• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis①

    2018-03-12 08:40:49YIMingZHAORuXiaWANGDunQiuXIAOYu
    結(jié)構(gòu)化學(xué) 2018年2期

    YI Ming ZHAO Ru-Xia WANG Dun-Qiu XIAO Yu

    ?

    A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis①

    YI Ming ZHAO Ru-Xia WANG Dun-Qiu②XIAO Yu②

    (541004)

    room temperature synthesis; dinuclear zinc polymer; crystal structure; luminescence; Hirshfeld surface analysis;

    1 INTRODUCTION

    The rational design and syntheses of novel coor- dination polymers (CPs) have achieved considera- ble progress in the field of supramolecular che- mistry and crystal engineering, owing to their fascinating structural diversities and potential applications, such as sensor technology[1], separa- tion processes[2, 3], gas storage[4, 5]luminescence[6, 7], ion exchange[8]magnetism[9–13], catalytic mate- rials[14], analytic crystal structures[15]and electro- chemiluminescence(ECL)[16]. Many complexes with novel structures and interesting physical properties have been constructed through organic ligands, which contain different functional groups, such as-donor (COOH, PO3H2, SO3H, OH)[18–20]and-donor (4,4?-bipy, 2,2?-bipy, 1,10-phen, Schiff base ligands)[21–23]. The design and synthesis of new coordination polymers based on the Hmhbd ligand have attracted considerable attention due to both structures and fascinating properties[24–30]. As is well known, Hmhbd ligand has been reported offour coordination modes including3:2:2:1(Scheme 1a)[24],1:1:1(Scheme 1b)[25, 26],2:1:2:1(Scheme 1c)[27–29]and4:3:2:1(Scheme 1d)[30].

    Scheme 1. Coordination modes of Hmhbd

    To facilitate the use CPs in these applications, many researches are focused on the generation of new structures and functionalization, as well as synthesis methods[31]. Undoubtedly, the synthesis condition is one important parameter that is invol- ved in the applicability and property determination of CPs materials. The solvothermal procedure is used most frequently to synthesize CPs and the quality of the obtained crystals is mostly suitable for crystal analysis (single-crystal X-ray diffraction). On the other hand, solvothermal synthesis of CPs is time-(days to weeks) and energy-(heating system) consuming before CPs materials can be obtained. Several new developed methods are more efficient, such as mechanochemical[32, 33]and microwave assisted methods[9, 10, 12, 18, 34]. However, these methods have special requirement for the reactors or apparatus. The solvothermal procedure is even more disadvantageous since certain starting materials are unstable at high temperature and sensitive to the reaction environment. By com- parison, the room-temperature synthesis method has the pronounced advantages of low energy cost, easy and inexpensive apparatus, and even short reaction time. In recent years, many coordination complexes, such as CPs, MOFs, clusters have been synthesized under the ambient temperature or room temperature[35–39].

    Recently, Hirshfeld surface analysis as a useful tool described the surface characteristics of the crystal structures[40]. Thenormsurface is used for describing the very close intermolecular interactions in the crystals using a red-white-blue color scheme. Another important supplement for the Hirshfeld surface is the 2-D fingerprint plots. It quantitatively analyzes the nature and type of intermolecular interactions between the molecules inside the crystal[40]. Hirshfeld surface analysis and the 2-D fingerprint plot have been rapidly gaining promi- nence as a powerful technique in exploring the inter- molecular interactions of crystals[13, 16, 41-45].Herein, a dinuclear zinc ploymer [Zn2(mhbd)2(dca)2]nhas been synthesized under room temperature. Hirshfeld surface analysis and the 2-D fingerprint plot of 1 were also studied.

    2 EXPERIMENTAL

    2. 1 Synthesis of [Zn2(mhbd)2(dca)2]n (1)

    A mixture of Zn(ClO4)2·6H2O (0.279 g, 0.75 mmol), Hmhbd (0.114 g, 0.75 mmol), NaN(CN)2(0.133 g, 1.5 mmol), and methanol (10 mL) with a pH adjusted to 7.5 by the addition of triethylamine was stirred for 30 min at room temperature. The resulting solution was left at room temperature and colorless crystals of 1 were obtained after 3 d (yield: 83 mg,. 39.16% based on Hmhbd). Anal. Calcd. (%) for C20H14N6O6Zn2: C, 42.50; H, 2.50; N, 14.86. Found (%): C, 42.45; H, 2.57; N, 14.95. IR (KBr, cm?1): 3440 m, 2801 s, 2334 m, 2271 m, 2214 s, 1640 s, 1555 m, 1473 s, 1304 s, 1216 s, 1083 m, 965 m, 854 w, 731 m, 508 w, 417 w.

    2. 2 Structure determination

    The diffraction data were collected on an Agilent G8910A CCD diffractometer with graphite mono- chromated Mo-radiation (= 0.71073 ?), using thescan mode in the range of 3.62≤≤26.95°. Raw frame data were integrated with the SAINT program[46]. The structure was solved by direct methods using SHELXS-97[46]and refined by full-matrix least-squares on2using SHELXS- 97[46]. An empirical absorption correction was applied with the program SADABS[46]. All non- hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined as riding. Selected bond lengths and bond angles for 1 are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    Symmetry transformation: (A),, 1;(B) 1,,

    2. 3 Hirshfeld surface calculations of 1

    Molecular Hirshfeld surface calculations were performed by using the CrystalExplorer program[47]. When the CIF file of 1 is read into the Crystal- Explorer program, all bond lengths to hydrogen were automatically modified to the typical standard neutron values (C–H = 1.083 ?). In this study, all the Hirshfeld surfaces were generated using a high (standard) surface resolution. The 3Dnormsurfaces were mapped by using a fixed color scale of 0.76 (red) to 2.4 (blue). The 2D fingerprint plots were displayed by using the standard 0.4~2.6 ? view with thedandddistance scales displayed on the graph axes[48].

