• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LitePIG: a lite parameter inference system for the gravitational wave in the millihertz band

    2023-09-28 06:22:04RenjieWangandBinHu
    Communications in Theoretical Physics 2023年7期

    Renjie Wang and Bin Hu,?

    1 Institute for Frontier in Astronomy and Astrophysics,Beijing Normal University,Beijing,102206,China

    2 Department of Astronomy,Beijing Normal University,Beijing,100875,China

    Abstract

    We present a Python based parameter inference system for the gravitational wave (GW)measured in the millihertz band.This system includes the following features:the GW waveform originated from the massive black hole binaries (MBHB),the stationary instrumental Gaussian noise,the higher-order harmonic modes,the full response function from the time delay interferometry and the Gaussian likelihood function with the dynamic nested parameter sampler.In particular,we highlight the role of higher-order modes.By including these modes,the luminosity distance estimation precision can be improved roughly by a factor of 50,compared with the case with only the leading order (?=2,|m|=2) mode.This is due to the response functions of different harmonic modes on the inclination angle are different.Hence,it can help to break the distance-inclination degeneracy.Furthermore,we show the robustness of testing general relativity (GR) by using higher-order harmonics.Our results show that the GW from MBHB can simultaneously constrain four of the higher harmonic amplitudes (deviation from GR) with 95% confidence level ofc21=,c32=-,c33= and c44=,respectively.

    Keywords: gravitational wave astronomy,data analysis,parameter estimation

    1.Introduction

    Gravitational waves(GWs)from compact binary coalescence(CBC) events open a new observational window to explore the nature of the Universe.The LIGO[1]-Virgo[2]-KAGRA[3] (LVK) scientific collaboration has detected 90 GWs from CBCs up to the end of the third observing run(O3)[4].These CBC events can be used to study the properties of stellarmass black holes and neutron stars.The future space-borne gravitational wave observatory,such as the Laser Interferometer Space Antenna (LISA) [5],Taiji [6] and TianQin[7] will be able to measure the GW events in the millihertz band,which contains many sources including massive black hole binaries(MBHB)[8],extreme mass-ratio inspiral[9]and white dwarf binaries [10],etc.MBHBs are one of the main scientific goals of the space-borne gravitational wave observatory because of their high detection significance.Hence,these objects are suitable for precise astrophysics and cosmology studies [11-14].

    In general,GW signals are the superposition of multiple harmonic modes [15].The dominant harmonic is the (?,|m|)=(2,2) harmonics.Compared with the (2,2) mode,the higher-order harmonics are much weaker.Two important intrinsic parameters affecting the amplitude of each higherorder mode are mass ratio and total mass [16].The spin parameter entering at higher post-Newtonian order has a significant impact on the waveform [17].The higher-order harmonics can bring in new dependencies on the mass ratio,component spins,and inclination angle into the waveform[18-20].The importance of including these higher-order harmonics in the waveform is that one can break the degeneracy between the luminosity distance and inclination angle[21,22].Recent observations of GW190412 [23] and GW190814 [24],which were generated from CBCs with significantly asymmetric component masses,confirm the presence of higher-order harmonics emission at a high confidence level.The network with two 3G ground-based detectors is promising to detect higher-order harmonics [18].Furthermore,including higher-order harmonics can increase the signal-to-noise ratio for Intermediate mass ratio inspiral(IMRI) binaries and improve the measurement of IMRI source properties[25].For an equal-mass neutron star merger system at a distance similar to GW170817,the inclusion of higher-order modes leads to improvements in the distance and inclination and allows for percent-level measurements of the Hubble parameter [26].Further,the higher-order harmonics can be used to test general relativity (GR) [27,28].

    In our work,we present a Python based parameter inference system for the GW measured in the millihertz band.In particular,we highlight the importance of including the higher-order harmonics in the parameter estimation.In section 2,taking LISA as an example,we demonstrate the methodology of GW signal generation,the time delay interferometry (TDI)response and the low-frequency approximation,which is currently adopted.In section 3,we describe the parameter likelihood construction as well as the sampling method.In section 4,we show the luminosity distance parameter estimation from MBHB as an example.Furthermore,we show the capability of testing GR with higher-order harmonics.We draw the conclusion at the end.

    2.LISA response and waveform generation

    In this section,we will take LISA as an example to illustrate our methodology of GW waveform generation.

    2.1.The GW signal

    The GW waveform in the transverse-traceless gauge is described by the two polarizations h+,h×.Furthermore,h+,h×can be decomposed into the spherical harmonic modes,h?m,by using the spin-weighted spherical harmonics as functions of the inclination angle ι and coalescence phase φc.The waveform can be expressed as

    The spin-weighted spherical harmonics for the modes?2Y?m(ι,φc) can be found in appendix A of [16].The dominant harmonic is h22,all the others are called higher-order modes.Furthermore,one can translate the mode decomposition equation (1) into the Fourier domain

    For non-precessing binary system,an exact symmetry relation between modes allows us to write

    Therefore,we can further write

    with

    In the Fourier domain,we often use the one side frequency spectrum,namely either keep the positive or the negative parts depending on the sign of m [16,29,30].This approximation is valid in particular where the stationary phase approximation can be used.Hence,we assume

    and neglect modes h?0.With this approximation we can obtain explicit expressions for positive frequency modes

    The GW waveform can be expressed as a superposition of individual harmonics.Figure 1 shows the dependence of the modes on inclination.For the (2,2) mode,the plus polarization peaks at face-on configuration,while(2,1),(3,3)and(4,4)modes vanish at face-on.The amplitude of(3,2)modes can reach a maximum at both face-on and edge-on.Similarly,the amplitude of the cross polarization dependence on the inclination angle is different for each mode.Because of these differences,the inclination measurement can be improved when higher-order modes are measured [16].Therefore,the well-known degeneracy between distance and inclination angle can be broken.

