• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic magnetic behaviors and magnetocaloric effect of the Kagome lattice:Monte Carlo simulations

    2023-09-28 06:22:26WeiChenWuKaiLeShiandWeiJiang
    Communications in Theoretical Physics 2023年7期
    關鍵詞:血脂狀態(tài)意義

    Wei-Chen Wu,Kai-Le Shi and Wei Jiang,,?

    1 School of Science,Shenyang University of Technology,Shenyang 110870,China

    2 School of Environmental and Chemical Engineering,Shenyang University of Technology,Shenyang 110870,China

    3 School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China

    Abstract

    Based on the Monte Carlo method,we examined the dynamic magnetic behaviors and magnetocaloric effect of a Kagome lattice subjected to the influence of time-dependent oscillating and time-independent magnetic fields.We used the Ising model to describe the Kagome lattice and study the dynamic order parameters,blocking temperature,internal energy,and phase diagrams.The results revealed that exchange coupling increases the stability of the system and the bias field induces order; however,the time-dependent oscillating magnetic field induces disorder.In addition,the magnetocaloric properties,changes in magnetic entropy,and relative cooling power of the Kagome lattice were investigated.

    Keywords: magnetocaloric,dynamic order parameter,Kagome lattice,phase diagrams,Monte Carlo simulations

    1.Introduction

    The Kagome lattice is a two-dimensional hexagonal network composed of corner-sharing triangles,the structure of which has received considerable attention from the scientific community since its inception.This lattice can bind electrons in a six-membered ring and generate flat bands,thereby introducing interesting physical phenomena in condensed-matter physics.For example,when the Fermi surface is on a flat band,the extremely high density of the electron states on this band allows the system to be spontaneously ferromagnetic,despite the small Coulomb interaction between the electrons[1-3].Additionally,the flat band is a natural platform for the realization of the Wigner lattice [4,5] because the kinetic quenching of,and interactions between,electrons are dominant in this band.In addition,the Kagome structure is applied to the studies on Bose-Einstein condensate [6],hightemperature fractional quantum Hall effect [4,7,8],hightemperature superconductivity [9,10],and other properties based on flat bands.

    Another important property of the Kagome lattice is its ability to generate frustrated spin [11,12].Frustrated spin systems frequently manifest as interesting physical phenomena associated with nontrivial spin orders.Therefore,this lattice has attracted much attention as an important method of studying spin-liquid or spin-ice systems.For example,research and analysis of a series of spin-liquid materials,such as Y3Cu9(OH)19Cl8,CaCu3(OH)6Cl2·0.6H2O,and YCu3(OH)6Cl3,were conducted by applying this lattice [13-16].

    The experimental results associated with the preparation and study of Kagome structural materials are equally impressive.Szymczak et al experimentally measured the inelastic neutron scattering from Co3V2O8single crystals and the electron paramagnetic resonance of Co2+ions in Mg3V2O8single crystals [17].The authors concluded that the magnetic anisotropy of (M=Co,Ni,Mn) step oxides is mainly owing to single ions.Jiang et al [18]prepared two open-frame transition metal fluorophosphates,(NH4) M3(PO3F)2(PO2F2) F2(M=Mn and Co),possessing Kagome lattices and found that the Kagome topology of the material exacerbates magnetic frustration and exhibits an antiferromagnetic ground state.Furthermore,Fe-Sn alloys are typical Kagome materials.Lin et al [19] experimentally combined scanning tunneling microscopy,angle-resolved photoelectron spectroscopy,and first-principles calculations to confirm the existence of a flat-band electronic structure in the quasi-dimensional Kagome compoundFe3Sn2.The existence of a magnetic Dirac semimetal was experimentally demonstrated for the first time by the authors.

    Magnetic and thermodynamic properties are equally popular areas of investigation in the study of Kagome lattice materials.The magnetic behavior of two-dimensional decorated Kagome lattices in the Ising model was studied by Si et al [20].Ananikian et al [21] investigated the magnetic properties and entanglement of fluid3He in a Kagome lattice.Their results demonstrated that the system exhibited diverse magnetic behaviors depending on the exchange parameters.Yerzhakov et al [22] investigated the thermodynamic characteristics of geometrically frustrated ABC-stacked antiferromagnetic Kagome layer films using Metropolis Monte Carlo (MC) simulations.Soldatov [23] investigated the diluted antiferromagnetic Ising model in magnetic fields on Kagome lattices and discussed the similarities and differences in the resulting magnetization curves.Owing to its simple implementation and versatility,the Ising model is beneficial for studying the magnetic behavior of nanostructured systems[24-26].In addition,MC simulations allow the study of the magnetic behaviors and magnetocaloric effects of nano-systems [27-30].In our previous study,we successfully described the magnetic and thermodynamic properties of a nanosystem using the Ising model [31-33].Moreover,dynamic phase transitions and hysteresis loop behaviors have raised significant interest[34,35].This is because when a material is exposed to a dynamically-applied magnetic field(both biased and time-varying oscillatory fields),the system does not simultaneously respond to both fields,but the order of the magnetic moment depends on the oscillating field over time,leading to dynamic phase transitions[36,37].Vatansever and Polat [38] researched materials,including triangular lattice and ferromagnetic thin film systems,under biased and oscillating magnetic fields and found that the amplitude of the oscillating magnetic fields affected the dynamic critical properties of the system [39].Erta? et al observed the dynamic hysteresis line behaviors of Ising ferromagnetic systems and discussed the effect of temperature on exchange coupling and the dynamic hysteresis behaviors [40-42].Cardona et al used the MC method to study the influence of relevant parameters,including the frequency and amplitude of the oscillating magnetic field,on the dynamic magnetic and thermodynamic properties of La2/3Ca1/3MnO3under a time-dependent magnetic field [43].Gallardo et al used an analytical approach to analyze the dynamic phase transition of the kinetic Ising model in mean field approximation and found that the time-independent field components are conjugate fields with ordered parameters [44].Studies of dynamic phase transitions such as these are important in recent magnetic research.Although many advances have been made in the theoretical studies on the magnetism of Kagome structural lattices,most of these studies have focused on constant applied magnetic fields.Based on the MC simulations,Z.D.Vatansever studied the effect of system sizes on dynamic phase transition behaviors of the Kagome lattice in the presence of a square-wave oscillating magnetic field.The results indicate that the phase transition temperature increases with the increase in system size [45].In this study,based on a fixed system size,we used MC simulations to demonstrate the dynamic magnetic properties and magnetocaloric effect of a single-layer Kagome lattice under dynamic magnetic fields.

