蔡衛(wèi)超,曹衛(wèi)紅,胡大利,葉超,楊霖璟,李晶晶,林威鋼,仇靈江
·論 著·
mRNA水平探究人脂肪干細(xì)胞對(duì)SD大鼠放射性皮膚損傷的炎癥修復(fù)作用
蔡衛(wèi)超,曹衛(wèi)紅,胡大利,葉超,楊霖璟,李晶晶,林威鋼,仇靈江
浙江省臺(tái)州醫(yī)院整形美容科,浙江臺(tái)州 317000
從mRNA水平探究人脂肪干細(xì)胞(human adipose-derived stem cells,H-ADSCs)在SD大鼠放射性皮膚損傷中的作用及炎癥機(jī)制。選取15只SD大鼠,采用隨機(jī)數(shù)字表法分成5組,每組3只。給予各組大鼠背部皮膚45Gy電子線(xiàn)照射,分別于照射后0周、1周、2周、3周、4周后處死并取組織標(biāo)本,檢測(cè)皮膚組織內(nèi)炎癥因子mRNA水平。選取35只SD大鼠,采用隨機(jī)數(shù)字表法分成空白對(duì)照組(=7)、PBS組(=14)和ADSCs組(=14)??瞻讓?duì)照組不做任何處理,PBS組和ADSCs組大鼠背部皮膚給予45Gy電子線(xiàn)照射,輻射后48h起,每72h完成1次注射,共5次,PBS組的大鼠注射1ml PBS,ADSCs組大鼠注射1ml含ADSCs的PBS,共注射5次。觀察大鼠皮膚大體形態(tài)及病理組織學(xué)損傷,進(jìn)行皮膚損傷評(píng)分,同時(shí)檢測(cè)大鼠皮膚組織內(nèi)炎癥因子mRNA表達(dá)水平變化。輻射后2d,兩組大鼠的Douglas and Fowler評(píng)分比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(0.05);輻射后4~10d,ADSCs組大鼠的Douglas and Fowler評(píng)分均顯著低于PBS組(0.05);至輻射后12d,兩組大鼠的Douglas and Fowler評(píng)分達(dá)到一致。輻射后2周,PBS組和ADSCs組大鼠均出現(xiàn)相同面積及相同程度的皮膚損傷;輻射后3周至處死前,ADSCs組大鼠皮膚損傷面積比值均顯著低于PBS組(0.05)。輻射后3周時(shí),PBS組和ADSC組大鼠皮膚內(nèi)的腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、白細(xì)胞介素(interleukin,IL)-6、IL-10、IL-1β,TNF-α等炎癥因子的mRNA水平均顯著高于其他時(shí)間點(diǎn)(<0.05),且顯著高于空白對(duì)照組(<0.05)。與PBS組相比,ADSC組TNF-α,IL-1β,IL-6水平均顯著降低(0.05),IL-10顯著升高(<0.05)。PBS組與ADSC組的NOS及Arg水平比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(>0.05)。H-ADSCs能有效促進(jìn)大鼠放射性皮膚損傷創(chuàng)面修復(fù),其機(jī)制可能是H-ADSCs促進(jìn)抑炎因子表達(dá)、降低促炎因子表達(dá),從而抑制炎癥反應(yīng)發(fā)揮生物學(xué)效應(yīng)。
人脂肪干細(xì)胞;放射性皮膚損傷;炎癥
隨著現(xiàn)代醫(yī)學(xué)的發(fā)展,放射治療逐漸成為重要的醫(yī)學(xué)治療手段,但常會(huì)導(dǎo)致不同程度的皮膚放射性損傷。目前在臨床對(duì)于輕中度放射性皮膚損傷的治療仍以藥物治療為主,但缺乏有效治療藥物;對(duì)于局部重度放射性皮膚損傷以外科手術(shù)為主,除此之外尚無(wú)其他有效的治療方法[1]。在皮膚放射性損傷后的愈合過(guò)程中,炎癥反應(yīng)是首要環(huán)節(jié),轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor β1,TGF-β1)是主要啟動(dòng)因子,成纖維細(xì)胞的活化是中心環(huán)節(jié),而脂肪組織參與創(chuàng)傷組織修復(fù)的全過(guò)程[2]。