    Figure 1.The amplitude of each harmonic as a function of the inclination ι.The red,blue,purple,green and gold lines denote the amplitude of some harmonics including the dominant modes ?=|m|=2 and a set of higher-order harmonics,(?,|m|)=(2,1),(3,3),(3,2),(4,4).The first row is the result of the plus polarization while the second row is for the cross polarization.

    2.2.Time delay interferometry (TDI): full response

    For ground-based laser interferometers,such as LIGO [1],one can keep the same arm length up to the picometer level.Hence,the laser frequency noise can be cancelled very precisely.However,the spaceborne GW observatory will have much longer arm lengths.Compared to the ground-based interferometers,the GW space mission will be impossible to maintain equal arm lengths between spacecraft pairs.Because of the dynamics of mission orbit,the laser frequency noise cannot be cancelled to the level of measuring GW signal.For a GW space mission,the variation of the absolute arm has a typical value of 1%.To exactly cancel the laser frequency noise,the TDI technique is proposed[31].TDI had been well studied for the first-generation [32,33] and the second-generation [34].

    The TDI technique is used to construct a new set of observables from delayed combinations of ysrto cancel the laser frequency noise.We assume the LISA arm lengths are all constant and equal to L.The TDI operation can construct data set with an effectively equal arm length.The laser frequency stability in the TDI data will qualify the requirement of the GW measurement.A constant 1% distance error can be resolved by the TDI technique.Hence,we can approximately assume an equal arm length.This is the standard first order approximation adopted by the community.Using the notation ysr,nL=ysr(t ?nL),the first-generation TDI observable X is given by [29,34]

    The other two observables Y and Z are obtained by cyclic permutation.The first-generation TDI observables (X,Y,Z)are correlated in their noise properties.They can be transformed into uncorrelated observables (A,E,T).Thus,the second-generation TDI observables A,E and T are expressed as

    These channels are independent and uncorrelated.

    The source frame waveforms can be represented as a combination of harmonics with the amplitude A(f)and phase Ψ(f)

    Currently,there are five harmonics included in the IMRPhenomXHM template [35],namely (?,|m|)=(2,2),(2,1),(3,3),(3,2),(4,4).A complex transfer function T(f,t?m(f)) is used to transform the source-frame waveform into the TDI observables[29,30].This function is determined by the extrinsic parameters(ι,λ,β,ψ,φ0,t0).Because of the evolution of the LISA constellation,the transfer function is temporal-and frequency-dependent.The time-frequency dependence for each harmonic,t?m(f) is defined by the stationary phase approximation (SPA)

    The signal of each harmonic and for each TDI channel is given by

    Figure 2 shows the characteristic strain for each harmonic modein the frequency domain.The(2,2)modeis the most dominant one and is followed by (3,3) and (2,1),sequentially.These curves are the theoretical template,the observation response function has not yet been added.

    Figure 2.Characteristic strain of each harmonic mode.This displays the amplitude of each mode using the IMRPhenomXHM waveform template.Note that the plot displays the theoretical signal without convolving the response function.The black dotted line is the LISA sensitivity curve from [36].

    Figure 3.The characteristic strain in the three TDI channels.The red,orange and blue curves represent the characteristic strain of the signals defined by equation(24):=f ()∣.The black solid and dotted curves show the characteristic strain with the reduced noise PSDf () from equation (25).

    Figure 4.The characteristic strain for the A channels.The red curve represents the characteristic strain of the full response signals defined by equation (24) :=∣∣.The blue curve shows the characteristic strain using the low-frequency limit,defined by equation (27).The green solid curves show the characteristic strain with the reduced noise PSDf () from equation (25).

    To compensate for the fast oscillatory in the high frequency range and avoid the numerical instability,we can rescale the TDI observables by prefactors which are common to both signal and noise [29].Thus,the TDI channels in the frequency domain can be written as

    Factoring out the same sine square function from the noise power spectral density (PSD)

    the reduced PSD reads

    where Spmis the test-mass noise PSD and Sopis the optical noise PSD.The corresponding values for LISA can be found in [37].It is also useful to introduce the following notations

    Thus,we can define a noise PSD associated with the TDI observables (24) as

    Moreover,the characteristic noise strain can be defined to be

    In figure 3,the solid curves show the characteristic strain(24)and the reduced noise PSD (25) for three TDI channels.One can see that the A channel is similar to the E channel,while the T channel is noise dominated.

    2.3.The low-frequency limit

    Though we can apply the full response to perform parameter estimation,it will be useful to consider some limits to simplify calculations.Here,we use the low-frequency approximation to the LISA response.When f ?fL=1/L=0.12 Hz[29],the T-channel can be neglected.And in this low-frequency approximation,the response for the other two TDI observables in equation (24) are given by

    which is similar to the ground-based detectors.The functionsare

    For ψL=0,one has

    where the LISA-frame sky position angle λL,βLand the polarization angle ψLare given by

    with α=2π(t ?tref)/1yr.trefis a reference time for the initial position and we assume tref=0.