    The remainder of this paper is organized as follows.In section 2,we describe the model applied and briefly introduce the MC simulation.In section 3,we analyze the typical results obtained using the Kagome lattice model under different relevant parameters such as dynamic order,blocking temperature,internal energy,phase diagram and magnetocaloric effect.Finally,section 4 presents the conclusions of the study.

    2.Model and Monte Carlo simulation

    A schematic of a Kagome lattice is shown in figure 1.The lattice consists of two types of sublattices; the yellow and blue balls represent sublattices A and B,respectively.The dash-dotted lines represent the nearest-neighbor ferromagnetic exchange couplings J1(>0).The dotted and solid lines represent the ferrimagnetic exchange couplings Js(<0)and J(<0),respectively.Considering that the exchange coupling,anisotropy,and external magnetic field have significant influences on the system,the Hamiltonian of the system can be given as

    whereσizand Smzrepresent spins ±3/2 and ±2,respectively.The anisotropies are expressed as D1and D,respectively,and h(t) is the magnetic field,which is composed of timedependent oscillating and time-independent magnetic fields.To simplify the calculation,in the following calculation process,J1=1 is taken as the unit.Therefore,h(t) is written as

    where hbiasdenotes the value of the bias field,hoscand τ represent the amplitude and period of the time-dependent oscillating field,respectively,and t represents the time measured by the MC simulation per spin step.

    To simulate the magnetic properties of the Kagome model,we adopted the MC method based on the Metropolis algorithm[46].To maintain the equilibrium of the system and ensure the reliability of the calculation results,we discarded the initial 3×105MC steps per spin and calculated the magnetic and thermodynamic quantities using the remaining 2×105MC steps.The system shown in figure 1 has 48 magnetic atoms divided into five sublattices (N1,N2,N3,N4,and N5).Sublattice A is composed of N1and N3,and sublattice A is composed of N2,N4,and N5.The magnetizations per site are defined as

    where NAis the number of sites in sublattices N1and N3,and NBrepresents the number of sites in sublattices N2,N4,and N5.Therefore,we can evaluate the total magnetization of the system as

    The dynamic order parameters of the five sublattices are expressed as

    The dynamic order parameter is calculated as

    We defined dynamic magnetic susceptibility as

    The instantaneous internal energy per spin is calculated using

    We can calculate the dynamical internal energy per spin as follows:

    where kBrepresents the Boltzmann constant,which we set to 1.The magnetic entropy of the system is calculated as follows:

    兩組患者接受藥物治療后,血脂水平均處于不斷改善的狀態(tài)中。其中第4、8周時,試驗組TC、TG、LDL-C水平低于對照組,HDL-C水平高于對照組,差異均有統(tǒng)計學意義(P<0.05),見表1。

    The magnetic entropy change can be expressed as

    For a magnetocaloric material,the relative cooling power(RCP) is an important factor and is given by

    The temperatures at either end of the half-maximum value ofΔSmaxare Tcand Tv,respectively.

    3.Results and discussion

    We demonstrated the influences of diverse parameters on dynamic thermodynamic quantities,such as Q,QA,QB,χ,and U on the Kagome lattice.

    3.1.Dynamic order parameter,susceptibility,and internal energy

    Figure 2 shows the variations in the dynamic order parameters of the system when the exchange-coupling J changes,and the remaining parameters are set to Js=?1.2,J1=1.0,hbias=0.7,hosc=1.1,D=?0.3,D1=?0.6,and ω=0.02π.Figure 2(a)shows the functional relationship between the average total dynamic order parameters (Q) and temperature (T) for different values of J.Only one saturation value(Qs=11/16)exists on all the Q ?T curves.The curves begin at this value and then gradually decline to a constant value.The effects of J on Q are not obvious when T<0.25 or T>0.75.When 0.25Tb.As T increases,the χ curves gradually shift to the high-temperature region.This behavior can be explained by an increase in the order energy of the system owing to the increase in J.Therefore,an increased amount of thermal energy is required to bring the system to disorder.In figure 2(d),the U curves are observed to increase as T increases and maintain a similar change rule.More specifically,when the temperature is low,U maintains a constant value.With the increase in T,U increases rapidly and subsequently slows.In addition,we observe that for the same temperature,U decreases as |J| increases.

    Figure 3 shows the dynamic thermodynamic variables of the system when Jschanges and the other parameters are fixed at J=?0.5,J1=1.0,hbias=0.7,hosc=1.1,D=?0.3,D1=?0.6,and ω=0.02π.As shown in figure 3(a),the Q ?T curves show a similar trend; they all start from the saturation value (Qs=11/16) at zero temperature.With an increase in temperature,the curve of Q shows a rapid decline and finally converges to a steady value.As shown in figure 3(b),both QAand QBcurves shift to the right with the increase in Js; this phenomenon is similar to that shown in figure 2(b).From figure 3(c),we can clearly see that Tbincreases with an increase in Js.This is similar to the influence of J on the system; however,Jshas a smaller influence on the Tbof the system than that of J,as seen from the susceptibility curve obtained from changing J.This is because the changes in Jsonly influence the spin states of the peripheral sublattice,and the number of atoms in the periphery is relatively small.Figure 3(d)shows that with an increase in temperature,the U curves start to increase and finally stabilize.Each U curve reaches an inflection point corresponding to Tb,after which the positive slope of the curve starts to decrease,and the variation law of the curve is similar to that observed in figure 2(d).

