

    The value of the constant parameter k can be calculated by performing the condition that the discriminant of the expression equation (14) under the square root is equal to zero.Hence,we obtain it as:

    where

    with D>P,2DP=|β|,D2+P2=ε+γ.When the individual values of k are given in equation(15)are substituted into equation (14),the eight possible forms of π(s) are written in the following forms:

    Even π(s) have eight different values,but according to NU method,we select only one of them such that the functionτ(s)=(s)+2π(s) has the negative derivative and a root on the interval (0,1),that is,τ′ (s)<0and τ(s)=0,s ?(0,1).Noticing that the other forms have no physical meaning,we will take:

    After using the following relations:λ=k+π′(s) and(n=0,1,2,….)[13],we obtain λ as:

    and

    where n is the radial quantum number (n=0,1,2,….).After comparing equation (19) with equation (20),we obtain the following relation:

    where

    By inserting the expression D into equation(21)we obtain

    After inserting the equations (11) and (22) into equation (23)for energy level equation,we obtain it as:

    根據(jù)我國個人所得稅征收的相關規(guī)定,對員工所得按當月收入(年終獎金單獨計算稅率)扣去免征額、養(yǎng)老保險費、醫(yī)療保險費、失業(yè)保險費和公積金等,以剩下的應稅工資實行九級累進稅率計算個人所得稅。所以,企業(yè)完全可以通過幾種方法來減少員工的個稅繳納,同時又不降低員工的實際收入。

    By applying the NU method,we can obtain the radial eigenfunctions.After substituting π(s) and σ(s) intosolving the order differential equation,one can find the finite function Φ(s)and ρ(s)in the interval (0,1) it is easily obtained:

    According to the relation χ(s)=Φ(s)y(s) [13],we obtain the radial wave functions as:

    where Cnlis the normalisation constant.By using the normalisation condition,we obtain Cnlas:

    where F(a,b;c;z) is the hypergeometric function.

    3.Results and discussion

    3.1.Particular cases

    In this part,we discuss the results by investigating the expression of analytically obtained energy level equation (24) for this potential based on some special cases:

    (i)By choosing the parameters of GTHP aswe obtain the energy spectrum equation of the generalised Woods-Saxon potential:

    (ii) By considering W=0 and xe=0 in equation (29),we obtain the energy spectrum equation for the standard Woods-Saxon potential,as follows:

    Here,C0=A0+A1+A2=[40,41],whereα=

    (iii) By taking the parameters of GTHP as V3=-V1=C and V2=B,the energy spectrum equation of the Rosen-Morse potential is obtained as:

    From the above expression,when l=0,the energy spectrum is in good agreement with the result in [46,47]

    (iv) By taking the parameters of GTHP asand 2α=we obtain the energy spectrum equation of the Manning-Rosen-type potential as follows:

    (v) By choosing the parameters of GTHP asandb=eδre+1,we obtain the following energy spectrum equation for the improved Rosen-Morse potential (the generalised Morse-type potential):

    From the above expression,we obtain the same expression equation (42) of [70] with a0=A0+A1+A2,a1=-2(A1+2A2),a2=4A2andeαre+1=b.

    And finally,from the expression equation (35),when considering l=0,we get the same expression as in [56]:

    (vi)By choosing the parameters of GTHP V1=δ2D,V2=-2δσD and V3=σ2D,we obtain the energy spectrum equation for the Schi?berg potential,as follows:

    Here

    From the expression equation(37),we obtain the same expression equation(42)of[70]with a0=C0,a1=-C1,a2=C2,De=D(δ-σ)2andeαre+1=

    (vii)By taking the parameters of GTHPV1=for energy spectrum equation of the four-parameter exponential-type potential,we have

    (viii) By choosing the parameters of GTHPwe obtain the energy spectrum equation for the Williams-Poulios-type potential as follows:

    Table 1.Spectroscopic molecular parameters for H2,HCl,O2 diatomic molecules.

    (ix) When α is chosen as much smaller than one,the allowed values of the energy level equation of the equation (24) are defined as follows:

    for small values of n and l.