    The LISA response is both time-and frequency-dependent.In the low-frequency limit,because of the motion of the LISA constellation,the time dependency enters both into the Doppler phase term and into the time-dependent LISA-frame angles(λL,βL,ΨL)[29].Here,we consider the MBHB signals are short,eg.less than a few days.The orientation and position of the LISA constellation in the orbit are barely changed during the GW detection period.In the work,we consider the low-frequency limit and neglect the LISA motion,effectively freezing the LISA constellation in the orbit.We treat the LISA-frame angles (λL,βL,ΨL) as constants and neglect both the time and frequency dependency in the response.In this case,the response is similar to two LIGO-type detectors.The transfer function is just a constant factor.This approximation can be useful to analytically understand the degeneracies that occur when using the more complicated full response.For the short-duration MBHB merger events,it is a reasonable approximation.

    The derivation of the above equation can be found in the literature [29].To validate the low-frequency approximation,we compare the full response TDI observables with the one using low-frequency approximation.In figure 4,the red curve shows the full response for the TDI channel ha,defined by equation (24),which is the same as the red solid curve in figure 3.The blue curve shows the TDI channel hausing the low-frequency approximation.We only show the haTDI channel because the hechannel is similar and the T channel can be neglected at low frequencies.In the low-frequency band,f<10?2Hz,the difference between the TDI using the low-frequency approximation and the full-response results is tiny.However,when f>10?2Hz,the difference becomes larger,especially at about 0.1 Hz where the difference arises.In this paper,we perform our analysis in the frequency range between 10?3Hz and 10?2Hz,in which the low-frequency approximation is completely valid.

    3.Bayesian methods for massive black hole binary

    In this section,we will first introduce the likelihood construction,and then the dynamic nested sampling methods.Bayesian methods are used to estimate the parameters of GW events.In general,the GW data d(t) is a superposition of noise n(t) and a possible signal h(t)

    In our analysis,we will consider the low-frequency limit and simulate the rescaled signals according to equation (24).

    Besides the waveform in each TDI channel,we also need the noise in each channel.We use the tdi package3 https://lisa-ldc.lal.in2p3.frfrom the LISA Data Challenges Working Group software collection to generate the PSD in each channel,.According to the definition of equation(25),we can obtain the reduced noise PSD,.The noise is generated by the public pycbc code[38].For simplicity,one can assume that the noise in the time domain is Gaussian and stationary.Under this assumption,the noise in the frequency domain is Gaussian with zero mean and is characterised by the noise PSD,Therefore,we can generate the data set by summing the signal and noise in each TDI channel.

    Using the Bayesian methods,the posterior distribution can be determined as

    where Λ is the model of the GW signal and Θ are the parameters of this model.p(Θ|λ) represents the prior probability and the likelihood p(d|Θ,Λ)is the probability of the observed data d(t)given the waveform model Λ and a set of parameters Θ.In the low-frequency limit,the likelihood is given by

    where the inner product is really the sum of the inner products over all the TDI channels rescaled by equation (24)

    Sha,e(f) is noise PSD given by equation (25).The optimal signal-to-noise ratio (SNR) is given by

    In this work,we use the reduced TDI templates equation(24)and the analytic function Sihgiven by equation(25).The noise PSD for TDI observables haand heare identical.

    Higher-order modes can be used to break the degeneracy between the distance and inclination of the binary coalescence system.With the improvement of the sensitivity of GW detectors,one needs accurate and computationally efficient waveform models,including higher-order harmonics.In this work,we use the frequency domain waveform model for the inspiral,merger and ringdown of spinning black hole binaries,IMRPhenomXHM [35],which is publicly available as part of the LIGO algorithm Library Suite (LALSuite) [39].The model includes the dominant modes(2,2)and a set of higherorder harmonics

    Table 1.The parameter setup of the simulated MBHB merger.The first column shows the parameters and the units for each parameter.

    The model is restricted to the quasi-circular and non-precessing system.

    At last,we use the dynesty package,a public,opensource,Python package that implements dynamic nested sampling methods for inferring the Bayesian posteriors distribution of parameters and evidence [40].By generating samples in nested “shells”,nested sampling is able to estimate evidence as well as the posterior.And the nested sampling can sample from complex,multi-model distributions.Compared to the Monte-Carlo Markov Chain method,the nested sampling is more suitable to the multi-Gaussian parameter distribution case.Currently,pycbc inference supports the dynesty sample [38].

    4.Validation

    In this section,we show two test suite results.One example is to show the role of the inclusion of the higher-order harmonics in determining the luminosity distance.The other example is to show the capability of testing GR with LISA constellation.

    4.1.Massive black holes signals

    To test the performance of LitePIG,we choose a representative MBHB source.The total redshifted mass M=m1+m2=2.2×105M⊙,mass ratio q=m1/m2=10 and the redshift z=1.We can obtain the luminosity distance from redshift by assuming fiducial cosmology with H0=67.1 km s?1Mpc?1and Ωm=1 ?ΩΛ=0.32.We set the inclination angle to ι=0.5 and the dimensionless spin parameter,a1=a2=0.All the other parameter values are summarized in table 1.Table 2 shows the optimal SNR,equation(41),of each harmonic for the representative MBHB merger event.When calculating the total SNR,the cross termsbetween modes,can be both positive and negative,causing interference between the harmonics [16].The (3,2)with the(2,2)mode are the two strongly coupled modes.One of the significant influences of the (3,2) mode can affect the amplitude and phase of the (2,2) mode [35].Because of these mode mixing effects,the total SNR shown in the‘total’column will not be the orthogonal sum of each mode[41-44].

    Table 2.The optimal SNR from each harmonics.Because of the mode mixing,the total SNR is less than the quadrature of all the harmonics.