    Figure 5 clearly shows the effect of anisotropy D on Q,χ,and U for J=?1.6,Js=?1.2,hbias=0.7,hosc=1.1,D1=?0.6,and ω=0.02π.In figure 5(a),four saturation values of Q,i.e.11/16,7/16,?11/20,and ?3/16,at T=0 are displayed at D=?0.3,?1.3,?2.4,and ?3.6,respectively.For instance,when D=?0.3,figure 5(b) shows that the saturation values of the two sublattices are QA=2.0 and QB=?1.5,respectively.Therefore,the saturation value of the system is Qs=11/16.When |D| increases to 1.3,QAdecreases and QBremains unchanged.A strong anisotropy can maintain the spin of sublattice A at a low state.Figures 5(c) and (d) show the dynamic order parameters of the five sublattices when D=?2.4 and ?3.6,respectively.At T=0,Q2=Q4=Q5=?1.5 and Q3=1.0.However,as D decreases from ?2.4 to ?3.6,the saturation value of Q1changes,i.e.Q1=13/25 at D=?2.4 and Q1=0 at D=?3.6.A more interesting phenomenon is observed when|D|=3.6;the Q2,Q3,Q4,Q5curves of the sublattices change to the opposite direction with increasing T.Notably,when D=?2.4,the saturation value of 13/25 for Q1is owing to the sublattices not responding to the magnetic field simultaneously,causing the change in direction.The directions of the Q curves labeled ?2.4 and ?3.6 in figure 5(a) change from negative to positive at a certain T.When the magnetization is zero,the corresponding temperature is called the compensation temperature Tcom,which decreases with increasing |D|.As shown in figure 5(e),Tbincreases as |D| decreases.In addition,double peaks are observed on the χ curve owing to thermal agitation.From figure 5(f),as both T and|D|increase,U increases.In addition,in the low-temperature zone,a noticeable fluctuation is observed for D=?3.6,where U decreases and then increases.This behavior is related to the changing directions of the Q curves.

    The temperature dependencies of Q,QA,QB,χ,and U for different values of hbiasat J=?1.6,Js=?1.2,J1=1.0,D=?0.3,D1=?0.6,hosc=1.1,and ω=0.02π,are shown in figure 6.As shown in figure 6(a),all Q curves have the same saturation value (Qs=11/16).When hbiasis relatively small(hbias=0.7,1.2,or 1.5),the Q curves decrease monotonously with increasing T.When hbiasis large(hbias=1.8,or 2.1),the Q curves first increase and then decrease with an increase in T.We observed that the Q ?T curves do not converge to the same value;a high hbiasleads to a high convergence value of Q.This reveals that the bias field has a significant impact on the dynamic order parameters at high temperatures.In figure 6(b),the saturation values of QAand QBare observed to be 2.0 and ?1.5,respectively.When T<1.0,the bias field hbiashas little effect on QAand QB.However,when T>1.0,with the increase in hbias,the values of QAand QBdecrease significantly.Figure 6(c) shows that Tbincreases as hbiasincreases.This is because an increase in hbiasindicates that the magnetic ordering energy of the system increases.Therefore,breaking the order of the system requires more thermal energy to achieve a dynamic paramagnetic phase.In figure 6(d),U is observed to increase with an increase in T but decreases with an increase in the bias field hbias.

    Figure 7 shows the effect of hoscon Q,QA,QB,χ,and U at J=?1.6,Js=?1.2,J1=1.0,D=?0.3,D1=?0.6,hbias=1.5,and ω=0.02π.As seen in figure 7(a),all Q curves have the same saturation value (Qs=11/16).In the low-(0 < T<0.75) and high-temperature (1.75 < T<2.5)regions,Q is not sensitive to T,whereas in the mediumtemperature region (0.75 ≤ T ≤ 1.75),T becomes the dominant factor affecting Q.We observe that for the same T,the value of Q decreases as hoscincreases.As shown in figure 7(b),when the value of hoscincreases,the values of QAand QBgradually decrease.Figure 7(c) reveals that as hoscincreases,Tbshifts towards the low-temperature region.The reason for this phenomenon is that when the other parameters are constant,increasing the amplitude of the external magnetic field that is oscillating is equivalent to increasing the disordered energy of the system;thereby reducing the energy required for the system to break the ordered state of the system.Figure 7(d) shows that in the high-temperature region,T,instead of hosc,dominates the influence of internal energy.

    The effect of ω on Q,QA,QB,χ,and U at J=?1.3,Js=?1.2,D=?0.3,D1=?0.6,hbias=0.7,and hosc=1.1 is shown in figure 8.In figure 8(a),unlike the other Q-curves(for example,those in figure 2(a)),when T<1.0 or T>1.5,Q is insensitive to the changes in ω.When 1.0 ≤T ≤1.5,the value of Q increases as ω increases.This is because,in the case of low or high temperatures,the influence of temperature on the total dynamic order parameters is the main factor.Figure 8(b) shows that both QAand |QB| decrease as ω decreases and as the temperature increases.Notably,in figure 8(c),Tbincreases with the increase in ω; ω represents the frequency of the magnetic field oscillation.When ω is small,the magnetic field oscillates slowly and the spin directions of the sublattices can easily follow the change in the time-dependent oscillating magnetic field,which indicates that the system requires less thermal energy to become disordered.The increased ω causes the dynamic order parameter to not respond instantaneously to the oscillating magnetic field,thereby requiring more thermal energy for phase transition.In figure 8(d),we identify that when T is fixed,U increases as ω increases after local amplification.For the same ω,the value of U increases at high values of T.