    3 RESULTS AND DISCUSSION

    3. 1 Description of the crystal structure

    Fig. 1. Structure of 1, symmetry codes: (a) –, –, 1–; (b) 1–, –, –. All hydrogen atoms were omitted

    Complex 1 constructs double chains through double1,5-dca bridges. It must be noted that the distances of Zn(1)···Zn(2a) and Zn(1)···Zn(2b) (symmetry code: (b) 1 –, –, –z) in the chain are 8.060(1) and 8.190(1) ?, respectively. The 1D chains further formed 2D layer through C–H···O hydrogen bonds (C(7)–H(7C)···O(6I), 3.392 ?, C(15)–H(15C)···O(3II), 3.367 ?, symmetry codes: (I) 1 +,– 1,, (II),– 1,, Fig. 2b). The weakstacking extends the 2D layers into a 3D supramolecular framework (Fig. 2a). Herein,distances are 3.795(1) and 3.792(1) ?, respectively. It must be noted thatdistances between the C(1)-C(6) and {C(1)-C(6)}irings is 3.795(1) whiledistances between the C(9)–C(14) and {C(9)–C(14)}iirings is 3.792(1) ? (symmetry codes: (i) 1 –, –, 1 –, (ii) –, –, –. Fig. 3).

    Fig. 2. 3-D network of 1 (a); 2-D layers of 1(b)

    Fig. 3.interaction of 1

    3. 2 Luminescent property

    In this study, luminescent property of complex 1 and the free Hmhbd ligand have been investigated in DMF solvent with the concentrations of 4 × 10–6and 8 × 10–6mol·L–1, respectively, as shown in Fig. 4. Upon photoexcitation at 375 nm, the free ligand Hmhbd is green luminescent with the maximum at 500 nm predominantly assigned to*→transition luminescence. With photoexcitation at 375 nm, 1 also exhibits a green luminescent emission band at 465 nm. ? The emission at 465 nm probably originates from metal-to-ligand charge transfer (MLCT)[53]. Complex 1 represents a novel qualita- tive change of luminescence property resulted from the interaction between metal ion and ligand. The ligand Hmhbd has relatively larger-conjugated system of benzene ring and phenolato oxygen, aldehyde oxygen, and methoxy oxygen donors forming4:1:2:1-dentate coordinate to two zinc ions which benefits the charge transfer from Zn ion to mhbd ligands. At the same time, the 310electric structure of Zn ion benefits from metal-to-ligand charge transfer. As a result, the luminescence intensity of complex 1 is much higher than that of the Hmhbd ligand. In addition, the chelation of the ligand to metal ion increases their rigidity and thus reduces the loss of energy by thermal vibration decay. At last, the result indicates that the fluorescence intensity of complex 1 is forty-one times the fluorescence intensity of Hmhbd ligand. Complex 1 may be a good candidate for useful photoactive material due to its strong luminescent emissions.

    Fig. 4. Luminescent of 1 and the free Hmhbd ligand

    3. 3 IR spectrum property

    The IR spectral data of the ligand Hmhbd and complex 1 are shown in Fig. 5. Contrast to the Hmhbd ligand, complex 1 shows three new strong characteristic stretching vibrations (2334, 2271, 2214 cm–1) which may be assigned to the1,5-1:1coordination mode of the dca bridged ligand[24]. The vibration bands at 2801 cm–1for 1 and 2844 cm–1for the Hmhbd ligand were observed, which are attributable to the saturation -CH2- stretching frequency in 1 and the Hmhbd ligand. The band at 3440 cm–1stretching vibration may be attributed to the intermolecular hydrogen bonds (C7–H7C···O6I, 3.392 ?, C15–H15C···O3II, 3.367 ?). It is signi- ficant that the band at 1653 cm–1is attributable to the carbonyl bond(C=O) of the free Hmhbd ligand[54–56]which red shifts to 1640 cm–1for 1. The results indicate that the aldehydo oxygen of the Hmhbd ligand is coordinated[6, 30]. The bond originating from the C–O stretching vibrations of the free Hmhbd ligand at 1254 cm–1exhibit red shifts to 1216 cm–1for 1, suggesting its partici- pation in chelation[6, 57]. At very low frequencies (510~440 cm–1), two weak bands at 417 and 508 cm–1were observed from Zn–N and Zn–O bonds, respectively. The IR attribution is consistent with the crystal structure determination.

    3. 4 Hirshfeld surface analysis

    Hirshfeld surface analysis and 2D fingerprint plots are often used to identify the types of the intermolecular interactions and the proportion of this interaction. It is a useful tool for describing the surface characteristics of the molecules in the crystals. The molecular Hirshfeld surface (norm) of complex 1 is shown in Fig. 6a. They clearly show the influences of different relationship on the intermolecular interactions of complex 1. The large and deep red spots on the 3D Hirshfeld surfaces indicate the close-contact interactions. Herein, the red spots mean the Zn–N coordination bonds.

    The 2D fingerprint plotsare used for quan- titatively analyzing the nature and type of intermo- lecular interactions between the molecules inside the crystal (Fig.6b–6h). The fingerprint plots can be decomposed to highlight particular close contacts between the elements. This decomposition enables separation of contributions from different interac- tion types, which overlap in the full fingerprint. For 1, C···H interactions have the most significant contribution (26.1%) to the total Hirshfeld surface. They are reflected in the middle of scattered points in the 2D fingerprint plots. The N···H intermo- lecular interactions have 24.0% contribution to the total Hirshfeld surface. The H···H intermolecular interactions appear as an acanthosphere in the 2D fingerprint plots, which have 16.3% contribution to the total Hirshfeld surface. TheO···H intermo- lecular interactions have 10.0% contribution to the total Hirshfeld surface, including C–H···O hydro- gen bonds. In addition, the C···C intermolecular interactions have 7.6% contribution to the total Hirshfeld surface which mainly includeinteractions. It must be noted that the maximum interaction for each kind interaction is labeled in Fig.6c–6h (red ring). In general, it is obvious that the maincontacts in complex1 are C···H and N···H interactions (Fig.7).