    Finally,using the following transformations E-Mc2→Enland E+Mc2→2μc2,we obtain the energy level equation of equation(24)for the non-relativistic case,as follows:

    and this result are same as the result obtained in[83].When α is much smaller than unity then the allowed values of the energy spectrum become

    for small values of n and l,whereis the classical frequency of oscillation about the minimum point,r=re.Here,the first termis the minimum value of GTHP; the second term is the energy levels of the harmonic oscillator; the third term is the energy levels of rotational energy corresponding to a fixed distance between atoms and the fourth term is the energy levels of anharmonic correction.

    3.2.The bound state energy eigenvalues and lowest excitation in diatomic molecules

    Spectroscopic parameters of the diatomic molecules H2,HCl and O2are given in table 1,which are taken from[88,89].Based on the experimental values such as the dissociation energy De,the equilibrium bond length re,and the equilibrium vibrational frequency νe,the potential parameters V1,V2,V3and the screening parameter α can be defined by using the expressions (S19),(S20),(S24),and(S28) in4.

    By using these parameters,we present the potential energy curves calculated for H2,HCl,O2diatomic molecules,see figure 1.Further,we can easily calculate the bound state energy eigenvalues for the diatomic molecules H2,HCl,O2at n and l quantum states by using theexpressions of the Schr?dinger molecule andEnbl=EnRl-Mc2expression of the binding energies KG molecule [2],see table 2.The obtained eigenvalues of the HCl diatomic molecule are in good agreement with experimentally reported values in [90].

    While we compare the lowest excitation energies for diatomic molecules,the obtained results are in perfect agreement with the sophisticated high-resolution measurements,see table 3.Although the six parameters Lennard-Jones potential model is a little bit more accurate than GTHP,the fact that GTHP has four parameters is a great advantage for easier modelling of physical systems.Generally,the obtained results allow one to tune and optime the potential concerning its desired properties in atomic,molecular,chemical,condensed matter and high energy physics applications.

    4.Concluding remarks

    In this study,we proposed a new potential model,which holds numerous important physical potentials.Next,the bound state solution of the radial KG equation with this potential is examined analytically within the framework of the NU method.It is also presented that the energy eigenvalues are sensitively associated with potential parameters for quantum states.GTHP and its obtained energy eigenvalues are in remarkable overlap with the reported results in some cases,so this potential model is a desirable candidate for displaying multiple quantum systems concurrently.For more specific cases,GTHP was used to study for modelling several diatomic molecules,and the study showed that the good agreement between the lowest rotational ΔE(l)and vibrational ΔE(n) excitation energies and the experimental of H2,HCland O2diatomic molecules.In view of the simplicity and accuracy,our work provides additional physical insights about the systems and sheds some light on this potential’s representative power.

    Figure 1.Potential energy curves of the diatomic molecules H2,HCl and O2 as a function of the interatomic distance.

    Table 2.The bound state energy eigenvalues of the Schr?dinger molecule and=EnRl-Mc2 of the Klein-Gordon molecule in the GTHP calculated using equation (42) and equation (24) for several n and l,respectively.

    Table 2.The bound state energy eigenvalues of the Schr?dinger molecule and=EnRl-Mc2 of the Klein-Gordon molecule in the GTHP calculated using equation (42) and equation (24) for several n and l,respectively.