    Table 3.The lower and upper bounds of the prior distributions in our Bayesian inference.We assume all priors are uniformly distributed except for the prior on (Mc,ι,β).We assume uniform distributions for isotropically distributed angles on the sphere,so the prior on the inclination angle and ecliptic latitude is uniform distribution oncosι andsinβ.

    Table 4.The 1σ errors for each parameters.

    Table 5.2σ deviation from GR of the higher-order harmonic coefficients.

    In order to generate the waveform of MBHB,we use pycbc package [38],which currently can only generate the waveform of stellar black-hole binary mergers.Hence,we need to rescale the waveform to obtain our targeted waveform from MBHB.The plus and cross polarization modes of stellar black-hole binary mergers in the frequency domain are assumed to have the following form

    where M0is the total mass of stellar black-hole binary.One needs to rescale the frequency and amplitude.Thus,the GW strains of MBHB with total mass M is given by

    where the frequency is given by

    the amplitude is obtained from

    and the phase is idential

    By rescaling the waveform,we can generate plus and cross polarization of MBHB for each harmonic.Figure 2 shows the characteristic strain for each harmonic mode.

    Figure 5 shows the response for the TDI observables equation (27) in the cases with and without higher-order modes.Though the individual harmonics have fairly smooth amplitude shown in figure 2,the full signal shows obvious wiggles.This is because the frequency dependence of different harmonics is different.

    Figure 5.Characteristic strain of full signal compared to the (2,2)dominant mode.The blue curve is the strain of the full signal which is the sum of the individual mode.The orange curve show the strain of the (2,2) dominant mode.The green solid curves show the characteristics strain with the reduced noise PSDf () from equation (25).

    Figure 6.The posterior distribution on the parameters of the MBHB without the higher-order modes.The vertical black lines are the true injectionvalues.The vertical dashed lines show the 2σ credible interval.The posterior distributions show the 1σ,2σ and 3σ contours.

    Figure 7.The posterior distribution on the parameters of the MBHB with the higher-order modes.The vertical black lines are the true injection values.The posterior distributions show the 1σ,2σ and 3σ contours.

    4.2.Parameter estimation

    For the momentum,we do not perform the initial search for the alerted events.Instead,we assume a source has already been identified in the data stream.The priors are given in table 3.The parameter priors for{q,a1,a2,DL,λ,ψ,φ0}are uniform.The log-uniform prior is used on chirp mass.The ι prior is uniform incosιand the β prior is uniform insinβ.We adopt the dynamic nested sampler.In the following analysis,we will present the corner plots of the posterior distribution of the parameters.Figures 6 and 7 show the posterior distribution of the parameters in the cases without and with the higher-order harmonics.The mean and standard deviation can be found in table 4.In the case without the higher-order modes,there is an apparent bias for the parameters in the posterior distribution.The higher-order harmonics can reduce the estimation parameter errors on luminosity distance and inclination angle roughly by a factor of roughly 50.A similar result can be found in table 2 of[45].They find the improvement factor is 10.The difference is because in[45],they choose the mass ratio q=2,and for us,we choose q=10.The role of higher order modes is sensitive to the mass ratio,the higher q is the more important the higher order mode is.As for the mass ratio distribution,one can look at[46],figure 4.As shown in the long-dashed curve(0

    During the calculation,it takes about 1 s for each TDI waveform generated.When we estimate four parameters,we run the dynesty package to perform sampling and it takes about 1 h to complete the parameter estimation by parallelizing 50 cores.The parameter sampling points are about 105in total.

    4.3.Test GR

    The existence of the higher-order modes opens a new window for testing GR.This is because higher-order harmonics carry fruitful information in the ringdown phase of CBC,which corresponds to the strong gravitational field regime.Hence,the test of whether the amplitude of higher-order harmonics is consistent with the predictions of GR delivers a completely new message about the gravitational dynamics close to the black hole horizon.In general,the GW tests of GR can be divided into two categories.The first category is to test the phase evolution.In the second test,one looks for anomalies in the amplitudes of the higher-order modes [47].In our work,we follow [47] and allow for deviation in the amplitudes of the higher-order modes

    where the c?mare the free parameters.In the case of GR,c?m=0.Sinceh?,-m=,we have c?m=c?,?m.We use the IMRPhenomXHM template and focus on all modes(?,|m|)=(2,2),(2,1),(3,3),(3,2),(4,4).We simulate the signals generated by MBHB merger and noise according to the LISA setup.The source parameter values are kept the same as in table 1.The only difference is we allow all the c?mcan vary simultaneously.We assume GR as the fiducial model,so we choose values for the deviation parameter c?m=0 in the injection.

    Figure 8 shows the posterior probability distribution in the GR test.Because the mode amplitudes can vary independently,the inclusion of the higher-order harmonics will not significantly help to break the inclination-distance degeneracy.Hence,one can see that the luminosity distance error in the GR test is much larger than those assuming GR.As for the test of GR,we list the results in table 5.Because of the limitation of data quality,the current GW data detected by LVK can barely give a strict constraint on these parameters[28,48-52].Take GW190412 as an example [28],the posterior on c33is bimodally distributed,due to the degeneracy with the inclination angle.The corresponding errors are almost an order of magnitude worse than here we got.Furthermore,these parameter constraint results are obtained by varying these c?mone-by-one,not simultaneously as here we did.

    Figure 8.The posterior distribution on c?m for MBMB merger.The vertical black lines are the true injection value.The vertical blue lines indicate 95% confidence intervals.