    3.2.Phase diagram

    To further clarify the effect of various parameters on the blocking temperature,we sorted the results of Tbunder the influence of different parameters and plotted the corresponding phase diagrams in figures 9(a)-(f).Figures 9(a)-(b)show the effects of J and Json Tbwith the other parameters set as hbias=0.7,hosc=1.1,D=?0.3,D1=?0.6,and ω=0.02π.Additionally,Tbincreases monotonically with increasing |J| and |Js|.This is owing to the increase in exchange coupling that essentially increases the interaction forces of the magnetic sublattices in the system,thereby increasing the ordering energy of the system.Therefore,a large Tbis required for the phase transition of the system.In addition,the change in Jshas a smaller effect on Tbcompared with that of J,because J controls more of the sublattices than Js.Figures 9(c)-(d) show the effect of D and D1on Tbwith other parameters fixed at J=?1.6,Js=?1.2,J1=1.0,hbias=0.7,hosc=1.1,and ω=0.02π.Additionally,as D and|D1|increase,Tbdecreases,which indicates that a large anisotropy is not conducive to the order of the system.Moreover,the change in D1affects Tbless than the changes in D,owing to the reduced number of sublattices with anisotropy D1.Figures 9(e)-(f) show the effect of hbiasand hoscon Tbwith other parameters fixed at J=?1.6,Js=?1.2,J1=1.0,D=?0.3,D1=?0.6,and ω=0.02π.Furthermore,Tbincreases monotonically with increasing hbiasbecause hbiasimproves the order of the system.In addition,hbiasand hoschave opposite effects on Tbbecause the increase in hoscincreases the disorder of the system.

    3.3.Magnetocaloric effect

    The magnetocaloric effect on the Kagome lattice was investigated.The temperature dependence of magnetization M of the Kagome lattice is shown in figure 10.We observe that M starts at the saturation value (Ms=29/16) at zero temperature and then decreases with increasing T.Figure 11 shows the thermal magnetizations (dM/dT) with different values of bias field hbias.These curves indicate that at the critical temperature Tc,the magnetic transition changes from the ferromagnetic phase to the paramagnetic phase.The corresponding transition temperatures increase with increasing hbias.For example,Tc=1.601 for hbias=1.0 and Tc=2.101 for hbias=5.0.We calculated the magnetic entropy using equation (11).Figure 12 shows the variation trend in the magnetic entropy ΔS of the Kagome lattice as a function of T with different hbias.A maximum value at the critical temperature can be seen in the ?ΔS curves.This maximum value-ΔSmaxincreases with increasing hbias.For hbias=1.0,2.0,3.0,4.0,and 5.0,-ΔSmax=1.759,2.639,3.295,3.880,and 4.426,respectively.In addition,figure 13 shows an interesting parameter for evaluating potential materials for magnetic refrigeration,i.e.RCP,which is a function of hbiasfor the Kagome lattice.Furthermore,RCP is found to increase linearly as hbiasincreases and reaches a value of 8.281 at hbias=6.0.

    Figure 1.Diagram of the Kagome lattice.The yellow and blue balls represent magnetic atoms with spin ?2 and spin ?3/2,respectively.The dashed,solid and dash-dotted lines represent three types of exchange coupling Js,J,and J1,respectively.

    Figure 2.Temperature dependence of(a)the total dynamic order parameter Q,(b)dynamic order parameters QA and QB,(c)susceptibility χ,and (d) the internal energy U for various J with Js=?1.2,J1=1.0,D=?0.3,D1=?0.6,hbias=0.7,hosc=1.1 and ω=0.02π.

    Figure 3.Temperature dependence of(a)the total dynamic order parameter Q,(b)dynamic order parameters QA and QB,(c)susceptibility χ,and (d) the internal energy U for various Js with J=?0.5,J1=1.0,D=?0.3,D1=?0.6,hbias=0.7,hosc=1.1 and ω=0.02π.

    Figure 4.Temperature dependence of(a)the total dynamic order parameter Q,(b)dynamic order parameters QA and QB,(c)susceptibility χ,and (d) the internal energy U for various D1 with J=?1.6,Js=?1.2,J1=1.0,D=?0.3,hbias=0.7,hosc=1.1,and ω=0.02π.

    Figure 5.Temperature dependence of (a) the total dynamic order parameter Q,(b) dynamic order parameters QA and QB at D=?0.3 and D=?1.3,(c)dynamic order parameters of the five sublattices at D=?2.4,(d)dynamic order parameter of the five sublattices at D=?3.6,(e) susceptibility χ,and (f) internal energy U for various D with J=?1.6,Js=?1.2,J1=1.0,D1=?0.6,hbias=0.7,hosc=1.1,and ω=0.02π.

    Figure 6.Temperature dependence of(a)the total dynamic order parameter Q,(b)dynamic order parameters QA and QB,(c)susceptibility χ,and (d) internal energy U for different hbias at J=?1.6,Js=?1.2,J1=1.0,D=?0.3,D1=?0.6,hosc=1.1,and ω=0.02π.

    Figure 7.Temperature dependence of(a)the total dynamic order parameter Q,(b)dynamic order parameters QA and QB,(c)susceptibility χ,and (d) internal energy U for various hosc at J=?1.6,Js=?1.2,J1=1.0,D=?0.3,D1=?0.6,hbias=1.5,and ω=0.02π.

    Figure 9.Phase diagrams of Tb(a)in the(J,T)plane with hbias=0.7,hosc=1.1,Js=?1.2,D=?0.3,D1=?0.6,and ω=0.02π;(b)(Js,T)plane hbias=0.7,hosc=1.1,J=?0.5,D=?0.3,D1=?0.6,and ω=0.02π;(c) (D,T) plane with J=?1.6,Js=?1.2,D1=?0.6,hbias=0.7,hosc=1.1,and ω=0.02π;(d) (D1,T) plane with J=?1.6,Js=?1.2,D=?0.3,hbias=0.7,hosc=1.1,and ω=0.02π;(e)(hbias,T) plane J=?1.6,Js=?1.2,D=?0.3,D1=?0.6,hosc=1.1,and ω=0.02π;(f) (hosc,T) plane with J=?1.6,Js=?1.2,D=?0.3,D1=?0.6,hbias=1.5,and ω=0.02π.