    nlE,Hnlb(2)(cm-1)(cm-1)(cm-1)(cm-1)(cm-1)(cm-1)0 02163.332 4792163.332 4771480.444 7711480.444 675786.437 8165 786.437 6894 1 06327.103 4626327.103 4104359.482 3814359.482 3412338.054 436 2338.054 024 1 16444.845 6866444.845 6344379.847 3474379.847 3372340.894 357 2340.894 427 2 0 10 252.927 23 10 252.927 267125.499 7167125.499 6493860.922 397 3860.922 186 2 1 10 367.885 83 10 367.885 907145.313 3577145.313 2153863.729 451 3863.729 320 2 2 10 596.757 12 10 596.757 287184.927 8967184.927 7143869.343 429 3869.344 512 3 0 13 934.324 20 13 934.324 179777.517 9029777.517 9345354.985 484 5354.985 616 3 1 14 046.229 51 14 046.229 529796.773 8729796.773 8645357.759 581 5357.759 412 3 2 14 269.024 31 14 269.024 479835.273 3369835.273 1665363.306 888 5363.307 911 3 3 14 600.720 22 14 600.720 319892.991 0229892.990 9415371.629 453 5371.630 377 4 0 17 364.449 80 17 364.449 77 12 314.543 22 12 314.543 18 6820.187 243 6820.187 560 4 1 17 473.029 85 17 473.029 83 12 333.235 31 12 333.235 23 6822.927 545 6822.927 953 4 2 17 689.208 23 17 689.208 38 12 370.607 07 12 370.606 85 6828.408 793 6828.409 623 4 3 18 011.064 17 18 011.064 30 12 426.633 34 12 426.633 29 6836.630 730 6836.631 845 4 4 18 435.819 49 18 435.819 57 12 501.277 34 12 501.277 24 6847.592 259 6847.593 247 5 0 20 536.070 41 20 536.070 39 14 735.565 70 14 735.565 70 8256.471 021 8256.471 069 5 1 20 641.051 30 20 641.051 28 14 753.687 76 14 753.687 60 8259.177 484 8259.177 992 5 2 20 850.069 73 20 850.069 82 14 789.919 18 14 789.918 98 8264.591 767 8264.592 703 5 3 21 161.280 64 21 161.280 76 14 844.235 14 14 844.235 24 8272.713 618 8272.714 473 5 4 21 572.017 81 21 572.017 97 14 916.599 24 14 916.599 34 8283.541 215 8283.541 974 5 5 22 078.906 37 22 078.906 53 15 006.962 14 15 006.962 07 8297.076 277 8297.076 196 6 0 23 441.536 12 23 441.536 08 17 039.560 05 17 039.559 91 9663.779 212 9663.779 010 6 1 23 542.642 61 23 542.642 54 17 057.105 39 17 057.105 32 9666.452 501 9666.452 396 6 2 23 743.954 74 23 743.954 88 17 092.184 01 17 092.183 82 9671.798 959 9671.800 000 6 3 24 043.712 12 24 043.712 23 17 144.770 88 17 144.770 97 9679.820 497 9679.821 126 6 4 24 439.372 71 24 439.372 81 17 214.829 91 17 214.829 95 9690.513 889 9690.514 445 6 5 24 927.723 10 24 927.723 19 17 302.311 92 17 302.311 89 9703.880 795 9703.880 933 6 6 25 505.011 24 25 505.011 31 17 407.155 87 17 407.155 76 9719.918 459 9719.919 524 nlNR(2)E,H nlb(2)E,HCl nlNR ()E,HCl nlb ()E,O nlNR(2)E,O

    Table 3.The lowest rotational ΔE(l) and vibrational ΔE(n) excitation energies,all values in cm-1.

    Acknowledgments

    We thank Wolf Gero Schmidt for his valuable intellectual comments and discussion.