    5.Conclusions

    In this paper,we present a new parameter inference system for the gravitational wave data in the millihertz band.We are aiming for the compact binary coalescence originating from the massive black hole binary.In particular,we highlight the role of higher-order harmonics.We show that by including the first four higher-order modes,the famous distanceinclination degeneracy can be very effectively broken.The corresponding errors on the luminosity distance and inclination angle can be reduced roughly by a factor of roughly 50.Furthermore,we show the capability of testing general relativity by LISA constellation.The superb sensitivity of LISA and the robust GW signals from MBHB allow us to detect the ringdown phase of the compact binary coalescence process with a fairly high signal-to-noise ratio.Hence,it opens a new window to explore the strong gravitational field regime,which is the scale of a few times the black hole event horizon.Our results show that the GW from MBHB can simultaneously constrain four of the higher harmonic amplitudes (deviation from GR) with a 95% confidence level of c21=,c32=-,c33=and c44=,respectively.

    The software package incorporates the following features:the GW waveform emitted from the massive black hole binaries,the stationary instrumental Gaussian noise,the higher-order harmonic modes,the full response function from the TDI and the Gaussian likelihood function with the dynamic nested parameter sampler.The resulting code,LitePIG,is based on the widely used waveform generator pycbc,which is currently only suitable for the GW emitted from the stellar-mass black hole.We extended this waveform to the MBHB case by some rescaling law.The LISA instrumental noise is imported from the LISA data challenge working package.All of the libraries,on which LitePIG is based,are mature tools that are widely adopted by the GW community.Hence,we believe LitePIG is a reliable package for GW parameter estimation.The code is publicly available on the repository https://github.com/renjiewang888/LitePIG.git.

    Acknowledgments

    We thank Zhoujian Cao,Xiaolin Liu and Junjie Zhao for the discussion on the gravitational waveform generation.This work is supported by the National Key R&D Program of China No.2021YFC2203001.