    Fig. 5. IR of 1 and the free Hmhbd ligand

    Fig. 6. Hirshfeld surface mapped with dnorm (a); 2D finger print plot for 1(b–h)

    Fig. 7. Hirshfeld surface calculations for 1

    4 CONCLUSION

    At room temperature, a dinuclear zinc polymer [Zn2(mhbd)2(dca)2]nwas synthesized which is astraightforward and energy-saving procedure to produce CPs. Complex 1 presents a double 1-Dchain linked by the dca ligand which further constructs a 2-D layer through hydrogen bonds.The 2-D layer formed a 3-D framework thoughstacking. In 1, the mhbd ligand displays a2:1:2:1-mhbd coordination mode, while the dca group does a1,5-dca coordination mode. The result indicates that the fluorescence intensity of complex 1 is forty-one times the fluorescence intensity of Hmhbd ligand. Complex 1may be a good candidate for useful photoactive material. Hirshfeld surface analysis indicates thatthe mainly contacts in complex 1 are C···H and N···H interactions.

    (1) Wu, C.D.; Hu, A.; Zhang, L.; Lin, W. B. A Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis.. 2005, 127, 8940–8941.

    (2) Lee, E.Y.; Jang, S.Y.; Suh, M. P.Multifunctionality and crystal dynamics of a highly stable, porous metal-organic framework [Zn4O(NTB)2].. 2005,127, 6374–6381.

    (3) Dybtsev, D.N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. Microporous manganese formate:?asimple metal-organic porous material with high framework stability and highly selective gas sorption properties..2004, 126, 32–33.

    (4) Ma, L.F.; Wang, L.Y.; Huo, X.K.; Wang, Y.Y.; Fan, Y.T.; Wang, J.G.; Chen,S.H.Chain, pillar, layer, and different pores: a-[(3-carboxyphenyl)-sulfonyl]glycine ligand as a versatile building block for the construction of coordination polymers.2008, 8, 620–628.

    (5) Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks.2003, 300, 1127–1129.

    (6) Zhang, S.H.; Zhao, R.X.; Li, G.; Zhang, H.Y.; Huang, Q.P.; Liang, F.P.Room temperature syntheses, crystal structures and propertiesof two new heterometallic polymers based on3-ethoxy-2-hydroxybenzaldehyde ligand.2014, 220, 206–212.

    (7) Zhao, B.; Gao, H.L.; Chen, X.Y.; Cheng, P.; Shi, W.; Liao, D.Z.; Yan, S.P.; Jiang, Z. H. A promising MgII-ion-selective luminescent probe: structures and properties of Dy–Mn polymers with high symmetry.2006, 12, 149–158.

    (8) Min, K.S.; Suh, M.P.Silver(I)-polynitrile network solids for anion exchange:? anion-induced transformation of supramolecular structure in the crystalline state.2000, 122, 6834–6840.

    (9) Wang, W.; Hai, H.; Zhang, S. H.; Yang, L.; Zhang, C. L.; Qin, X. Y. Microwave-assisted synthesis, crystal structure and magnetic behavior of a schiff base heptanuclear cobalt cluster.. 2014, 25, 357–365.

    (10) Huang, Q.P.; Li, G.; Zhang, H. Y.; Zhang, S.H.; Li, H.P.Microwave-assisted synthesis, structure, and properties of a heptanuclear cobalt cluster with 2-ethyliminomethyl-6-methoxy-phenol.2014, 640, 1403–1407.

    (11) Yang, L.; Zhang, S.H.; Wang, W.; Guo, J.J.; Huang, Q. P.; Zhao, R.X.; Zhang, C.L.; Muller, G. Ligand induced diversification from tetranuclear to mononuclear compounds: syntheses, structures and magnetic properties.2014,74, 49–56.

    (12) Huang,Q.P.; Zhang, S.H.; Zhang, H.Y.; Li, G.; Wu, M.C.Microwave-assisted synthesis, structure and properties of a nano-double-bowl-like heptanuclear nickel(II) cluster.2014, 25, 1489–1499.

    (13) Zhang, H.Y.; Li, Y.; Wang, W.; Zhang, X.Q.; Wang, J.M.; Zhang, S.H.Tetranuclear nickel(II) clusters: syntheses, crystal structures, magnetic properties and Hirshfeld surface analysis.2016, 69, 1938–1948.

    (14) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y.; Kim, K.A homochiral metal-organic porous material for enantioselective separation and catalysis.2000,404, 982–986.

    (15) Lee, S.; Kapustin, E.; Yaghi, O. M.Coordinative alignment of molecules in chiral metal-organic frameworks.2016, 353, 808–811.

    (16) Zhang, S. H.; Wang, J. M.; Zhang, H. Y.; Fan, Y. P.; Xiao, Y. Highly efficient electrochemiluminescence based on 4-amino-1,2,4-triazole Schiff base two-dimensional Zn/Cd coordination polymers.2017, 46, 410–419.

    (17) Siman, P.; Trickett, C. A.; Furukawa, H.; Yaghi, O. M.L-aspartate links for stable sodium metal-organic frameworks..2015, 51, 17463–17466.

    (18) Lin, S.; Diercks, C.S.; Zhang, Y.B.; Kornienko, N.; Nichols, E.M.; Zhao, Y.; Paris, A.R.; Kim, D.; Yang, P.;Yaghi, O.M.; Chang, C.J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2reduction in water.2015, 349, 1208–1213.