    Figure 10.Magnetization as a function of T for different hbias.

    Figure 11.dM/dT as a function of T for different hbias.

    Figure 12.Temperature dependence of the entropy variation with different hbias.

    Figure 13.Bias field dependence of the RCP associated with the system for J1=1.0,J=1.2,and Js=0.8.

    Figure 14 shows the dependence of T on the M of the system.The figure shows that all M curves decrease from the saturation value (Ms=29/16) to a steady-state value with increasing T.When T is fixed,M increases with increasing J.Figure 15 shows the(dM/dT)curves for different values of J.At Tc,the magnetic transition changes from the ferromagnetic phase to the paramagnetic phase.Furthermore,Tcincreases with increasing J,i.e.Tc=1.801 for J=0.8 and Tc=2.401 for J=2.4.Figure 16 shows the variation of ?ΔS with the changes in temperature of the Kagome lattice for different values of J.The ?ΔS curves reach a maximum value-ΔSmaxat Tc.This maximum value decreases with increasing J,i.e.for J=0.8,1.2,1.6,2.0,and 2.4,-ΔSmax=3.384,3.323,3.169,3.083,and 2.966,respectively.Figure 17 shows J dependence of the RCP associated with the system.We found that RCP decreases linearly with increasing J.

    Figure 14.Magnetization as a function of T for different hbias.

    Figure 15.dM/dT as a function of T for different J.

    Figure 16.Temperature dependence of the entropy variation with different J.

    Figure 17.Exchange-coupling J dependence of the RCP associated with the system at hbias=3.0,Js=0.8,and J1=1.0.

    Figure 18 shows the M versus T plots for different values of Jsat J=1.2,J1=1.0,and hbias=3.0.Only one saturation value (Ms=29/16) is shown in the figure.In figures 19 and 20,we additionally show(dM/dT)and ?ΔS as a function of temperature with the same parameters as those in figure 19.The peaks corresponding to the Tcof the system increase with increasing Js.Figure 21 shows the exchangecoupling Jsdependence of the RCP associated with the system.The RCP decreases with increasing Js,similar to that in figure 17.

    Figure 18.Magnetization as a function of T for different Js.

    Figure 19.dM/dT as a function of T for different Js.

    Figure 20.Temperature dependence of the entropy variation with different Js.

    Figure 21.Exchange-coupling Js dependence of the RCP associated with the system at hbias=3.0,J=1.2,and J1=1.0.

    4.Conclusions

    In this study,we investigated the ferrimagnetic mixed-spin(2,3/2) Kagome lattice using MC simulations.We discuss the effect of J,Js,D,D1,hbias,hosc,and ω on the dynamic phase transitions of the system.The system exhibits multiple spin flips when the system parameters are changed,and under certain parametric conditions,compensation point behavior is exhibited by the system.By analyzing the phase diagrams of Tb,we found that large|J|,|Js|,hbias,and ω values facilitate an increase in Tb;however,the increases in D,D1,and hoschave the opposite effect on Tb.Moreover,ΔS as a function of T for various hbias(J and Js) were also discussed.The RCP revealed that the magnetocaloric effect depends on the values of hbias,J and Js.

    Acknowledgments

    This project was supported by the Key project of the Education Department of Liaoning Province (Grant no.LJKZZ20220022) and the Key R&D project of Liaoning Province of China (Grant no.2020JH2/10300079).