    ORCID iDs

    伦理电影大哥的女人| 国语对白做爰xxxⅹ性视频网站| 日本一区二区免费在线视频| 黄频高清免费视频| 成年动漫av网址| 人人妻,人人澡人人爽秒播 | 亚洲精华国产精华液的使用体验| 国产亚洲一区二区精品| 一二三四中文在线观看免费高清| 国产精品秋霞免费鲁丝片| 精品酒店卫生间| 国产成人午夜福利电影在线观看| 久久精品久久久久久久性| 国产精品熟女久久久久浪| 精品第一国产精品| 如日韩欧美国产精品一区二区三区| 一区二区日韩欧美中文字幕| 亚洲图色成人| 国产精品99久久99久久久不卡 | 国产深夜福利视频在线观看| 下体分泌物呈黄色| av一本久久久久| 女人精品久久久久毛片| 一级片免费观看大全| 尾随美女入室| 秋霞伦理黄片| 精品亚洲乱码少妇综合久久| 国产亚洲av高清不卡| 欧美国产精品va在线观看不卡| 精品第一国产精品| √禁漫天堂资源中文www| 久久这里只有精品19| 成人手机av| 亚洲国产精品一区二区三区在线| 久久久国产精品麻豆| 久久av网站| 午夜福利乱码中文字幕| 久久久久久人妻| 欧美亚洲日本最大视频资源| 水蜜桃什么品种好| 久久97久久精品| 男女边吃奶边做爰视频| 欧美日韩亚洲高清精品| av网站在线播放免费| 国产精品偷伦视频观看了| 大陆偷拍与自拍| 99re6热这里在线精品视频| 国产av一区二区精品久久| 午夜影院在线不卡| 久久久久久免费高清国产稀缺| 丰满少妇做爰视频| 91老司机精品| 亚洲av福利一区| 国产欧美日韩综合在线一区二区| 免费高清在线观看视频在线观看| 精品免费久久久久久久清纯 | 国产男人的电影天堂91| 99香蕉大伊视频| 天天躁夜夜躁狠狠久久av| 国产精品二区激情视频| 天天影视国产精品| 高清在线视频一区二区三区| 晚上一个人看的免费电影| 亚洲欧美精品综合一区二区三区| 91老司机精品| 一级毛片电影观看| 成人国语在线视频| 街头女战士在线观看网站| 亚洲成色77777| 久久亚洲国产成人精品v| 一区二区日韩欧美中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 纯流量卡能插随身wifi吗| 亚洲欧美精品综合一区二区三区| 女性被躁到高潮视频| 又黄又粗又硬又大视频| 国产激情久久老熟女| 国产成人欧美在线观看 | 一边摸一边做爽爽视频免费| 一本大道久久a久久精品| 少妇猛男粗大的猛烈进出视频| 青青草视频在线视频观看| 国产亚洲午夜精品一区二区久久| 久久精品久久久久久噜噜老黄| 老鸭窝网址在线观看| 欧美日韩综合久久久久久| 亚洲在久久综合| 熟女av电影| 秋霞伦理黄片| 欧美精品高潮呻吟av久久| 极品少妇高潮喷水抽搐| 久久精品国产a三级三级三级| 国产精品免费视频内射| 欧美乱码精品一区二区三区| 中国国产av一级| 久久综合国产亚洲精品| 欧美精品av麻豆av| 国产一区二区 视频在线| 国产视频首页在线观看| 国产视频首页在线观看| 久久久国产一区二区| 色吧在线观看| 久久久精品国产亚洲av高清涩受| 午夜老司机福利片| 成人黄色视频免费在线看| 亚洲第一区二区三区不卡| 大话2 男鬼变身卡| 99国产综合亚洲精品| 免费观看av网站的网址| 亚洲av日韩在线播放| 日韩人妻精品一区2区三区| 免费高清在线观看日韩| 国产成人精品福利久久| 亚洲成色77777| 色网站视频免费| 一级毛片黄色毛片免费观看视频| 成人亚洲欧美一区二区av| 国产一区二区三区综合在线观看| 国产一区二区三区综合在线观看| 久久av网站| 午夜福利,免费看| 国产探花极品一区二区| 免费看不卡的av| 亚洲成av片中文字幕在线观看| 99re6热这里在线精品视频| 久久久欧美国产精品| 亚洲第一青青草原| 宅男免费午夜| 18禁国产床啪视频网站| 午夜福利,免费看| 亚洲,欧美精品.| 岛国毛片在线播放| 日韩视频在线欧美| 久久久久久人人人人人| 免费看av在线观看网站| 如何舔出高潮| 老熟女久久久| 男女午夜视频在线观看| 精品亚洲成a人片在线观看| 久久精品国产a三级三级三级| 成年av动漫网址| 极品少妇高潮喷水抽搐| 麻豆精品久久久久久蜜桃| 成年av动漫网址| 欧美精品高潮呻吟av久久| tube8黄色片| 精品一区二区三卡| 999久久久国产精品视频| 亚洲国产精品成人久久小说| 精品国产国语对白av| av电影中文网址| 女性被躁到高潮视频| 一级a爱视频在线免费观看| 亚洲欧美一区二区三区久久| 色婷婷久久久亚洲欧美| 亚洲综合精品二区| 五月天丁香电影| 在现免费观看毛片| 下体分泌物呈黄色| 亚洲精品第二区| 麻豆乱淫一区二区| 国产人伦9x9x在线观看| 69精品国产乱码久久久| 欧美精品一区二区大全| 婷婷色麻豆天堂久久| 国产黄频视频在线观看| 人成视频在线观看免费观看| 亚洲一区二区三区欧美精品| 欧美日韩成人在线一区二区| 国产精品成人在线| 欧美日韩一级在线毛片| 国产国语露脸激情在线看| 国产97色在线日韩免费| 中文精品一卡2卡3卡4更新| 久久ye,这里只有精品| 亚洲精品国产色婷婷电影| 男女国产视频网站| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频精品| 热re99久久国产66热| 超碰成人久久| 精品少妇一区二区三区视频日本电影 | 国产精品国产三级专区第一集| 日韩制服骚丝袜av| 日韩制服骚丝袜av| 一区二区av电影网| 日韩大片免费观看网站| 在线观看三级黄色| av网站在线播放免费| 日本猛色少妇xxxxx猛交久久| 国产激情久久老熟女| 777米奇影视久久| 亚洲国产精品一区三区| 久久ye,这里只有精品| 夫妻午夜视频| 青青草视频在线视频观看| 最近中文字幕高清免费大全6| 大片免费播放器 马上看| 精品国产国语对白av| 日韩欧美精品免费久久| 国产老妇伦熟女老妇高清| 韩国av在线不卡| 天天躁夜夜躁狠狠躁躁| 亚洲第一av免费看| 久久毛片免费看一区二区三区| 久久狼人影院| 国产精品国产av在线观看| 人妻一区二区av| 波野结衣二区三区在线| 久久久亚洲精品成人影院| 日韩大码丰满熟妇| 亚洲熟女精品中文字幕| 