    (19) Jiang, J.; Yaghi, O. M.Br?nsted acidity in metal-organic frameworks..2015, 115, 6966–6997.

    (20) Choi, K. M.; Na, K.; Somorjai, G.A.; Yaghi, O.M.Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal-organic frameworks.2015, 137, 7810–7816.

    (21) Yang, L.; Guo, J.J.; Zhang, C. L.; Zhang, S. H.Syntheses, crystal structure, and properties of a newCo(II) coordination polymer constructed from 1,10–phenanthroline.2015,45, 1112–1115.

    (22) Zhang, S.H.; Li, G.; Zhang, H.Y.; Li, H.P. Microwave-assisted synthesis, structure andproperty of a spin-glass heptanuclear nickelcluster with 2-iminomethyl-6-methoxy-phenol.2015, 230, 479–484.

    (23) Xiao, Y.; Huang, P.; Wang, W.Ligand structure induced diversification from dinuclear to 1D chain compounds: syntheses, structures and fluorescence properties.. 2015, 26, 1091–1102.

    (24) Yang, X.P.; Jones, R.A.; Wiester, M.J.A nanoscale slipped sandwich of Tb10-stabilization of a benzaldehyde methyl hemiacetyl.2004, 1787–1788.

    (25) Costes, J. P.; Vendier, L.Structural and magnetic studies of new NiII–LnIIIcomplexes.2010, 2768–2773.

    (26) Zhang, S.H.; Zhang, Y.D.; Zou, H.H.; Guo, J.J.; Li, H.P.; Song, Y.; Liang, H.A family of cubane cobalt and nickel clusters: syntheses, structures and magnetic properties.2013, 396, 119–125.

    (27) Zhang, S.H.; Li, N.; Ge, C.M.; Feng, C.; Ma, L.F.Structures and magnetism of {Ni2Na2}, {Ni4} and {Ni6IINiIII} 2-hydroxy-3-alkoxy- benzaldehyde clusters.. 2011, 40, 3000–3007.

    (28) Costes, J.P.; Dahan, F.; Nicodeme, F.A trinuclear gadolinium complex:? structure and magnetic properties.2001, 40, 5285–5287.

    (29) Chaudhari,A.K.; Joarder, B.; Rivière, E.; Rogez, G.; Ghosh, S.K.Nitrate-bridged “pseudo-double-propeller”-type lanthanide(III)-copper(II) heterometallic clusters: syntheses, structures, and magnetic properties.2012, 51, 9159–9161.

    (30) Lalia-Kantouri, M.; Papadopoulos, C.D.; Hatzidimitriou, A.G.; Skoulika, S.Hetero-heptanuclear (Fe-Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8·Νa5]·3OH·8H2Ο.2009,20, 177–184.

    (31) Kitagawa, S.; Kitaura, R.; Noro, S.I.Functional porous coordination polymers.2004,43, 2334–2375.

    (32) Do, J.L.; Mottillo, C.; Tan, D.; ?trukil, V.; Fri??i?, T.Mechanochemical ruthenium-catalyzed olefin metathesis..2015, 137, 2476–2479.

    (33) Karthikeyan, S.; Potisek, S.; Piermattei, A.; Sijbesma, R.P.Highly efficient mechanochemical scission of silver-carbene coordination polymers.2008, 130, 14968–14969.

    (34) Zhang,S.H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; liang, H.Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(II) cluster.2014, 67, 3155–3166.

    (35) Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M.Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0.2008, 64, 8553–8557.

    (36) Zhao, R.X.; Zhang, J.L.; Zhang, S.H.; Zhang,H.Y.Room temperature synthesis, crystal structure, and properties of a new heterometallic one-dimensional Cu–Na polymer.2016, 46, 1462–1467.

    (37) Zhou, K.; Chaemchuen, S.; Wu, Z.X.; Verpoort, F.Rapid room temperature synthesis forming pillared metal-organic frameworks with Kagomé net topology..2017, 239,28–33.

    (38) Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J.Room-temperature synthesis of manganese oxide monosheets..2008, 130, 15938–15943.

    (39) Zhao, R. X.; Zhang, S. H.; Zhang, H. Y.; Li, G.; Ding, G. H.; Li, H. P. Room temperature synthesis, crystal structure and magnetic property of a two-dimensional copper(II) polymer bridged by end-on and end-to-end azide bridges.2015, 26, 949–958.

    (40) Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis.. 2009, 11, 19–32.

    (41) Zhang, H. Y.; Xiao, Y.; Zhu, Y. A novel copper(II) complex based on 4-Amino-1,2,4-triazole Schiff-base: synthesis, crystal structure, spectral characterization, and Hirshfeld surface analysis.. 2017, 36, 848-855.

    (42) Zhang, H. Y.; Wang, W.; Chen, H.; Zhang, S.-H.; Li, Y. Five novel dinuclear copper(II) complexes: crystal structures, properties, Hirshfeld surface analysis and vitro antitumor activity study.2016, 453, 507-515.

    (43) Luo, Y. H.; Zhang, C. G.; Xu, B.; Sun, B. W. A cocrystal strategy for the precipitation of liquid 2,3-dimethyl pyrazine with hydroxyl substituted benzoic acid and a Hirshfeld surfaces analysis of them.2012, 14, 6860–6868.

    (44) Seth, S. K.; Saha, I.; Estarellas, C.; Frontera, A.; Kar, T.; Mukhopadhyay, S. Supramolecular self-assembly of M-IDA complexes involving lone-pair···π interactions: crystal structures, Hirshfeld surface analysis, and DFT calculations (H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)).. 2011, 11, 3250–3265.

    (45) Feng, C.; Ma, Y. H.; Zhang, D.; Li, X. J.; Zhao, H. Highly efficient electrochemiluminescence based on pyrazolecarboxylic metal organic framework.. 2016, 45, 5081–5091.