人源性脂肪干細(xì)胞(human adipose-derived stem cells,H-ADSCs)屬于間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs),具有多向分化潛能。但其來(lái)源廣泛、提取便捷、免疫源性更低。有研究表明,H-ADSC可以通過(guò)旁分泌、免疫調(diào)節(jié)、抗氧化等調(diào)節(jié)并干預(yù)炎癥反應(yīng),可能有助于創(chuàng)面的愈合過(guò)程[3]?;诖?,本研究對(duì)H-ADSCs在SD大鼠放射性皮膚損傷中的作用進(jìn)行觀察,從mRNA水平探討其干預(yù)創(chuàng)面局部炎癥反應(yīng)的機(jī)制,以期為臨床治療提供一定的理論依據(jù)。
健康雄性SD大鼠50只,體質(zhì)量(300±20)g,購(gòu)自上海斯萊克實(shí)驗(yàn)動(dòng)物有限公司[動(dòng)物實(shí)驗(yàn)許可證號(hào):SYXK(浙)2019-0030]。所有大鼠分籠飼養(yǎng),每籠1只,室溫為18~24℃,濕度約為40%~60%。放置于固定的12h光照、12h黑暗環(huán)境中,自由攝取食物和水,飼料及飲用水符合實(shí)驗(yàn)標(biāo)準(zhǔn)(動(dòng)物實(shí)驗(yàn)倫理審批號(hào):tzy-2020053)。
電子線(xiàn)加速器:美國(guó)瓦里安公司;光學(xué)顯微鏡:日本Olympus公司;一抗:英國(guó)Abcam公司;HE染色試劑盒及4%甲醛:武漢谷歌生物科技有限公司;流式細(xì)胞儀:美國(guó)Beckman公司;細(xì)胞培養(yǎng)箱:美國(guó)Thermo公司。
1.2.1 H-ADSCs的分離及培養(yǎng) 由水動(dòng)力吸脂患者提供正常健康的顆粒狀脂肪組織,經(jīng)倫理委員會(huì)同意及供者知情同意(倫理審批號(hào):K20230723);采用膠原酶Ⅰ充分消化脂肪組織后PBS懸浮離心,尼龍紗布過(guò)濾;PBS重懸離心,接種培養(yǎng)得到細(xì)胞外基質(zhì)血管組分(stromal vascular franctiongel,SVF);使用CD90和CD105作為表面標(biāo)志物對(duì)SVF進(jìn)行標(biāo)記,通過(guò)流式細(xì)胞儀檢測(cè)H-ADSCs比例,經(jīng)過(guò)細(xì)胞篩選得到原代H-ADSCs后繼續(xù)培養(yǎng)。
1.2.2 H-ADSCs的鑒定 光學(xué)顯微鏡下觀察脂肪干細(xì)胞的生長(zhǎng)特點(diǎn)及形態(tài);分別以CD90、CD105、CD73、CD29作為陽(yáng)性標(biāo)志,以CD11b、CD45、CD31、HLA作為陰性標(biāo)志,通過(guò)流式細(xì)胞儀鑒定H-ADSCs。
1.2.3 成脂/成骨分化誘導(dǎo) 選取第3代H-ADSCs,誘導(dǎo)H-ADSCs成脂分化,進(jìn)行油紅O染色,通過(guò)光學(xué)顯微鏡(×100)觀察,紅色為脂滴;成骨分化采用茜素紅S染色,通過(guò)光學(xué)顯微鏡(×100)觀察,紅色為鈣沉積。
1.2.4 動(dòng)物模型建立與H-ADSCs干預(yù) 選取5只雄性SD大鼠,采用隨機(jī)數(shù)字表法分成5組,每組3只,給予水合氯醛腹腔麻醉后接受輻射刺激(6MEV電子線(xiàn),23EX型直線(xiàn)加速器),非照射部位以鉛板屏蔽,照射面積40mm×50mm,源皮距100cm,吸收劑量率為750cGy/min,總劑量45Gy。各組大鼠分別于輻射后0周、1周、2周、3周、4周后處死并取組織標(biāo)本,通過(guò)熒光定量PCR檢測(cè)皮膚組織內(nèi)炎癥因子mRNA水平。選取35只雄性SD大鼠,采用隨機(jī)數(shù)字表法分為空白對(duì)照組(=7)、ADSCs組(=14)和PBSs組(=14)??