    ORCID iDs

    猜你喜歡
    實際收入年終獎金養(yǎng)老保險費
    個人所得稅專項附加扣除能否促進居民消費*
    大數(shù)據(jù)
    如何解決不同身份的重復參保問題
    長效機制或從根本上鏟除炒房風
    大眾集團員工年終獎金大縮水
    汽車生活(2015年12期)2015-12-22 17:27:47
    2014年事業(yè)單位養(yǎng)老保險費征繳新政策及問題的探討
    貴州省消費結(jié)構(gòu)與擴大內(nèi)需分析
    商(2015年25期)2015-05-30 03:34:05
    年終考核制度是否具有激勵作用
    財會通訊(2015年5期)2015-01-01 05:00:03
    養(yǎng)老保險繳費基數(shù)可以下調(diào)嗎
    人力資源(2014年6期)2014-07-31 01:04:56
    www.av在线官网国产| 精品久久国产蜜桃| a 毛片基地| 国产乱人偷精品视频| 色5月婷婷丁香| 国产女主播在线喷水免费视频网站| 少妇丰满av| 亚洲情色 制服丝袜| 中文乱码字字幕精品一区二区三区| 久久精品国产a三级三级三级| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 亚洲综合色网址| 久久97久久精品| 免费黄色在线免费观看| 欧美变态另类bdsm刘玥| 人成视频在线观看免费观看| 国产男人的电影天堂91| 中文乱码字字幕精品一区二区三区| 丁香六月天网| 久久久国产精品麻豆| 观看av在线不卡| 亚洲精品国产色婷婷电影| 男人爽女人下面视频在线观看| 新久久久久国产一级毛片| 国产探花极品一区二区| 国产一区二区在线观看日韩| 黄色怎么调成土黄色| 一边摸一边做爽爽视频免费| 久久av网站| 亚洲av国产av综合av卡| 精品久久久久久久久av| 国产在视频线精品| 欧美97在线视频| 亚洲第一区二区三区不卡| 国产成人91sexporn| 国产免费视频播放在线视频| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 日本色播在线视频| 国产综合精华液| 日韩一区二区三区影片| 久久精品国产亚洲av涩爱| 国产精品国产三级专区第一集| 久久久精品94久久精品| 欧美3d第一页| 亚洲中文av在线| 一区在线观看完整版| 一级二级三级毛片免费看| 一边摸一边做爽爽视频免费| 亚洲国产日韩一区二区| 搡女人真爽免费视频火全软件| 99久久精品国产国产毛片| 亚洲精品久久成人aⅴ小说 | 五月开心婷婷网| 色94色欧美一区二区| 全区人妻精品视频| 欧美精品一区二区大全| 22中文网久久字幕| 亚洲av欧美aⅴ国产| 欧美亚洲 丝袜 人妻 在线| 晚上一个人看的免费电影| 热re99久久精品国产66热6| 久久精品国产a三级三级三级| 久热这里只有精品99| 伊人久久精品亚洲午夜| 肉色欧美久久久久久久蜜桃| 超色免费av| 一本色道久久久久久精品综合| 五月玫瑰六月丁香| 丝袜美足系列| 精品一区二区三卡| 久久99精品国语久久久| 91精品伊人久久大香线蕉| 久久久久久人妻| 日韩熟女老妇一区二区性免费视频| 视频区图区小说| 毛片一级片免费看久久久久| 新久久久久国产一级毛片| 夜夜看夜夜爽夜夜摸| 成人国语在线视频| 九色亚洲精品在线播放| 不卡视频在线观看欧美| 最近最新中文字幕免费大全7| 一本大道久久a久久精品| 又黄又爽又刺激的免费视频.