    (46) Sheldrick, G. M.A short history of SHELX.2008, A64, 112–122.

    (47) Wolff, S.; Grimwood, D.; McKinnon, J.; Jayatilaka, D.; Spackman, M. Crystal explorer.2007, 377.

    (48) Spackman, M.A.; McKinnon, J.J.Fingerprinting intermolecular interactions in molecular crystals.2002, 4, 378–392.

    (49) Lo, W.K.; Wong, W.K.; Guo, J.P.; Wong, W.Y.; Li, K.F.; Cheah, K.W. Synthesis, structures and luminescent properties of new heterobimetallic Zn–4schiff base complexes.2004, 357, 4510–4521.

    (50) Wang, J.; Lin, Z.J.; Ou, Y.C.; Yang, N.L.; Zhang, Y.H.; Tong, M.L.Hydrothermal synthesis, structures, and photoluminescent properties of benzenepentacarboxylate bridged networks incorporating Zinc(II)?hydroxide clusters or Zinc(II)?carboxylate layers.. 2008,47, 190–199.

    (51) Zhang, Y. D.; Zhang, S. H.; Ge, C. M.; Wang, Y. G.; Huang, Y. H.; Li, H. P. Synthesis and crystal structures of two heterobinuclear nickel polymers [NiNaL(dca)]nand[NiNaL(dca)]2n·(CH3COOCH3)n·(H2O)n.2013, 43, 990–994.

    (52) Lin, H. H.; Mohanta, S.; Lee, C. J.; Wei, H. H.Syntheses,crystal engineering, and magnetic property of a dicyanamide bridged three-dimensional manganese(II)-nitronyl nitroxide coordination polymer derived from a new radical.2003, 42, 1584–1589.

    (53) Zhang, S.H.; Feng, C.Microwave-assisted synthesis, crystal structure and fluorescence of novel coordination complexes with Schiff base ligands.2010, 977, 62–66.

    (54) van Albada, G.A.; Quiroz-Castro, M.E.; Mutikainen, I.; Turpeinen, U.; Reedijk,J.The first structural evidence of a polymeric Cu(II) compound with a bridging dicyanamide anion: X-ray structure, spectroscopy and magnetism of-[polybis(2-aminopyrimidine)copper(II)bis(-dicyanamido)].2000, 298, 221–225.

    (55) Bhaumik, P.K.; Harms, K.; Chattopadhyay, S.Synthesis and characterization of four dicyanamide bridged copper(II) complexes with N2O donor tridentate Schiff bases as blocking ligands.2013, 405, 400–409.

    (56) Ray, A.; Pilet, G.; Gómez–García, C.J.; Mitra, S.Designing dicyanamide bridged 1D molecular architecture from a mononuclear copper(II) Schiff base precursor: syntheses, structural variations and magnetic study.2009, 28, 511–520.

    (57) Shebl, M.Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes.2014, 117, 127–137.

    18 May 2017;

    11 October 2017

    10.14102/j.cnki.0254-5861.2011-1726

    ① This work was financially supported by the National Natural Science Foundation of China (Nos. 51638006 and 51569008) and the Natural Science Foundation of Guangxi Province (No. 2015GXNSFAA139240)

    ②Tel: +86 773 2537332, Fax: +86 773 2537332, E-mails: wangdunqiu@sohu.com(Wang D. Q.) and 657683458@qq.com(Xiao Y.)