    猜你喜歡
    血脂狀態(tài)意義
    一件有意義的事
    新少年(2022年9期)2022-09-17 07:10:54
    血脂常見問題解讀
    有意義的一天
    狀態(tài)聯(lián)想
    你了解“血脂”嗎
    生命的另一種狀態(tài)
    熱圖
    家庭百事通(2016年3期)2016-03-14 08:07:17
    堅持是成功前的狀態(tài)
    山東青年(2016年3期)2016-02-28 14:25:52
    詩里有你
    北極光(2014年8期)2015-03-30 02:50:51
    中西醫(yī)結合治療老年高血壓患者伴血脂異常49例
    av不卡在线播放| 黄色丝袜av网址大全| 午夜福利乱码中文字幕| 国产av一区二区精品久久| 久热这里只有精品99| 国产精品二区激情视频| 成人亚洲精品一区在线观看| 高清视频免费观看一区二区| 国产成人精品在线电影| 欧美激情高清一区二区三区| 啦啦啦 在线观看视频| 国产有黄有色有爽视频| 母亲3免费完整高清在线观看| 国产福利在线免费观看视频| 人人妻人人爽人人添夜夜欢视频| 一区福利在线观看| 757午夜福利合集在线观看| 中文字幕精品免费在线观看视频| 天天躁夜夜躁狠狠躁躁| 国产精品久久久av美女十八| 国产在线观看jvid| 日韩一卡2卡3卡4卡2021年| 高清黄色对白视频在线免费看| 久久精品成人免费网站| 日韩欧美免费精品| 1024视频免费在线观看| 69精品国产乱码久久久| av片东京热男人的天堂| 成年女人毛片免费观看观看9 | 一级黄色大片毛片| 中文字幕色久视频| 99re6热这里在线精品视频| 超碰成人久久| 美女高潮到喷水免费观看| 国产又爽黄色视频| 欧美精品啪啪一区二区三区| 亚洲av国产av综合av卡| 日韩中文字幕欧美一区二区| 亚洲va日本ⅴa欧美va伊人久久| 国产成人影院久久av| 欧美日韩av久久| 美女高潮喷水抽搐中文字幕| 999久久久国产精品视频| 在线永久观看黄色视频| 大码成人一级视频| 无遮挡黄片免费观看| 超碰97精品在线观看| 国产精品成人在线| 亚洲伊人色综图| 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 日韩免费av在线播放| 丰满迷人的少妇在线观看| 交换朋友夫妻互换小说| 午夜福利一区二区在线看| 亚洲欧美激情在线| 天堂8中文在线网| 一本—道久久a久久精品蜜桃钙片| 国产成+人综合+亚洲专区| 欧美日韩成人在线一区二区| 久热这里只有精品99| 国产精品免费视频内射| 黄片播放在线免费| 欧美黄色淫秽网站| 香蕉丝袜av| 亚洲,欧美精品.| 免费少妇av软件| 成人国产一区最新在线观看| 老司机在亚洲福利影院| av片东京热男人的天堂| 亚洲天堂av无毛| 精品福利永久在线观看| 在线永久观看黄色视频| 国产亚洲一区二区精品| 色婷婷久久久亚洲欧美| 免费久久久久久久精品成人欧美视频| 老司机福利观看| 日韩欧美免费精品| 国产淫语在线视频| 午夜激情av网站| 91大片在线观看| 男女免费视频国产| 国产精品香港三级国产av潘金莲| 国产精品久久久久成人av| 久久国产精品人妻蜜桃| 亚洲av国产av综合av卡| 中文字幕另类日韩欧美亚洲嫩草| www.自偷自拍.com| 亚洲午夜精品一区,二区,三区| 色综合婷婷激情| 夫妻午夜视频| 在线av久久热| 啦啦啦 在线观看视频| 亚洲性夜色夜夜综合| 久久免费观看电影| 色播在线永久视频| 91精品三级在线观看| 欧美久久黑人一区二区| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 色老头精品视频在线观看| 91麻豆精品激情在线观看国产 | 欧美成狂野欧美在线观看| 18在线观看网站| 国产免费福利视频在线观看| 欧美日韩成人在线一区二区| 国产欧美日韩综合在线一区二区| 久久这里只有精品19| 国产成人免费观看mmmm| av网站在线播放免费| 中文字幕色久视频| 中文字幕色久视频| 午夜久久久在线观看| 黄色a级毛片大全视频| 男男h啪啪无遮挡| 少妇猛男粗大的猛烈进出视频| 青青草视频在线视频观看| 国产99久久九九免费精品| 自拍欧美九色日韩亚洲蝌蚪91| 两人在一起打扑克的视频| 视频区欧美日本亚洲| 一区二区日韩欧美中文字幕| 91精品三级在线观看| 免费观看av网站的网址| 久久免费观看电影| 后天国语完整版免费观看| 免费在线观看黄色视频的| 国产伦理片在线播放av一区| 国产一区有黄有色的免费视频| 亚洲视频免费观看视频| 精品乱码久久久久久99久播| 日韩熟女老妇一区二区性免费视频| 日韩欧美一区视频在线观看| 国产精品亚洲一级av第二区| 一进一出抽搐动态| av欧美777| 亚洲综合色网址| 天堂中文最新版在线下载| 丝袜喷水一区| 色老头精品视频在线观看| 法律面前人人平等表现在哪些方面| 久久狼人影院| 亚洲中文日韩欧美视频| 免费不卡黄色视频| 欧美日韩中文字幕国产精品一区二区三区 | 青青草视频在线视频观看| 亚洲中文日韩欧美视频| 亚洲精品乱久久久久久| 可以免费在线观看a视频的电影网站| 99热网站在线观看| 黄色丝袜av网址大全| 男女高潮啪啪啪动态图| 国产99久久九九免费精品| 五月天丁香电影| 女性被躁到高潮视频| 欧美乱码精品一区二区三区| av免费在线观看网站| 欧美日韩精品网址| 中文字幕制服av| 一二三四在线观看免费中文在| 水蜜桃什么品种好| 精品国产国语对白av| 免费日韩欧美在线观看| 99九九在线精品视频| 亚洲色图av天堂| 色尼玛亚洲综合影院| 免费在线观看日本一区| 亚洲成av片中文字幕在线观看| 国产精品一区二区在线观看99| 最近最新中文字幕大全免费视频| 欧美日韩福利视频一区二区| 日本撒尿小便嘘嘘汇集6| 久久久精品国产亚洲av高清涩受| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品国产欧美久久久| 99九九在线精品视频| 美国免费a级毛片| 老汉色∧v一级毛片| 久久精品熟女亚洲av麻豆精品| tube8黄色片| 成人国产一区最新在线观看| 国产精品麻豆人妻色哟哟久久| 黄片小视频在线播放| 日韩欧美一区二区三区在线观看 | 丝袜美足系列| 亚洲欧洲日产国产| 精品欧美一区二区三区在线| 亚洲欧洲日产国产| 欧美中文综合在线视频| 精品国内亚洲2022精品成人 | 国产单亲对白刺激| 亚洲一卡2卡3卡4卡5卡精品中文| 一进一出抽搐动态| 成人18禁高潮啪啪吃奶动态图| 少妇猛男粗大的猛烈进出视频| 久久精品亚洲熟妇少妇任你| 亚洲欧美激情在线| 悠悠久久av| 精品国产一区二区三区四区第35| 精品国产一区二区三区久久久樱花| 最近最新免费中文字幕在线| 久久九九热精品免费| 女警被强在线播放| 18禁裸乳无遮挡动漫免费视频| 啦啦啦中文免费视频观看日本| 9191精品国产免费久久| 国产免费视频播放在线视频| 侵犯人妻中文字幕一二三四区| 国产国语露脸激情在线看| 极品教师在线免费播放| 国产三级黄色录像| 亚洲av日韩在线播放| 欧美日韩一级在线毛片| 国产单亲对白刺激| 国产免费视频播放在线视频| 在线观看66精品国产| 自线自在国产av| 天堂动漫精品| 国产伦人伦偷精品视频| 久9热在线精品视频| 人人妻人人添人人爽欧美一区卜| 欧美精品亚洲一区二区| 两个人免费观看高清视频| 亚洲一区二区三区欧美精品| 欧美成人免费av一区二区三区 | 欧美乱妇无乱码| 两个人看的免费小视频| 高清欧美精品videossex| 99久久人妻综合| 欧美黑人欧美精品刺激| 久久午夜亚洲精品久久| 看免费av毛片| 亚洲 国产 在线| 国产在线一区二区三区精| 在线天堂中文资源库| 色精品久久人妻99蜜桃| 亚洲欧洲日产国产| 国产精品98久久久久久宅男小说| 老司机在亚洲福利影院| 涩涩av久久男人的天堂| 18禁国产床啪视频网站| av网站免费在线观看视频| 欧美国产精品一级二级三级| 国产精品98久久久久久宅男小说| 另类亚洲欧美激情| a级毛片在线看网站| 丰满迷人的少妇在线观看| 一边摸一边做爽爽视频免费| 亚洲伊人色综图| 91av网站免费观看| 高清av免费在线| 久久国产精品影院| 日韩 欧美 亚洲 中文字幕| 国产三级黄色录像| 大香蕉久久成人网| 制服人妻中文乱码| 一级黄色大片毛片| 午夜福利一区二区在线看| 十八禁人妻一区二区| 最近最新免费中文字幕在线| 2018国产大陆天天弄谢| 黄色成人免费大全| 人妻 亚洲 视频| 一区在线观看完整版| 亚洲 欧美一区二区三区| 亚洲av成人不卡在线观看播放网| 久久久欧美国产精品| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久| 天堂俺去俺来也www色官网| 日本精品一区二区三区蜜桃| 在线观看www视频免费| 男女午夜视频在线观看| 国产欧美亚洲国产| 三级毛片av免费| netflix在线观看网站| 老司机靠b影院| 性高湖久久久久久久久免费观看| 99久久精品国产亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片| 国产精品一区二区免费欧美| 丝袜在线中文字幕| av视频免费观看在线观看| 亚洲天堂av无毛| 在线观看舔阴道视频| 丁香六月天网| 久久人妻福利社区极品人妻图片| 久久久久视频综合| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 久久久精品国产亚洲av高清涩受| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 久久99热这里只频精品6学生| 免费看a级黄色片| 国产高清激情床上av| 亚洲一区二区三区欧美精品| 黄色a级毛片大全视频| 美女国产高潮福利片在线看| 久热这里只有精品99| 国产精品成人在线| 成人精品一区二区免费| 久久国产精品男人的天堂亚洲| 狠狠狠狠99中文字幕| svipshipincom国产片| 日本黄色视频三级网站网址 | 国产一区二区三区综合在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 色播在线永久视频| 在线观看一区二区三区激情| 欧美精品一区二区免费开放| 99九九在线精品视频| 一区福利在线观看| 亚洲精华国产精华精| 一级毛片精品| 国产xxxxx性猛交| 免费观看人在逋| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲中文字幕日韩| 女性生殖器流出的白浆| 国产精品亚洲av一区麻豆| 国产精品久久久久成人av| h视频一区二区三区| 电影成人av| 亚洲欧美日韩高清在线视频 | 高清毛片免费观看视频网站 | 老熟女久久久| 亚洲av欧美aⅴ国产| 高清在线国产一区| 悠悠久久av| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 亚洲中文av在线| 桃花免费在线播放| 五月天丁香电影| 中文字幕人妻丝袜一区二区| 99热国产这里只有精品6| 精品国产国语对白av| 日韩欧美一区二区三区在线观看 | 精品国产一区二区三区久久久樱花| 欧美另类亚洲清纯唯美| 激情在线观看视频在线高清 | 国产欧美亚洲国产| 久久久久视频综合| 国产亚洲一区二区精品| 免费高清在线观看日韩| 欧美国产精品一级二级三级| 一级黄色大片毛片| 国产欧美亚洲国产| 夜夜夜夜夜久久久久| 亚洲欧美日韩另类电影网站| 国产在线免费精品| 午夜久久久在线观看| 国产欧美日韩一区二区三区在线| 国产免费福利视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲三区欧美一区| a级片在线免费高清观看视频| 日本wwww免费看| 一级黄色大片毛片| 亚洲精品美女久久av网站| 精品欧美一区二区三区在线| 婷婷成人精品国产| av有码第一页| www.