瞻讓?duì)照組不做任何處理,其余所有兩組大鼠同上述方法進(jìn)行輻射干預(yù),輻射后48h起,對(duì)各組大鼠每72h進(jìn)行1次注射,共5次,其中ADSCs組注射1ml含600萬(wàn)個(gè)ADSCs的PBS懸液,PBS組注射1ml PBS溶液。隨機(jī)選取ADSCs組及PBS組各7只大鼠,于輻射后3周處死并取組織標(biāo)本,檢測(cè)皮膚組織內(nèi)炎癥因子mRNA水平并觀察蘇木精–伊紅(hematoxylin-eosin staining,HE)染色情況,ADSCs組和PBS組余下大鼠用于觀察皮膚照射損傷創(chuàng)面愈合情況。根據(jù)《急性放射性皮膚損傷分度診斷標(biāo)準(zhǔn)》[4]將皮膚損傷分為Ⅰ、Ⅱ、Ⅲ、Ⅳ度,采用Douglas and Fowler評(píng)分評(píng)估皮膚損傷嚴(yán)重程度,通過(guò)計(jì)算每只大鼠未愈合皮膚面積占原始皮膚輻照面積的比例,分析創(chuàng)面愈合速度。Douglas and Fowler評(píng)分方法如下:0分為正常皮膚;0.75分為輕微紅腫;1分為嚴(yán)重紅腫;1.75分為開(kāi)始脫毛;2分為脫毛面積為25%;2.25分為脫毛面積為33%;2.5分為脫毛面積為50%;2.75分為脫毛面積為66%;3分為脫毛面積>66%;3.25分為大部分區(qū)域脫毛且有滲出物;3.5分為大部分區(qū)域脫毛,有滲出物且表面有壞死。
1.2.5 HE染色和免疫組織化學(xué)染色 取大鼠皮膚組織于10%中性甲醛溶液固定,脫水包埋切片,滅活內(nèi)源性酶,展片后進(jìn)行HE染色;白片封閉山羊血清,在室溫作用20min后檢測(cè)抗體,4℃過(guò)夜,二抗37℃孵育,DAB顯色,蘇木精復(fù)染,二甲苯透明,封片,光鏡(×40)下觀察。
1.2.6 皮膚組織內(nèi)炎癥因子mRNA水平檢測(cè) 輻射后3周處死3組大鼠并取皮膚標(biāo)本,通過(guò)熒光定量PCR檢測(cè)皮膚組織內(nèi)炎癥因子mRNA水平。Trizol試劑抽提SD大鼠皮膚組織RNA,測(cè)定提取的RNA濃度及純度并定量,取等量RNA 5μl,在20μl逆轉(zhuǎn)錄體系中合成cDNA,以5μl cDNA為模板加入靶基因上下游引物,在25μl體系中進(jìn)行PCR擴(kuò)增。檢測(cè)組織中腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase, iNOS)、白細(xì)胞介素(interleukin,IL)-10、IL-6、IL-1β以及精氨酸酶1(arginase1,Arg1)的變化情況。引物序列見(jiàn)表1。
表1 引物序列
使用CD90和CD105作為表面標(biāo)志物對(duì)SVF進(jìn)行標(biāo)記,可見(jiàn)SVF中含有約五分之一的H-ADSCs。培養(yǎng)24h后貼壁細(xì)胞大多為干細(xì)胞,含部分其他細(xì)胞。培養(yǎng)至第3代ADSCs,鏡下可見(jiàn)細(xì)胞形態(tài)全為梭形,見(jiàn)圖1。所提細(xì)胞表面分子檢測(cè)結(jié)果顯示CD90、CD105、CD73、CD29陽(yáng)性表達(dá),CD11b、CD45、CD31、HLA無(wú)表達(dá),鑒定其為H-ADSCs,見(jiàn)圖2。取第3代細(xì)胞進(jìn)行成脂誘導(dǎo),H-ADSCs變?yōu)閳A形,細(xì)胞間質(zhì)中出現(xiàn)脂滴,油紅O染色后脂質(zhì)變紅;進(jìn)行成骨誘導(dǎo),H-ADSCs變?yōu)椴灰?guī)則形狀,見(jiàn)基質(zhì)中鈣鹽沉積,重疊生長(zhǎng),見(jiàn)圖3。
圖1 H-ADSCs細(xì)胞形態(tài)(×200)