    亚洲一码二码三码区别大吗| 在线av久久热| 国产不卡一卡二| 久久精品国产综合久久久| 久久热在线av| 精品一区二区三区四区五区乱码| 超色免费av| 国产精品国产av在线观看| 欧美日韩av久久| 咕卡用的链子| 欧美乱码精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 超色免费av| 人成视频在线观看免费观看| 在线免费观看的www视频| 在线国产一区二区在线| 啪啪无遮挡十八禁网站| 999精品在线视频| 欧美日韩亚洲高清精品| 超碰97精品在线观看| 久久国产精品影院| 午夜免费鲁丝| 亚洲欧美一区二区三区黑人| 国产精品影院久久| 免费观看精品视频网站| 免费看十八禁软件| 日韩欧美三级三区| 韩国精品一区二区三区| 又紧又爽又黄一区二区| 免费一级毛片在线播放高清视频 | 99国产精品一区二区蜜桃av| 国产一区二区激情短视频| 午夜免费观看网址| 欧美亚洲日本最大视频资源| 欧美黑人精品巨大| av超薄肉色丝袜交足视频| 在线av久久热| 国产精品久久久久成人av| 自线自在国产av| 亚洲精品美女久久久久99蜜臀| 免费高清视频大片| 亚洲av成人av| 久久久国产成人免费| 久久人妻av系列| 亚洲欧美精品综合一区二区三区| 亚洲国产精品999在线| 91成年电影在线观看| 欧美色视频一区免费| 国产高清国产精品国产三级| 色老头精品视频在线观看| 91成人精品电影| 免费高清在线观看日韩| 国产97色在线日韩免费| 欧美 亚洲 国产 日韩一| 日韩欧美国产一区二区入口| 国产黄a三级三级三级人| 午夜免费激情av| 国产亚洲欧美精品永久| 变态另类成人亚洲欧美熟女 | 一个人观看的视频www高清免费观看 | 亚洲av日韩精品久久久久久密| 操出白浆在线播放| 在线国产一区二区在线| 亚洲自拍偷在线| 久久人妻福利社区极品人妻图片| 成人国语在线视频| 免费日韩欧美在线观看| 久热这里只有精品99| 亚洲av电影在线进入| 无人区码免费观看不卡| 亚洲自偷自拍图片 自拍| 久久久国产欧美日韩av| 久久99一区二区三区| 少妇的丰满在线观看| 高清欧美精品videossex| 无遮挡黄片免费观看| 日本免费a在线| 狂野欧美激情性xxxx| 久久精品亚洲精品国产色婷小说| 日韩成人在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 久久久久国内视频| 可以在线观看毛片的网站| 亚洲成人久久性| 亚洲精品美女久久av网站| 久久香蕉激情| 一本综合久久免费| 欧美激情久久久久久爽电影 | 一夜夜www| 狂野欧美激情性xxxx| 岛国在线观看网站| 美女高潮喷水抽搐中文字幕| 国产熟女午夜一区二区三区| 丁香六月欧美| 国产真人三级小视频在线观看| 国产成人精品久久二区二区91| av网站在线播放免费| 激情在线观看视频在线高清| 日韩欧美一区视频在线观看| 1024视频免费在线观看| 免费在线观看日本一区| 久久久国产欧美日韩av| 18禁裸乳无遮挡免费网站照片 | 两性夫妻黄色片| 久久青草综合色| 天天躁夜夜躁狠狠躁躁| cao死你这个sao货| 50天的宝宝边吃奶边哭怎么回事| 日本免费一区二区三区高清不卡 | aaaaa片日本免费| 91九色精品人成在线观看| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 99香蕉大伊视频| 中文字幕高清在线视频| 美女午夜性视频免费| 老鸭窝网址在线观看| 级片在线观看| www.自偷自拍.com| 久久精品国产亚洲av高清一级| 少妇的丰满在线观看| 97人妻天天添夜夜摸| 亚洲激情在线av| 制服诱惑二区| 两性午夜刺激爽爽歪歪视频在线观看 | 99热国产这里只有精品6| 丝袜美足系列| 国产免费av片在线观看野外av| 一区二区三区精品91| 国产99久久九九免费精品| 波多野结衣高清无吗| 欧美日韩乱码在线| 亚洲情色 制服丝袜| 午夜视频精品福利| 亚洲七黄色美女视频| 日韩欧美在线二视频| 精品一区二区三区视频在线观看免费 | 波多野结衣一区麻豆| 在线观看免费高清a一片| 亚洲精品一区av在线观看| 天堂中文最新版在线下载| 男女高潮啪啪啪动态图| 波多野结衣高清无吗| 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| av中文乱码字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 日韩成人在线观看一区二区三区| 夜夜爽天天搞| 中文字幕高清在线视频| 午夜免费观看网址| 国产97色在线日韩免费| 激情视频va一区二区三区| 国产精品日韩av在线免费观看 | 超碰成人久久| 日本精品一区二区三区蜜桃| 美女 人体艺术 gogo| 女性被躁到高潮视频| 亚洲,欧美精品.| 女警被强在线播放| 老司机在亚洲福利影院| 91成年电影在线观看| 人妻久久中文字幕网| 女同久久另类99精品国产91| 五月开心婷婷网| www国产在线视频色| av免费在线观看网站| 日本欧美视频一区| 一个人免费在线观看的高清视频| 久久久国产一区二区| 中文亚洲av片在线观看爽| 国产三级黄色录像| 成熟少妇高潮喷水视频| 伊人久久大香线蕉亚洲五| 亚洲欧美一区二区三区黑人| 9色porny在线观看| 大型黄色视频在线免费观看| 天堂√8在线中文| 夜夜夜夜夜久久久久| 欧美精品亚洲一区二区| 成年人免费黄色播放视频| 夜夜夜夜夜久久久久| 侵犯人妻中文字幕一二三四区| 长腿黑丝高跟| 国产成人啪精品午夜网站| 麻豆久久精品国产亚洲av | 精品少妇一区二区三区视频日本电影| 日韩视频一区二区在线观看| 国产片内射在线| 男人舔女人的私密视频| 日韩高清综合在线| 日韩国内少妇激情av| 欧美黄色片欧美黄色片| 高清av免费在线| 悠悠久久av| 免费观看人在逋| 国产日韩一区二区三区精品不卡| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 精品国产乱子伦一区二区三区| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 亚洲va日本ⅴa欧美va伊人久久| 国产精品偷伦视频观看了| 日日爽夜夜爽网站| 国产一区在线观看成人免费| 