熟女人妻精品国产| 成人特级黄色片久久久久久久 | 国产97色在线日韩免费| av免费在线观看网站| 人人妻人人爽人人添夜夜欢视频| av福利片在线| 亚洲欧美一区二区三区久久| 免费在线观看完整版高清| 日韩中文字幕视频在线看片| 久久久久久久大尺度免费视频| 中文字幕另类日韩欧美亚洲嫩草| 天堂8中文在线网| 国产精品久久久av美女十八| 男女边摸边吃奶| 丝袜美足系列| 热99久久久久精品小说推荐| 国产成人免费观看mmmm| 久久久久久免费高清国产稀缺| 色94色欧美一区二区| 国产人伦9x9x在线观看| av天堂在线播放| 久久精品成人免费网站| 日日爽夜夜爽网站| 久久精品aⅴ一区二区三区四区| 十八禁人妻一区二区| 国产在视频线精品| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 999久久久精品免费观看国产| 亚洲av第一区精品v没综合| 高潮久久久久久久久久久不卡| 18禁观看日本| 亚洲人成电影观看| 又黄又粗又硬又大视频| 欧美日本中文国产一区发布| 国产亚洲午夜精品一区二区久久| 精品亚洲成国产av| 欧美日韩成人在线一区二区| 午夜福利影视在线免费观看| 少妇被粗大的猛进出69影院| 国产成人一区二区三区免费视频网站| 757午夜福利合集在线观看| 在线天堂中文资源库| 久久久久视频综合| 丰满饥渴人妻一区二区三| 日本a在线网址| 午夜福利影视在线免费观看| 视频区欧美日本亚洲| 精品国内亚洲2022精品成人 | 精品人妻1区二区| 国产欧美日韩综合在线一区二区| 精品国产超薄肉色丝袜足j| 视频在线观看一区二区三区| 欧美激情久久久久久爽电影 | 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| 一本久久精品| 午夜福利在线免费观看网站| 亚洲精品av麻豆狂野| 在线观看一区二区三区激情| 欧美成狂野欧美在线观看| av不卡在线播放| 日本黄色日本黄色录像| 高清av免费在线| 91字幕亚洲| 久久久久国内视频| 国产熟女午夜一区二区三区| 女人精品久久久久毛片| 精品国产超薄肉色丝袜足j| 一级片免费观看大全| 黄色怎么调成土黄色| av视频免费观看在线观看| 日本av免费视频播放| 一级黄色大片毛片| 久久国产精品大桥未久av| 亚洲欧美日韩高清在线视频 | 九色亚洲精品在线播放| 19禁男女啪啪无遮挡网站| 国产片内射在线| 亚洲精品在线观看二区| 69精品国产乱码久久久| 亚洲专区字幕在线| avwww免费| 久久久久国产一级毛片高清牌| 久热爱精品视频在线9| 91av网站免费观看| 成人18禁在线播放| 欧美日韩黄片免| 久久精品人人爽人人爽视色| 日本一区二区免费在线视频| 成人永久免费在线观看视频 | 国产成人精品无人区| 黑人猛操日本美女一级片| 国产真人三级小视频在线观看| 性少妇av在线| 美女国产高潮福利片在线看| 丝袜美腿诱惑在线| www.精华液| 国产男靠女视频免费网站| 电影成人av| 在线 av 中文字幕| 久久中文字幕一级| 少妇猛男粗大的猛烈进出视频| 中文字幕人妻丝袜一区二区| 午夜成年电影在线免费观看| 丝瓜视频免费看黄片| 香蕉国产在线看| 亚洲中文日韩欧美视频| 天堂动漫精品| 欧美另类亚洲清纯唯美| 91成人精品电影| 一区在线观看完整版| 麻豆乱淫一区二区| 免费高清在线观看日韩| 免费在线观看日本一区| 久久精品aⅴ一区二区三区四区| 一本—道久久a久久精品蜜桃钙片| 建设人人有责人人尽责人人享有的| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 久久久水蜜桃国产精品网| 午夜老司机福利片| 高清欧美精品videossex| 99在线人妻在线中文字幕 | 久久久久久久久久久久大奶| 国产精品偷伦视频观看了| 天天躁日日躁夜夜躁夜夜| 亚洲第一av免费看| 女警被强在线播放| 亚洲欧美日韩另类电影网站| 男女下面插进去视频免费观看| 看免费av毛片| 亚洲男人天堂网一区| 午夜久久久在线观看| 久久国产精品男人的天堂亚洲| 免费在线观看黄色视频的| 12—13女人毛片做爰片一| 男女免费视频国产| 老司机深夜福利视频在线观看| 亚洲精品国产精品久久久不卡| 国产99久久九九免费精品| 1024香蕉在线观看| 亚洲综合色网址| av天堂在线播放| 久久久精品国产亚洲av高清涩受| 另类精品久久| 18禁美女被吸乳视频| 国精品久久久久久国模美| 国产xxxxx性猛交| 在线av久久热| 天堂俺去俺来也www色官网| 亚洲精华国产精华精| 免费在线观看视频国产中文字幕亚洲| 丝袜美腿诱惑在线| 午夜福利视频精品| 少妇精品久久久久久久| 国产熟女午夜一区二区三区| 亚洲欧美激情在线| 69av精品久久久久久 | 午夜福利,免费看| 久久久久久亚洲精品国产蜜桃av| 免费看a级黄色片| 99热网站在线观看| 久久久久久人人人人人| 99精品久久久久人妻精品| 麻豆成人av在线观看| 日本a在线网址| 亚洲中文日韩欧美视频| 女人久久www免费人成看片| 热re99久久国产66热| 成年人免费黄色播放视频| 国产精品电影一区二区三区 | 久久狼人影院| 国产精品免费大片| 97在线人人人人妻| 女人精品久久久久毛片| 久久人人97超碰香蕉20202| 超色免费av| 国产精品98久久久久久宅男小说| 国产无遮挡羞羞视频在线观看| 欧美激情极品国产一区二区三区| 精品一区二区三区四区五区乱码| 亚洲国产成人一精品久久久| 国产福利在线免费观看视频| 777久久人妻少妇嫩草av网站| 国产福利在线免费观看视频| 老熟妇乱子伦视频在线观看| 黄频高清免费视频| 热re99久久国产66热| 久久中文看片网| 国产亚洲午夜精品一区二区久久| 美女午夜性视频免费| 国产成人啪精品午夜网站| 国产深夜福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 色综合婷婷激情| 国产精品.久久久| 成人影院久久| 久久久精品免费免费高清| 国产男女内射视频| 人妻 亚洲 视频| 大片电影免费在线观看免费| 丁香六月天网| 人妻久久中文字幕网| 丝袜喷水一区| 久久精品成人免费网站| 变态另类成人亚洲欧美熟女 | 久热爱精品视频在线9| 丝袜人妻中文字幕| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 手机成人av网站| 欧美在线一区亚洲| 国产一区二区 视频在线| 91精品三级在线观看| 9色porny在线观看| 他把我摸到了高潮在线观看 | 一个人免费看片子| 精品一区二区三区四区五区乱码| 色在线成人网| 国产麻豆69| 三上悠亚av全集在线观看| 99久久精品国产亚洲精品| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 老熟女久久久| 操美女的视频在线观看| 十八禁高潮呻吟视频| 一区二区av电影网| 国产高清视频在线播放一区| 精品一区二区三区四区五区乱码| 好男人电影高清在线观看| tocl精华| 亚洲av成人不卡在线观看播放网| 在线观看免费午夜福利视频| 午夜精品国产一区二区电影| 日韩大片免费观看网站| 亚洲五月色婷婷综合| 中国美女看黄片| 婷婷成人精品国产| 亚洲天堂av无毛| 国产野战对白在线观看| 黄色片一级片一级黄色片| 日本五十路高清|