久久精品久久久久久噜噜老黄| 亚洲国产av新网站| 制服诱惑二区| 亚洲美女黄色视频免费看| 精品国产乱码久久久久久小说| 亚洲熟女精品中文字幕| 又大又黄又爽视频免费| 日韩大片免费观看网站| 亚洲av成人精品一二三区| 性少妇av在线| av又黄又爽大尺度在线免费看| 免费在线观看黄色视频的| 亚洲av成人精品一二三区| 中文字幕人妻熟女乱码| 婷婷色综合大香蕉| 亚洲av成人精品一二三区| 欧美日韩成人在线一区二区| 国产黄色免费在线视频| 纵有疾风起免费观看全集完整版| 国产极品天堂在线| 日本午夜av视频| 亚洲国产毛片av蜜桃av| 亚洲五月色婷婷综合| 女的被弄到高潮叫床怎么办| 精品亚洲成国产av| 男女床上黄色一级片免费看| 午夜福利,免费看| 日韩熟女老妇一区二区性免费视频| a级毛片在线看网站| 街头女战士在线观看网站| 最新在线观看一区二区三区 | 国产伦人伦偷精品视频| 18在线观看网站| 视频区图区小说| 日韩中文字幕视频在线看片| 一级毛片电影观看| 一级毛片我不卡| 大片免费播放器 马上看| 国产亚洲一区二区精品| 乱人伦中国视频| 人人妻人人爽人人添夜夜欢视频| 老汉色av国产亚洲站长工具| 国产熟女欧美一区二区| 欧美在线一区亚洲| 欧美日韩视频精品一区| 亚洲av电影在线观看一区二区三区| 好男人视频免费观看在线| 欧美日韩精品网址| 女人被躁到高潮嗷嗷叫费观| 亚洲精品一区蜜桃| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 久久精品久久久久久噜噜老黄| 久久久国产一区二区| 在线观看免费高清a一片| 亚洲欧美激情在线| 国产淫语在线视频| 波野结衣二区三区在线| 中文欧美无线码| 亚洲精品国产一区二区精华液| 日韩欧美精品免费久久| 晚上一个人看的免费电影| 美女午夜性视频免费| 国产精品一区二区在线观看99| 男女免费视频国产| 香蕉国产在线看| 高清av免费在线| 2021少妇久久久久久久久久久| 嫩草影视91久久| 国产午夜精品一二区理论片| 亚洲av日韩精品久久久久久密 | 丰满饥渴人妻一区二区三| 精品国产一区二区三区四区第35| 人体艺术视频欧美日本| 日本av免费视频播放| 成人漫画全彩无遮挡| 青春草国产在线视频| 80岁老熟妇乱子伦牲交| 国产福利在线免费观看视频| 一级毛片 在线播放| 国产成人a∨麻豆精品| 超碰97精品在线观看| 尾随美女入室| 久久精品人人爽人人爽视色| 中文字幕人妻丝袜制服| 亚洲三区欧美一区| 女人高潮潮喷娇喘18禁视频| 秋霞伦理黄片| www.av在线官网国产| 日本av免费视频播放| 最近最新中文字幕免费大全7| 成人影院久久| 老司机靠b影院| 精品酒店卫生间| 制服诱惑二区| 国产男女内射视频| 丁香六月欧美| 在线免费观看不下载黄p国产| 亚洲国产欧美日韩在线播放| 亚洲精品中文字幕在线视频| 青春草视频在线免费观看| 午夜福利免费观看在线| 免费高清在线观看视频在线观看| 日韩中文字幕视频在线看片| 午夜福利视频精品| 久热爱精品视频在线9| 国产xxxxx性猛交| 久久人妻熟女aⅴ| 国产精品亚洲av一区麻豆 | 男女之事视频高清在线观看 | 中文字幕人妻丝袜制服| 美女福利国产在线| 欧美激情极品国产一区二区三区| 成人漫画全彩无遮挡| 亚洲三区欧美一区| 欧美在线黄色| 在线天堂最新版资源| 中文字幕人妻熟女乱码| 人人妻人人添人人爽欧美一区卜| 涩涩av久久男人的天堂| 久久精品国产亚洲av涩爱| 久久性视频一级片| 成人国语在线视频| 国产精品亚洲av一区麻豆 | 国产精品香港三级国产av潘金莲 | 老鸭窝网址在线观看| 欧美人与性动交α欧美软件| 午夜福利在线免费观看网站| 亚洲,一卡二卡三卡| 宅男免费午夜| 亚洲av电影在线观看一区二区三区| 日韩精品免费视频一区二区三区| av又黄又爽大尺度在线免费看| 女人高潮潮喷娇喘18禁视频| 最新在线观看一区二区三区 | 午夜福利乱码中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 在线观看国产h片| 日韩一区二区视频免费看| 亚洲av福利一区| 丁香六月天网| 成人国语在线视频| 日本欧美视频一区| 久久久精品免费免费高清| av福利片在线| 老司机在亚洲福利影院| 考比视频在线观看| 十八禁人妻一区二区| 色吧在线观看| 两个人看的免费小视频| 超碰成人久久| 国产色婷婷99| 欧美精品一区二区大全| 激情五月婷婷亚洲| 亚洲欧美日韩另类电影网站| 岛国毛片在线播放| 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 久久久久久久精品精品| 国产在线视频一区二区| 免费观看性生交大片5| 午夜福利,免费看| 伦理电影免费视频| 宅男免费午夜| 久久久久久久精品精品| 美女高潮到喷水免费观看| 啦啦啦中文免费视频观看日本| 国产成人一区二区在线| 精品一区二区三区av网在线观看 | 爱豆传媒免费全集在线观看| 美女中出高潮动态图| 日韩中文字幕视频在线看片| 成年动漫av网址| av网站在线播放免费| 美女中出高潮动态图| 国产男女内射视频| 久久天堂一区二区三区四区| av一本久久久久| 国产不卡av网站在线观看| 伦理电影免费视频| 亚洲,欧美,日韩| 91老司机精品| 19禁男女啪啪无遮挡网站| 久久精品久久精品一区二区三区| 久久久久久久久久久免费av| av国产久精品久网站免费入址| 午夜福利在线免费观看网站| 高清欧美精品videossex| 欧美激情高清一区二区三区 | 51午夜福利影视在线观看| 最近最新中文字幕免费大全7| 老司机影院成人| 亚洲成人免费av在线播放| 性高湖久久久久久久久免费观看| 日韩大码丰满熟妇| 久久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 国产精品亚洲av一区麻豆 | 欧美久久黑人一区二区| 国产探花极品一区二区| 久久韩国三级中文字幕| 国产精品av久久久久免费| 亚洲精品国产av成人精品| 久久精品国产亚洲av高清一级| 五月天丁香电影| 母亲3免费完整高清在线观看| 最近2019中文字幕mv第一页| 1024视频免费在线观看| 国产日韩欧美视频二区| 美女主播在线视频| 91成人精品电影| 国产男人的电影天堂91| 午夜免费男女啪啪视频观看| 日本爱情动作片www.