一级作爱视频免费观看| 久热爱精品视频在线9| videosex国产| 久久人人爽av亚洲精品天堂| 久久国产乱子伦精品免费另类| 嫁个100分男人电影在线观看| 色播在线永久视频| 一二三四社区在线视频社区8| 可以免费在线观看a视频的电影网站| 午夜两性在线视频| а√天堂www在线а√下载| 黄色a级毛片大全视频| 美女大奶头视频| 99在线视频只有这里精品首页| 久久精品亚洲熟妇少妇任你| 老汉色av国产亚洲站长工具| 高清av免费在线| 亚洲专区中文字幕在线| 精品一区二区三区视频在线观看免费 | 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看| 国产成人精品在线电影| 免费在线观看日本一区| 亚洲精品一二三| 国产亚洲欧美98| 天堂俺去俺来也www色官网| 日本免费a在线| 夜夜躁狠狠躁天天躁| 亚洲国产精品999在线| 久久久国产成人免费| 成年版毛片免费区| 少妇裸体淫交视频免费看高清 | 国产精品国产av在线观看| 亚洲欧美激情综合另类| 亚洲国产欧美日韩在线播放| 免费搜索国产男女视频| 又黄又粗又硬又大视频| 久久久久久久午夜电影 | 久久久国产精品麻豆| 国产av一区在线观看免费| 亚洲伊人色综图| 久久久久九九精品影院| 一级毛片高清免费大全| 国产精品99久久99久久久不卡| 精品一区二区三区四区五区乱码| 亚洲精品国产色婷婷电影| 日本黄色视频三级网站网址| 视频区欧美日本亚洲| 欧美日韩福利视频一区二区| 国产精品电影一区二区三区| 午夜精品国产一区二区电影| 久久精品影院6| 69av精品久久久久久| 成年人黄色毛片网站| 久久久久久久久中文| 老司机靠b影院| 久久久久久久午夜电影 | 麻豆成人av在线观看| 亚洲成人国产一区在线观看| 亚洲七黄色美女视频| 性欧美人与动物交配| 国产成+人综合+亚洲专区| 免费av毛片视频| 三级毛片av免费| 久热爱精品视频在线9| 国产精品爽爽va在线观看网站 | 制服人妻中文乱码| 亚洲欧美激情在线| 日韩精品免费视频一区二区三区| 精品高清国产在线一区| 国产深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲一区高清亚洲精品| 欧美乱色亚洲激情| 一区福利在线观看| 国产精华一区二区三区| 丁香六月欧美| 亚洲自拍偷在线| 一个人观看的视频www高清免费观看 | 国产男靠女视频免费网站| 久久久久九九精品影院| 精品少妇一区二区三区视频日本电影| 国产精品 国内视频| 欧美人与性动交α欧美软件| 国产精品日韩av在线免费观看 | 悠悠久久av| 十八禁人妻一区二区| 欧美日韩国产mv在线观看视频| 村上凉子中文字幕在线| 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| 天堂√8在线中文| av天堂久久9| 美女午夜性视频免费| 两人在一起打扑克的视频| 久久久久久人人人人人| 99精品久久久久人妻精品| 日本黄色视频三级网站网址| 1024视频免费在线观看| 久热爱精品视频在线9| 狠狠狠狠99中文字幕| 91精品国产国语对白视频| 欧美激情 高清一区二区三区| 法律面前人人平等表现在哪些方面| 久久人人精品亚洲av| 日韩有码中文字幕| 欧美一区二区精品小视频在线| 久久性视频一级片| 一本大道久久a久久精品| 在线观看免费视频网站a站| 18禁裸乳无遮挡免费网站照片 | 黄色片一级片一级黄色片| 国产视频一区二区在线看| 欧美在线一区亚洲| 欧美激情久久久久久爽电影 | 久久久久国内视频| 美女福利国产在线| 在线观看一区二区三区激情| 免费看十八禁软件| 亚洲午夜理论影院| 亚洲精品国产精品久久久不卡| 国产人伦9x9x在线观看| 另类亚洲欧美激情| 高清在线国产一区| 国产91精品成人一区二区三区| 国产激情久久老熟女| 一级a爱片免费观看的视频| 99久久精品国产亚洲精品| 999久久久国产精品视频| 成年人黄色毛片网站| 国产亚洲精品久久久久久毛片| av超薄肉色丝袜交足视频| 色老头精品视频在线观看| 亚洲精品中文字幕一二三四区| av电影中文网址| 国产精品自产拍在线观看55亚洲| 一区二区三区国产精品乱码| 琪琪午夜伦伦电影理论片6080| 丰满迷人的少妇在线观看| 亚洲欧美日韩无卡精品| 99久久精品国产亚洲精品| 久久婷婷成人综合色麻豆| 满18在线观看网站| 好看av亚洲va欧美ⅴa在| 久久久久久久午夜电影 | 亚洲一码二码三码区别大吗| 亚洲国产精品合色在线| 日韩人妻精品一区2区三区| 9热在线视频观看99| 两人在一起打扑克的视频| 身体一侧抽搐| 一区在线观看完整版| 不卡一级毛片| 操出白浆在线播放| av天堂在线播放| 热99re8久久精品国产| 少妇粗大呻吟视频| 一进一出抽搐动态| 日韩精品青青久久久久久| 美女 人体艺术 gogo| 韩国精品一区二区三区| 桃色一区二区三区在线观看| 久久国产乱子伦精品免费另类| 夜夜夜夜夜久久久久| 亚洲成人免费av在线播放| 97超级碰碰碰精品色视频在线观看| 99久久人妻综合| 亚洲欧美激情综合另类| 国产成人系列免费观看| 亚洲avbb在线观看| 1024香蕉在线观看| 日韩大尺度精品在线看网址 | 欧美日韩一级在线毛片| 嫩草影视91久久| 国产麻豆69| 乱人伦中国视频| 两人在一起打扑克的视频| 亚洲全国av大片| 男人的好看免费观看在线视频 | 久久香蕉激情| 91字幕亚洲| 免费在线观看亚洲国产| 美女大奶头视频| 老司机福利观看| 在线观看免费视频网站a站| 午夜成年电影在线免费观看| 国产精品国产av在线观看| 欧美大码av| 精品乱码久久久久久99久播| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产精品久久久不卡| 麻豆一二三区av精品| 成人亚洲精品一区在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品久久久久5区| 老司机亚洲免费影院| 亚洲精品中文字幕一二三四区| 美女国产高潮福利片在线看| 麻豆av在线久日| 成人特级黄色片久久久久久久| 欧美成狂野欧美在线观看| 欧美日韩亚洲高清精品| 桃色一区二区三区在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人啪精品午夜网站| 