輻射后2d,兩組大鼠的Douglas and Fowler評(píng)分比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(0.05);輻射后4~10d,ADSCs組大鼠的Douglas and Fowler評(píng)分均顯著低于PBS組(0.05);至輻射后12d,兩組大鼠的Douglas and Fowler評(píng)分達(dá)到一致,見(jiàn)圖4。
圖2 H-ADSCs表面分子表達(dá)
A~D.分別為CD90、CD105、CD73、CD29陽(yáng)性表達(dá);E~H.分別為CD11b、CD45、CD31、HLA陰性表達(dá)
圖3 H-ADSCs的成脂/成骨誘導(dǎo)分化(×100)
A.成脂誘導(dǎo);B.成骨誘導(dǎo)
輻射后2周,PBS組和ADSCs組大鼠均出現(xiàn)相同面積及相同程度的皮膚損傷,照射區(qū)域皮膚表面潮濕,毛發(fā)呈棕黃色,部分毛發(fā)脫落,輕輕觸碰有明顯痛覺(jué)反應(yīng),表皮極易撕脫,符合Ⅳ度放射性皮膚損傷表征。其中ADSCs組大鼠輻射刺激的邊緣區(qū)域最先出現(xiàn)瘢痕化,瘢痕化面積及瘢痕化速度超出PBS組大鼠。輻射后3周至處死前,ADSCs組大鼠皮膚損傷面積比值均顯著低于PBS組(0.05),見(jiàn)圖5。
圖4 ADSCs組與PBS組大鼠Douglas and Fowler評(píng)分比較
注:*<0.05
輻射后3周時(shí),PBS組和ADSC組大鼠皮膚內(nèi)的TNF-α、IL-1β,IL-6、IL-10、iNOS等炎癥因子的mRNA水平均顯著高于其他時(shí)間點(diǎn)(<0.05),且顯著高于空白對(duì)照組(<0.05),見(jiàn)圖6。
輻射后3周,與PBS組相比,ADSC組TNF-α,IL-1β,IL-6水平均顯著降低(0.05),IL-10顯著升高(<0.05)。PBS組與ADSC組的NOS及Arg水平比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(>0.05)。PBS組和ADSC組各指標(biāo)均顯著高于空白對(duì)照組(<0.05),見(jiàn)圖7。
圖5 ADSCs組與PBS組大鼠皮膚損傷面積比較
注:*<0.05
鏡下觀察發(fā)現(xiàn)ADSCs組大鼠背部皮膚染色后仍可見(jiàn)清晰的層次及相關(guān)附屬器,而PBS組表皮破碎撕脫,組織結(jié)構(gòu)不清,真皮層結(jié)構(gòu)排列紊亂,見(jiàn)圖8。
圖6 輻射刺激后1~4周SD大鼠皮膚組織內(nèi)炎癥因子表達(dá)水平
圖7 輻射刺激后3周SD大鼠皮膚組織內(nèi)炎癥因子表達(dá)水平
注:*<0.05
圖8 SD大鼠皮膚組織HE染色(×40)
A.PBS組;B.ADSC組
近年來(lái)對(duì)于H-ADSCs促進(jìn)各類(lèi)創(chuàng)傷修復(fù)的臨床及實(shí)驗(yàn)研究日益增多。H-ADSCs來(lái)源廣泛、提取便捷且免疫源性更低,具有更為廣泛的使用前景和推廣價(jià)值。近期研究表明,脂肪、骨及臍帶來(lái)源干細(xì)胞均可通過(guò)降低促炎因子表達(dá)發(fā)揮其生物學(xué)功能,而ADSCs對(duì)細(xì)胞的損傷保護(hù)作用優(yōu)于骨、臍帶來(lái)源干細(xì)胞,能減輕和修復(fù)放射性損傷引起的正常腸、唾液腺、肝臟、皮膚、肺和心肌等組織損傷[5]。
本研究結(jié)果顯示,接受45Gy輻射后的大鼠均出現(xiàn)Ⅳ度放射性皮膚損傷,進(jìn)行H-ADSCs干預(yù)后發(fā)現(xiàn),H-ADSCs不僅可延緩放射性皮膚損傷出現(xiàn)的進(jìn)程,還可以加速創(chuàng)面的愈合。有研究認(rèn)為輻射刺激皮膚后可介導(dǎo)相關(guān)炎癥介質(zhì)的表達(dá),并通過(guò)經(jīng)典的S-mad途徑參與組織纖維化進(jìn)程,進(jìn)而干預(yù)皮膚的修復(fù)過(guò)程[6]。