在线观看| 日韩,欧美,国产一区二区三区| 国产免费视频播放在线视频| 99精国产麻豆久久婷婷| 亚洲精品日本国产第一区| 亚洲激情五月婷婷啪啪| 亚洲精品中文字幕在线视频| 精品一区二区三区四区五区乱码 | 热99久久久久精品小说推荐| 在线观看国产h片| 成年人免费黄色播放视频| 亚洲成人手机| 在线看a的网站| 欧美精品亚洲一区二区| 成人手机av| 国产欧美日韩一区二区三区在线| 免费不卡黄色视频| 一区二区日韩欧美中文字幕| 欧美久久黑人一区二区| 久久久久久久久久久免费av| 老司机影院成人| 丝袜人妻中文字幕| 久久久久久久大尺度免费视频| 日韩制服骚丝袜av| 国产色婷婷99| 天堂8中文在线网| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看| 国产精品av久久久久免费| 中文乱码字字幕精品一区二区三区| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 成人国产av品久久久| 日韩伦理黄色片| av线在线观看网站| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免| 黄色毛片三级朝国网站| av.在线天堂| 国产黄色视频一区二区在线观看| 欧美精品亚洲一区二区| 国产 一区精品| 亚洲专区中文字幕在线 | 宅男免费午夜| 热re99久久国产66热| 亚洲第一区二区三区不卡| 一二三四在线观看免费中文在| 国产精品偷伦视频观看了| 三上悠亚av全集在线观看| 日日撸夜夜添| 欧美变态另类bdsm刘玥| 亚洲 欧美一区二区三区| 一级毛片黄色毛片免费观看视频| 亚洲欧美日韩另类电影网站| 亚洲欧美成人综合另类久久久| 免费少妇av软件| 搡老乐熟女国产| 19禁男女啪啪无遮挡网站| 一本大道久久a久久精品| 国产精品 国内视频| 国产精品久久久久久久久免| 一级毛片 在线播放| h视频一区二区三区| 国产一区二区 视频在线| 女人久久www免费人成看片| 在现免费观看毛片| 制服诱惑二区| tube8黄色片| 成人18禁高潮啪啪吃奶动态图| 女人久久www免费人成看片| 色婷婷久久久亚洲欧美| 亚洲熟女精品中文字幕| 亚洲欧美色中文字幕在线| 成人18禁高潮啪啪吃奶动态图| 色94色欧美一区二区| 曰老女人黄片| 美女主播在线视频| 欧美97在线视频| 久久热在线av| 成人亚洲欧美一区二区av| 777久久人妻少妇嫩草av网站| 如日韩欧美国产精品一区二区三区| 久久精品国产a三级三级三级| 亚洲国产中文字幕在线视频| 日韩,欧美,国产一区二区三区| 亚洲自偷自拍图片 自拍| 只有这里有精品99| 人人妻,人人澡人人爽秒播 | 2018国产大陆天天弄谢| 日韩精品免费视频一区二区三区| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 日韩中文字幕视频在线看片| 一区二区日韩欧美中文字幕| 久久韩国三级中文字幕| 日韩av不卡免费在线播放| 狠狠精品人妻久久久久久综合| xxx大片免费视频| 亚洲,欧美精品.| 男男h啪啪无遮挡| 午夜福利网站1000一区二区三区| 蜜桃国产av成人99| 日韩中文字幕视频在线看片| 国产探花极品一区二区| 在线 av 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产xxxxx性猛交| 看免费av毛片| 欧美日韩成人在线一区二区| 乱人伦中国视频| 国产视频首页在线观看| 国产av精品麻豆| 在线免费观看不下载黄p国产| 亚洲国产av影院在线观看| 少妇被粗大的猛进出69影院| 美女福利国产在线| 亚洲av中文av极速乱| 99久久人妻综合| 免费av中文字幕在线| 美女高潮到喷水免费观看| a 毛片基地| 精品国产一区二区久久| 久久毛片免费看一区二区三区| 热re99久久国产66热| 亚洲av国产av综合av卡| 亚洲伊人色综图| 国产片内射在线| 波野结衣二区三区在线| 少妇 在线观看| 久久这里只有精品19| 国产xxxxx性猛交| 日日爽夜夜爽网站| av网站免费在线观看视频| 丝瓜视频免费看黄片| 男女国产视频网站| 国产高清不卡午夜福利| 在线观看www视频免费| 精品午夜福利在线看| 国产欧美亚洲国产| 最近2019中文字幕mv第一页| 日韩精品有码人妻一区| 精品人妻一区二区三区麻豆| av又黄又爽大尺度在线免费看| 久久久欧美国产精品| 色视频在线一区二区三区| 精品亚洲乱码少妇综合久久| 亚洲一码二码三码区别大吗| 美女国产高潮福利片在线看| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 亚洲欧美成人综合另类久久久| 欧美97在线视频| 日韩成人av中文字幕在线观看| 精品国产露脸久久av麻豆| 亚洲精品日本国产第一区| 久久性视频一级片| 精品人妻一区二区三区麻豆| 美女扒开内裤让男人捅视频| 欧美激情 高清一区二区三区| 亚洲,一卡二卡三卡| 中文字幕人妻丝袜制服| 一边摸一边做爽爽视频免费| 亚洲精品日韩在线中文字幕| 老司机靠b影院| 成人国语在线视频| 午夜免费男女啪啪视频观看| 一二三四中文在线观看免费高清| 亚洲一码二码三码区别大吗| 丰满饥渴人妻一区二区三| 免费在线观看黄色视频的| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 精品第一国产精品| 91精品三级在线观看| 亚洲婷婷狠狠爱综合网| 51午夜福利影视在线观看| 国产精品99久久99久久久不卡 | 欧美乱码精品一区二区三区| 国产精品久久久久久人妻精品电影 | 桃花免费在线播放| 国产深夜福利视频在线观看| 亚洲av成人精品一二三区| 搡老岳熟女国产| 国产一区二区 视频在线| 国产免费现黄频在线看| 亚洲精品日本国产第一区| 国产精品成人在线| 国产在线一区二区三区精| 大片电影免费在线观看免费|