| 一级毛片黄色毛片免费观看视频| 中文精品一卡2卡3卡4更新| 99久国产av精品国产电影| 黄色欧美视频在线观看| 中文欧美无线码| 观看美女的网站| 青春草国产在线视频| 欧美一级a爱片免费观看看| 老司机影院成人| 中文精品一卡2卡3卡4更新| 久久久国产一区二区| 大又大粗又爽又黄少妇毛片口| 日韩成人av中文字幕在线观看| 国产精品久久久久久av不卡| 性色avwww在线观看| 男人爽女人下面视频在线观看| 久久久久久久国产电影| 久久狼人影院| 高清午夜精品一区二区三区| 最黄视频免费看| 多毛熟女@视频| 最后的刺客免费高清国语| 美女视频免费永久观看网站| 久久这里有精品视频免费| 成人亚洲欧美一区二区av| 日本与韩国留学比较| 国产男人的电影天堂91| 卡戴珊不雅视频在线播放| 欧美3d第一页| av.在线天堂| 国产国拍精品亚洲av在线观看| 简卡轻食公司| 人妻制服诱惑在线中文字幕| 国产男人的电影天堂91| 国产精品99久久99久久久不卡 | 午夜久久久在线观看| 亚洲欧美日韩另类电影网站| 岛国毛片在线播放| 午夜激情久久久久久久| 特大巨黑吊av在线直播| 永久免费av网站大全| 激情五月婷婷亚洲| 内地一区二区视频在线| 久久热精品热| 久久人人爽av亚洲精品天堂| 精品亚洲乱码少妇综合久久| 亚洲精品乱码久久久久久按摩| 9色porny在线观看| 国产亚洲精品第一综合不卡 | 亚洲内射少妇av| 亚洲欧美一区二区三区国产| 亚洲经典国产精华液单| 男女国产视频网站| 纯流量卡能插随身wifi吗| 大陆偷拍与自拍| xxx大片免费视频| 午夜激情av网站| 国产成人一区二区在线| 亚洲精品乱久久久久久| 97精品久久久久久久久久精品| 国产精品99久久久久久久久| 精品久久蜜臀av无| 亚洲精品中文字幕在线视频| 午夜福利在线观看免费完整高清在| 免费av中文字幕在线| 成人二区视频| 久久久久久久久久人人人人人人| 伦理电影免费视频| av在线app专区| 午夜福利网站1000一区二区三区| 亚洲精品av麻豆狂野| 久久精品国产a三级三级三级| 满18在线观看网站| 黑人欧美特级aaaaaa片| 夜夜爽夜夜爽视频| 国产精品国产三级专区第一集| 91久久精品国产一区二区成人| 伊人久久国产一区二区| 亚洲美女黄色视频免费看| 美女福利国产在线| 久久婷婷青草| 国产 一区精品| 国产免费视频播放在线视频| 少妇被粗大的猛进出69影院 | 最近最新中文字幕免费大全7| 日韩 亚洲 欧美在线| 日韩一区二区视频免费看| 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 大码成人一级视频| 午夜影院在线不卡| 久久热精品热| 一边亲一边摸免费视频| 亚洲精品久久午夜乱码| 亚洲精品乱码久久久v下载方式| 国产伦理片在线播放av一区| 高清午夜精品一区二区三区| av免费观看日本| 大片电影免费在线观看免费| 欧美国产精品一级二级三级| 午夜老司机福利剧场| 国产精品久久久久久精品电影小说| 特大巨黑吊av在线直播| 国产在线视频一区二区| 国产精品一国产av| 亚洲,一卡二卡三卡| 香蕉精品网在线| 精品酒店卫生间| 精品久久久久久久久亚洲| 热re99久久国产66热| 精品亚洲乱码少妇综合久久| 午夜福利在线观看免费完整高清在| 一级片'在线观看视频| 亚洲国产最新在线播放| 精品久久久噜噜| 美女大奶头黄色视频| av免费在线看不卡| 91久久精品国产一区二区成人| 自线自在国产av| 免费看不卡的av| 久久久久久久久久人人人人人人| 欧美日韩成人在线一区二区| 桃花免费在线播放| av在线播放精品| 51国产日韩欧美| 久久狼人影院| 母亲3免费完整高清在线观看 | 久久人人爽人人片av| 国产午夜精品一二区理论片| 一级,二级,三级黄色视频| 97在线视频观看| 亚洲精品第二区| 国产午夜精品一二区理论片| 亚洲精品日韩在线中文字幕| 国产亚洲最大av| a级毛色黄片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 高清视频免费观看一区二区| 少妇的逼好多水| 18禁动态无遮挡网站| 伊人亚洲综合成人网| 