研究也證實(shí),ADSCs可通過(guò)降低血清中IL-4,IL-6水平非特異性下調(diào)Th2型免疫反應(yīng)[7],還可通過(guò)在mRNA水平上/下調(diào)干擾素表達(dá)及上調(diào)IL-10,轉(zhuǎn)錄因子P3表達(dá)從而減輕移植反應(yīng)[8]。在創(chuàng)傷環(huán)境下,ADSCs可以分泌TNF-α,IL-6,IL-8等調(diào)節(jié)細(xì)胞的增殖、黏附、遷移、分化,影響創(chuàng)傷的愈合進(jìn)程,為局部創(chuàng)面的愈合提供良好的微環(huán)境[9-10]。巨噬細(xì)胞在炎癥反應(yīng)微環(huán)境中起到了功能性作用,M1型與M2型巨噬細(xì)胞的分化誘導(dǎo)以及環(huán)境變化中的相互轉(zhuǎn)換是免疫系統(tǒng)中的重要組成成分,通過(guò)對(duì)TNF-α、IL-1β,IL-6、IL-10、iNOS等炎癥因子mRNA水平表達(dá)的檢測(cè),有助于更好的了解H-ADSCs對(duì)炎癥微環(huán)境的干預(yù)作用。
本研究結(jié)果顯示,受輻射大鼠出現(xiàn)了紅腫、脫屑、褪毛、潰瘍形成等一系列炎癥反應(yīng),且照射區(qū)域表皮增厚,膠原結(jié)構(gòu)紊亂,附屬器破壞消失,TNF-α,IL-1β,IL-6等炎癥因子表達(dá)顯著增加。通過(guò)給予外源性的H-ADSCs能夠有效減輕大鼠放射性皮膚損傷局部的炎癥反應(yīng),減少照射區(qū)域炎性細(xì)胞浸潤(rùn)及炎癥誘導(dǎo)的組織損傷。輻射后3周,皮膚組織內(nèi)TNF-α,IL-1β,IL-6,IL-10,iNOS及Arg-1出現(xiàn)顯著升高,給予外源性的H-ADSCs可從mRNA水平上降低促炎因子TNF-α,IL-1β,IL-6表達(dá),并促進(jìn)抑炎因子IL-10表達(dá)增加。
綜上所述,H-ADSCs可通過(guò)抑炎反應(yīng)減輕SD大鼠皮膚放射性損傷。但目前臨床上缺少明確的對(duì)于放射性損傷的治療方法,亦缺少早期評(píng)估診療手段,期望本研究可為臨床提供一定的理論依據(jù)。
[1] 楊飛,謝衛(wèi)國(guó),張偉, 等. 放射性潰瘍嚴(yán)重程度分型及臨床治療分析[J]. 組織工程與重建外科雜志,2022,18(1): 62–65.
[2] BRETT A, RENEE R,OMER M,et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair[J]. Cell Stem Cell. 2020, 26(6): 880–895.
[3] DARé R G, OLIVEIRA M M, TRUITI M C T, et al. Abilities of protocatechuic acid and its alkyl esters, ethyl and heptyl protocatechuates, to counteract UVB-induced oxidative injuries and photoaging in fibroblasts L929 cell line[J].Photochem Photobiol B, 2020, 203(1): 111771.
[4] 中華人民共和國(guó)衛(wèi)生部. 急性放射性皮膚損傷分度診斷標(biāo)準(zhǔn): GBZ106—2016[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2002.
[5] SHOLOGU N, SCULLY M, LAFFEY J,et alHuman mesenchymal stem cell secretome from bone marrow or adipose-derived tissue sources for treatment of hypoxia- induced pulmonary epithelial injury[J]. Int J Mol Sci, 2018, 19(10): 2996–3017.