一进一出好大好爽视频| 脱女人内裤的视频| 免费高清在线观看日韩| 欧美激情久久久久久爽电影 | 国产高清国产精品国产三级| 长腿黑丝高跟| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区91| 九色亚洲精品在线播放| 国产av又大| 老熟妇仑乱视频hdxx| x7x7x7水蜜桃| 亚洲国产看品久久| 丰满迷人的少妇在线观看| 久久久水蜜桃国产精品网| 国产成人免费无遮挡视频| 午夜福利免费观看在线| 欧美精品啪啪一区二区三区| 一级,二级,三级黄色视频| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| ponron亚洲| 99久久国产精品久久久| 999精品在线视频| 欧美色视频一区免费| 国产深夜福利视频在线观看| 精品欧美一区二区三区在线| 精品人妻1区二区| 很黄的视频免费| 日韩免费av在线播放| 午夜老司机福利片| 丁香欧美五月| 欧美大码av| 在线天堂中文资源库| 久久精品国产综合久久久| 最近最新中文字幕大全免费视频| 国产精品二区激情视频| 淫妇啪啪啪对白视频| 亚洲中文av在线| 91九色精品人成在线观看| 亚洲aⅴ乱码一区二区在线播放 | e午夜精品久久久久久久| 久久国产精品男人的天堂亚洲| 夫妻午夜视频| 日韩三级视频一区二区三区| 国产伦一二天堂av在线观看| 1024视频免费在线观看| 女人被躁到高潮嗷嗷叫费观| 夜夜夜夜夜久久久久| 新久久久久国产一级毛片| 日本撒尿小便嘘嘘汇集6| 午夜福利欧美成人| 淫妇啪啪啪对白视频| 亚洲av电影在线进入| 岛国在线观看网站| 制服诱惑二区| 久久久国产欧美日韩av| 伦理电影免费视频| 亚洲av日韩精品久久久久久密| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美最黄视频在线播放免费 | 国产97色在线日韩免费| 村上凉子中文字幕在线| 黄色丝袜av网址大全| 日韩三级视频一区二区三区| 日韩国内少妇激情av| 这个男人来自地球电影免费观看| 久久人人97超碰香蕉20202| 久久精品国产99精品国产亚洲性色 | 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 免费看a级黄色片| 夫妻午夜视频| av有码第一页| 成年版毛片免费区| 别揉我奶头~嗯~啊~动态视频| 亚洲自拍偷在线| 成熟少妇高潮喷水视频| 国产不卡一卡二| 国产日韩一区二区三区精品不卡| 亚洲狠狠婷婷综合久久图片| 老司机在亚洲福利影院| 亚洲人成电影免费在线| 亚洲国产看品久久| 欧美最黄视频在线播放免费 | 国产成人精品久久二区二区免费| 免费搜索国产男女视频| 老熟妇仑乱视频hdxx| 欧美一级毛片孕妇| 十八禁网站免费在线| 亚洲欧美日韩高清在线视频| www.999成人在线观看| 久久久久久久久中文| 一个人观看的视频www高清免费观看 | 在线观看免费视频日本深夜| 热99re8久久精品国产| 亚洲片人在线观看| 国产成人免费无遮挡视频| 大型av网站在线播放| 久久久久久免费高清国产稀缺| 性少妇av在线| 午夜免费观看网址| 在线观看舔阴道视频| 1024视频免费在线观看| 国产精品影院久久| 级片在线观看| av在线天堂中文字幕 | 久久久久久久精品吃奶| 成人av一区二区三区在线看| 欧美日韩亚洲国产一区二区在线观看| 日韩三级视频一区二区三区| a级毛片黄视频| 中文字幕人妻熟女乱码| 午夜a级毛片| 丁香六月欧美| 久久久久久久久久久久大奶| 法律面前人人平等表现在哪些方面| 十八禁网站免费在线| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱妇无乱码| 色在线成人网| 欧美久久黑人一区二区| 午夜亚洲福利在线播放| 精品一区二区三区视频在线观看免费 | 91九色精品人成在线观看| www.www免费av| 免费看a级黄色片| 成人18禁高潮啪啪吃奶动态图| 亚洲av电影在线进入| 亚洲精品成人av观看孕妇| 免费在线观看亚洲国产| a级片在线免费高清观看视频| 亚洲av成人一区二区三| 亚洲人成电影观看| 国产三级在线视频| 亚洲在线自拍视频| 亚洲一码二码三码区别大吗| 精品电影一区二区在线| 欧美中文综合在线视频| 精品久久久久久久毛片微露脸| 亚洲欧美精品综合一区二区三区| 极品人妻少妇av视频| 国产精品国产av在线观看| 夜夜躁狠狠躁天天躁| 国产精品九九99| 国产亚洲精品综合一区在线观看 | 久久久国产一区二区| 国产一区二区在线av高清观看| 老司机在亚洲福利影院| 久久久久九九精品影院| 悠悠久久av| 欧美人与性动交α欧美精品济南到| 婷婷丁香在线五月| 亚洲国产精品sss在线观看 | 精品久久久久久久久久免费视频 | 中国美女看黄片| 日韩中文字幕欧美一区二区| 高清毛片免费观看视频网站 | 88av欧美| 亚洲在线自拍视频| 亚洲中文av在线| 在线观看舔阴道视频| 性色av乱码一区二区三区2| 手机成人av网站| 视频在线观看一区二区三区| 久久精品91蜜桃| 欧美日韩福利视频一区二区| 国产av在哪里看| 老司机福利观看| 欧美午夜高清在线| 九色亚洲精品在线播放| 久久精品亚洲av国产电影网| 麻豆久久精品国产亚洲av | 欧美一区二区精品小视频在线| x7x7x7水蜜桃| 啦啦啦免费观看视频1| 黄色丝袜av网址大全| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 高清黄色对白视频在线免费看| 午夜两性在线视频| 精品欧美一区二区三区在线| 琪琪午夜伦伦电影理论片6080| 国产视频一区二区在线看| 中文字幕色久视频| 久久久久久久午夜电影 | 97超级碰碰碰精品色视频在线观看| 美女高潮喷水抽搐中文字幕| 亚洲午夜精品一区,二区,三区| 精品久久久久久电影网| 99精品欧美一区二区三区四区| 成年版毛片免费区| 桃色一区二区三区在线观看| 国产欧美日韩精品亚洲av| 黄色成人免费大全| 国产单亲对白刺激| 19禁男女啪啪无遮挡网站| 国产亚洲av高清不卡| 欧美成人免费av一区二区三区| 露出奶头的视频| 激情视频va一区二区三区| 亚洲国产中文字幕在线视频| 国产精品九九99| www日本在线高清视频|