午夜福利视频精品| 亚洲,欧美,日韩| 777米奇影视久久| 美女视频免费永久观看网站| 最新的欧美精品一区二区| 午夜老司机福利剧场| 午夜福利,免费看| av免费在线看不卡| 高清毛片免费看| a级毛片在线看网站| 99久久综合免费| 国产精品人妻久久久久久| 精品国产一区二区久久| 欧美亚洲日本最大视频资源| 午夜日本视频在线| 亚洲av免费高清在线观看| 免费看光身美女| 一边亲一边摸免费视频| 少妇精品久久久久久久| 少妇被粗大猛烈的视频| 亚洲av综合色区一区| 我的老师免费观看完整版| 欧美性感艳星| 一区二区日韩欧美中文字幕 | 色婷婷av一区二区三区视频| 晚上一个人看的免费电影| 日韩人妻高清精品专区| 亚洲精品日本国产第一区| 伦理电影大哥的女人| 狂野欧美激情性xxxx在线观看| 丝瓜视频免费看黄片| 亚洲激情五月婷婷啪啪| 中文乱码字字幕精品一区二区三区| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性xxxx在线观看| 少妇精品久久久久久久| 亚洲国产精品专区欧美| 中文字幕亚洲精品专区| 日本av免费视频播放| 美女国产高潮福利片在线看| 熟女电影av网| 热re99久久国产66热| 亚洲无线观看免费| 久久ye,这里只有精品| 老女人水多毛片| 亚洲天堂av无毛| 日韩 亚洲 欧美在线| 成人亚洲精品一区在线观看| 综合色丁香网| 日韩欧美一区视频在线观看| 精品一区二区免费观看| 纯流量卡能插随身wifi吗| 亚洲精品久久久久久婷婷小说| 插阴视频在线观看视频| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频| 亚洲人与动物交配视频| 国产不卡av网站在线观看| 久久久亚洲精品成人影院| av网站免费在线观看视频| 日韩不卡一区二区三区视频在线| 99久国产av精品国产电影| 免费黄频网站在线观看国产| 欧美精品一区二区大全| 最近中文字幕高清免费大全6| 丝袜在线中文字幕| 国产精品久久久久久久电影| 丰满迷人的少妇在线观看| 韩国av在线不卡| 亚洲国产日韩一区二区| 久久久久久伊人网av| 国产片特级美女逼逼视频| 久久毛片免费看一区二区三区| 婷婷色麻豆天堂久久| 视频中文字幕在线观看| 秋霞在线观看毛片| 国产欧美亚洲国产| 久久久久久伊人网av| 欧美精品亚洲一区二区| 欧美+日韩+精品| 极品人妻少妇av视频| 国产片特级美女逼逼视频| 亚洲无线观看免费| 亚洲怡红院男人天堂| 老司机亚洲免费影院| 人妻一区二区av| 草草在线视频免费看| 大香蕉97超碰在线| 国产精品人妻久久久久久| 人人妻人人澡人人看| 曰老女人黄片| 黄色配什么色好看| 亚洲内射少妇av| 热re99久久精品国产66热6| 国产成人精品在线电影| 亚洲av福利一区| 免费日韩欧美在线观看| 热99久久久久精品小说推荐| 最新的欧美精品一区二区| 日日摸夜夜添夜夜爱| tube8黄色片| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 精品久久久噜噜| 黄片无遮挡物在线观看| 国产精品人妻久久久影院| 久久人人爽人人片av| 成人亚洲精品一区在线观看| 国产男女内射视频| 国产无遮挡羞羞视频在线观看| 性高湖久久久久久久久免费观看| 青青草视频在线视频观看| 亚洲精品一二三| 国产精品三级大全| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产无遮挡羞羞视频在线观看| 人妻 亚洲 视频| av国产久精品久网站免费入址| 国产精品久久久久久久久免| 亚洲无线观看免费| 亚洲av成人精品一二三区| 欧美日韩av久久| 国产精品一区二区三区四区免费观看| 精品午夜福利在线看| 另类精品久久| 日本-黄色视频高清免费观看| 中国国产av一级| 极品少妇高潮喷水抽搐| 