[6] SALVOLINI E, LUCARINI G, ZIZZI A, et al. Human skin-derived mesenchymal stem cells as a source of VEGF and nitric oxide[J]. Arch Dermatol Res, 2010, 302(5): 367–374.
[7] BAO M, LIU Y, WANG Y, et al. Application of human umbilical cord mesenchymal stem cells in the regeneration of skin injury in a case who was exposed to Iodine-192 source accident in Nanjing[J]. Chin J Radiol Med Prot, 2016, 36(5): 22.
[8] SALVO N, BARNES E, DRAANEN J, et al. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature[J]. Curr Oncol, 2010, 17(4): 94–112.
[9] LIU T, ZHANG Y, SHEN Z, et alImmunomodulatory effects of OX40Ig gene-modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation [J]. Int J Mol Med, 2017, 39: 144–152.
[10] WANG P, ZHANG S, MENG Q, et alTreatment and application of stem cells from different sources for cartilage injury: a literature review[J]. Ann Transl Med, 2022, 10(10): 610.
Inflammatory repair effects of human adipose-derived stem cells promotion on radiodermal skin injury in SD rats probed at the mRNA level
Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province, Taizhou 317000, Zhejiang, China
To investigate the role and inflammatory mechanism of human adipose-derived stem cells (H-ADSCs) in radiological skin injury in SD rats at the mRNA level.Selected 15 SD rats were divided into 5 groups of 3 rats each according to the random number table method. The rats in each group were irradiated with 45Gy electron beams on the back skin, and were executed and tissue specimens were taken at 0, 1, 2, 3 and 4 weeks after irradiation, respectively, to detect the mRNA levels of inflammatory factors in the skin tissues. A total of 35 SD rats were selected and divided into blank control group (=7), PBS group (=14) and ADSCs group (=14) according to the random number table method. Blank control without any treatment, the remaining rats were subjected to electron beam irradiation. After the back skin of SD rats in the PBS and ADSCs groups were irradiated with 45Gy electron ray, the rats in PBS group were injected with 1ml PBS, and the rats in ADSCs group were injected with 1ml PBS containing ADSCs for five times. Observed the gross morphology and pathological histological damage of rat skin, scored the skin damage, and also detected the changes of mRNA expression levels of inflammatory factors in rat skin tissues.At 2 days post-irradiation, the Douglas and Fowler scores of rats in the two groups were compared, and the difference was not statistically significant (>0.05). From 4-10 days post-irradiation, the Douglas and Fowler scores of rats in the ADSCs group were significantly lower than those in the PBS group (<0.05). By 12 days post-irradiation, the Douglas and Fowler scores of the two groups reached the same level. At 2 weeks post-irradiation, rats in the PBS and ADSCs groups showed the same area and degree of skin damage. At 3 weeks post-irradiation and before execution, the ratio of the area of skin damage in the ADSCs group was significantly lower than that in the PBS group (<0.05). Tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, IL-10, IL-1β, and TNF-α were found in the skin of rats in the PBS and ADSC groups at 3 weeks after radiation, the mRNA levels of which were significantly higher than those of other time points (<0.05) and significantly higher than those of the blank control group (<0.05). Compared with the PBS group, the levels of TNF-α, IL-1β, and IL-6 were significantly lower in the ADSC group (<0.05), and IL-10 was significantly higher (<0.05). Comparing the levels of NOS and Arg in the PBS group and the ADSC group, the differences were not statistically significant (>0.05).H-ADSCs can effectively promote the repair of radioactive skin injury wounds in SD rats, and the mechanism may be that H-ADSCs exert biological effects by promoting the expression of anti-inflammatory factors and decreasing the expression of pro-inflammatory factors, thus inhibiting the inflammatory response.
Human adipose-derived stem cells; Radiation-induced skin injury; Inflammation
R818
A
10.3969/j.issn.1673-9701.2023.23.007
臺(tái)州市社會(huì)發(fā)展科技計(jì)劃項(xiàng)目(21ywa10)
曹衛(wèi)紅,電子信箱:caoweihong@hotmail.com
(2022–09–16)
(2023–07–25)