亚洲精品乱码久久久久久按摩| 少妇猛男粗大的猛烈进出视频| 亚洲三级黄色毛片| 观看av在线不卡| 中文乱码字字幕精品一区二区三区| 欧美激情极品国产一区二区三区 | 最近最新中文字幕免费大全7| a级毛色黄片| 狠狠婷婷综合久久久久久88av| 国产女主播在线喷水免费视频网站| 人人妻人人澡人人看| 天堂俺去俺来也www色官网| 成年美女黄网站色视频大全免费 | 久久婷婷青草| 99久久中文字幕三级久久日本| 国产乱来视频区| 亚洲成人av在线免费| 国产精品一区二区在线不卡| 精品亚洲成a人片在线观看| 亚洲精品视频女| 五月天丁香电影| 国产av精品麻豆| 91精品伊人久久大香线蕉| 欧美激情国产日韩精品一区| 亚洲欧洲日产国产| 亚洲av在线观看美女高潮| 国产黄频视频在线观看| 国产精品久久久久久精品电影小说| 亚洲av二区三区四区| 久久精品久久精品一区二区三区| 日韩欧美一区视频在线观看| 97超视频在线观看视频| 久久久久久人妻| 91国产中文字幕| 亚洲四区av| 人人妻人人澡人人爽人人夜夜| 男女国产视频网站| 在线观看人妻少妇| 又大又黄又爽视频免费| 人妻系列 视频| 欧美精品一区二区大全| 丝袜美足系列| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 亚洲精品成人av观看孕妇| 在线天堂最新版资源| 校园人妻丝袜中文字幕| 在线观看免费视频网站a站| 久久久久久久久大av| 妹子高潮喷水视频| 国产女主播在线喷水免费视频网站| 国产免费视频播放在线视频| 国产精品人妻久久久久久| 精品午夜福利在线看| 熟妇人妻不卡中文字幕| 这个男人来自地球电影免费观看 | 久久精品国产亚洲av天美| 亚洲精品自拍成人| 夜夜骑夜夜射夜夜干| 岛国毛片在线播放| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| 午夜激情福利司机影院| 欧美人与性动交α欧美精品济南到 | 国产精品99久久久久久久久| 91精品伊人久久大香线蕉| 欧美人与性动交α欧美精品济南到 | 少妇人妻 视频| 国产深夜福利视频在线观看| 五月玫瑰六月丁香| 免费看不卡的av| 黄色怎么调成土黄色| 国产精品.久久久| 亚洲婷婷狠狠爱综合网| 国产免费福利视频在线观看| 国产精品熟女久久久久浪| 性高湖久久久久久久久免费观看| 免费播放大片免费观看视频在线观看| 国产欧美日韩综合在线一区二区| 国产精品一区www在线观看| 大香蕉久久网| 99九九线精品视频在线观看视频| 99久久人妻综合| 日韩av不卡免费在线播放| 亚洲婷婷狠狠爱综合网| 国产毛片在线视频| 日韩av免费高清视频| 欧美成人午夜免费资源| 免费人妻精品一区二区三区视频| 欧美 亚洲 国产 日韩一| 国产毛片在线视频| 亚洲精品乱久久久久久| 久久久久久久大尺度免费视频| 男的添女的下面高潮视频| 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区国产| 久久99精品国语久久久| 超碰97精品在线观看| 精品国产乱码久久久久久小说| av线在线观看网站| 大片电影免费在线观看免费| 少妇的逼水好多| 亚洲情色 制服丝袜| 亚洲国产日韩一区二区| 欧美日韩国产mv在线观看视频| 免费观看av网站的网址| 少妇人妻精品综合一区二区| 只有这里有精品99| 在线亚洲精品国产二区图片欧美 | 久久久久国产精品人妻一区二区| 亚洲精品,欧美精品| 国产精品蜜桃在线观看| 99热网站在线观看| h视频一区二区三区| 在线观看国产h片| 久久av网站| 亚洲经典国产精华液单| 国语对白做爰xxxⅹ性视频网站| 亚洲av日韩在线播放| 午夜激情av网站| 免费高清在线观看视频在线观看| 中文字幕亚洲精品专区| 一级毛片 在线播放| 天天影视国产精品| 搡老乐熟女国产| 亚洲,欧美,日韩| 午夜福利视频精品| 美女脱内裤让男人舔精品视频| 亚洲,一卡二卡三卡| 国产精品不卡视频一区二区| 精品久久久久久久久亚洲| 日本午夜av视频| 国产 精品1| 国产av精品麻豆| 观看美女的网站| 久久久精品免费免费高清| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 久久久久精品久久久久真实原创| 妹子高潮喷水视频| freevideosex欧美| 久久久久精品性色| 日本黄大片高清| 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 国产亚洲最大av| 精品一品国产午夜福利视频| 国产精品国产三级国产av玫瑰| 高清在线视频一区二区三区| 少妇被粗大猛烈的视频| 日本黄色片子视频| 超色免费av| 99热全是精品| 91久久精品电影网| 啦啦啦啦在线视频资源| 亚洲美女视频黄频| 精品久久久噜噜| 中国国产av一级| 国产免费现黄频在线看| 美女国产高潮福利片在线看| 午夜av观看不卡| 极品少妇高潮喷水抽搐| 国产精品三级大全| 成年人免费黄色播放视频| videossex国产| 久久久久久久久久久久大奶| 久久精品久久久久久久性| 亚洲欧美成人综合另类久久久| 国产淫语在线视频| 午夜免费鲁丝| 肉色欧美久久久久久久蜜桃| 三级国产精品片| 亚洲国产av新网站| 精品人妻在线不人妻| 啦啦啦中文免费视频观看日本| 日本免费在线观看一区| 日本黄色片子视频| 黑人高潮一二区| 99国产精品免费福利视频| 欧美 亚洲 国产 日韩一| 国产午夜精品久久久久久一区二区三区| 乱人伦中国视频| 亚洲欧洲精品一区二区精品久久久 | 国产精品.久久久| 黄色视频在线播放观看不卡| 成人国产麻豆网| 国产av一区二区精品久久| 嫩草影院入口| 亚洲av国产av综合av卡| 精品人妻一区二区三区麻豆| 成人漫画全彩无遮挡| 你懂的网址亚洲精品在线观看| a级毛色黄片| 一本色道久久久久久精品综合| 伦精品一区二区三区| 国产精品久久久久成人av| 大香蕉久久成人网| 一级爰片在线观看| 国产高清有码在线观看视频| 人成视频在线观看免费观看| 免费黄网站久久成人精品| 丰满乱子伦码专区| 美女脱内裤让男人舔精品视频| 丰满饥渴人妻一区二区三| 黑人高潮一二区| 成年人免费黄色播放视频| a 毛片基地| 亚洲美女视频黄频| 久久久欧美国产精品| 一本久久精品| 中文欧美无线码| 99久久综合免费| 久久 成人 亚洲| 国产成人freesex在线| 久久99热这里只频精品6学生| 国产精品99久久久久久久久| 国产av国产精品国产| 欧美日本中文国产一区发布| 狂野欧美激情性xxxx在线观看| 两个人免费观看高清视频| 亚洲欧洲精品一区二区精品久久久 | 国产精品一区二区在线不卡| 99国产精品免费福利视频| 精品少妇内射三级| 天堂中文最新版在线下载| 国产黄色视频一区二区在线观看| 男女啪啪激烈高潮av片| 婷婷色av中文字幕| 草草在线视频免费看| 天天影视国产精品| 国产视频首页在线观看| 久久精品国产亚洲av涩爱| 18禁在线无遮挡免费观看视频| 午夜福利在线观看免费完整高清在| a 毛片基地| 欧美日韩视频精品一区| 蜜桃久久精品国产亚洲av| 黑人高潮一二区| 热99久久久久精品小说推荐| 日本av手机在线免费观看| 老司机影院毛片| 国产 精品1| 亚洲精品日韩av片在线观看| 丝瓜视频免费看黄片| 欧美精品国产亚洲| 亚洲性久久影院| 成人毛片60女人毛片免费| 曰老女人黄片| 欧美xxⅹ黑人| 在线 av 中文字幕| 日韩av不卡免费在线播放| 丝袜在线中文字幕| 精品一区二区免费观看| 亚洲三级黄色毛片| 亚洲av电影在线观看一区二区三区| 日韩,欧美,国产一区二区三区| av国产久精品久网站免费入址| 满18在线观看网站| 建设人人有责人人尽责人人享有的|