• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Copper Complexes Based on Pyrazole- 3-carboxylic Acid as Heterogeneous Catalysts for Highly Selective Oxidation of Alkylbenzenes①

    2018-03-12 05:00:43JIANGXiuYnRONGNinXinQIANRuiQIUTinTinYAOQingXiHUANGXinQing
    結構化學 2018年2期

    JIANG Xiu-Yn RONG Nin-Xin QIAN Rui QIU Tin-Tin YAO Qing-Xi HUANG Xin-Qing

    ?

    Two Copper Complexes Based on Pyrazole- 3-carboxylic Acid as Heterogeneous Catalysts for Highly Selective Oxidation of Alkylbenzenes①

    JIANG Xiu-YanaRONG Nian-XinbQIAN RuibQIU Tian-TianbYAO Qing-Xiab②HUANG Xian-Qiangb②

    a(257061)b(252059)

    Two new copper complexes based on pyrazole-3-carboxylic acid (H2pca) ligand, Cu(Hpca)2(H2O)2·2H2O (1) and Cu2(pca)2(H2O)4(2)have been synthesized and fully characterized by single-crystal X-ray diffraction (SXRD), infrared spectroscopy (IR), thermal gravity analysis (TGA), powder X-ray diffraction (PXRD) and elemental analyses. Complex1 is mononuclear whilecomplex 2 shows a dinuclear structure. Complex1 crystallizes in the monoclinic system, space group21/with= 2,= 6.5591(5),= 21.696(2),= 4.9486(2) ?,= 680.94(9) ?3,(000) = 366,D= 1.745 g/cm3,= 1.650 mm-1, the final= 0.0340 and= 0.0792. Complex2 crystallizes in the monoclinic system, space group21/with= 2,= 5.1935(4),= 9.6052(7),= 12.7347(9) ?,= 634.44(8) ?3,(000) = 420,D= 2.195 g/cm3,= 3.404 mm-1, the final= 0.0305 and= 0.0653.The three-dimensional frameworks of two complexes are formed by the O?H···O and N?H···O hydrogen bonding interactions. Notably, two copper complexes are further used as catalysts in the oxidation of alkylbenzenes using-butylhydroperoxide (TBHP) as the oxidant and they exhibit excellent catalytic performance (Conv. up to 98.9%, Sele. up to 98.7%).

    copper complexes, crystal structure, oxidation of alkylbenzenes;

    1 INTRODUCTION

    In recent decades, transition-metal complexes have obtained long-lasting attention owing to their special structures and extensive applications in catalysis, adsorption, electric conducting materials, magnetic and optical materials, and so on[1-4]. Among transi- tion metals, copper is an important element in coordination chemistry, catalysis chemistry and a microelement necessary to life[5-8]. Its flexible coor-dination modes make it easy to form mononuclear, dinuclearand multinuclear complexes[9, 10]. Pyrazole carboxylates as a kind of multifunctional ligands play an important role in generating excellent architectures because of some advantages: firstly, the multidentate organic ligands possess potential coor- dination nodes and the strong coordination ability, and they exhibit diverse chelating and bridging modes; secondly, pyrazole carboxylates also act as the multiple proton donors and acceptors, and may build high-dimensional supramolecular frameworks by hydrogen-bonding orstacking interactions.However, few examples are reported with the transi- tion-metal complexes based on 1-pyrazole-3-car- boxylic acid owning to only one carboxyl group in the ligand[11-13].And it remains a significant challenge to synthesize such pyrazole-3-carboxylic acid complexes and develop their catalytic activities in some organic reactions.

    Herein, we report the syntheses and structural characterizations of the mononuclear copper complex 1 and dinuclear copper complex 2, which were obtained by theroom temperature conditions or hydrothermal method. The two copper complexes have been fully characterized by SXRD, PXRD, elemental analyses, TGA and FT-IR spectroscopy. Complexes 1 and 2 were further investigated as catalysts for the oxidation of alkylbenzenes with TBHP as an oxidant.

    2 EXPERIMENTAL

    2. 1 Instruments and reagents

    All reagents and solvents were purchased from commercial sources and used without further puri- fication. PXRD patterns of the samples were analy- zed with monochromatized Cu-(= 1.54178 ?) incident radiation by a Shimadzu XRD-6000 instrument operating at 40 kV voltage and 50 mA current, and PXRD patterns were recorded from 4° to 50° (2) at 298 K. The C, H and N elemental analyses were conducted on a Perkin-Elmer 240C elemental analyzer. The FT-IR spectra were recorded from KBr pellets in the range of 4000~400 cm-1on a Nicolet 170 SXFT/IR spectrometer. The GC analyses were performed on Shimadzu GC-2014C with a FID detector equipped with an Rtx-1701 Sil capillary column.TGA experiments were carried out on a Perkin-Elmer TGA 7 analyzer at a heating rate of 10 °C/min from the room temperature to 600 °C under nitrogen atmosphere.

    2. 2 Synthesis ofcomplex Cu(Hpca)2(H2O)2·2H2O (1)

    A solution containing Cu(ClO4)2·6H2O (0.074 g, 0.2 mmol) in 5 mLof distilled water was slowly added to a solution containing H2pca (0.0448 g, 0.4 mmol) and NaOH (0.1 mL, 1 M in H2O) under stirring in 5 mL of distilled water. The reaction mixture was stirred for 1 h at room temperature and filtrated. The blue block crystals of 1 were obtained by slow evaporation of the filtrate at room tempera- ture over a period of three weekswith the yield of 32% based on Cu. IR (KBr, cm-1): 3484(s), 3363(s), 1660(s), 1555(m), 1507(m), 1475(m), 1382(m), 1355(s), 1263(s), 1232(w), 1133(m), 1068(s), 1014(m), 942(m), 898(m), 839(m), 785(m), 649(m), 502(w). Anal. calcd forC8H14CuN4O8: 26.86, H 3.94, N 15.66%. Found: C, 26.91; H, 3.97; N, 15.54%.

    2. 3 Synthesis of complex Cu2(pca)2(H2O)4 (2)

    A mixture of H2pca (0.0448 g, 0.4 mmol), CuCl2·2H2O (0.068 g, 0.4 mmol), NaOH (0.2 mL, 1 M in H2O) and distilled water (10 mL) was sealed in a 23 mL Teflon-lined steel vessel and heated at 150 °C for 72 h, and then cooled to room tempera- ture at a rate of 0.1°C/min. The resulting blue block crystals of 2 were obtained and washed with dis- tilled water with a yield of 31% based on Cu. IR (KBr, cm-1): 3485 (s), 1659 (s), 1557 (w), 1512 (m), 1475 (m), 1382 (s), 1356 (s), 1263 (s), 1232 (w), 1133 (m), 1068 (m), 1014 (m), 942 (m), 898 (m), 838 (m), 785 (m), 649 (w), 497 (w). Anal. calcd for C8H12Cu2N4O8: C, 22.91; H, 2.88; N, 13.36%. Found: C, 22.98; H, 2.95; N, 13.27%.

    2. 4 Procedure for the catalytic oxidation of alkylbenzenes

    Alkylbenzenes (0.25 mmol), copper complex (5 mol%), 70% TBHP (0.625 mmol) and benzonitrile (2 mL) were added to a 10 mL flask, and the catalytic reaction was performed at 70 °C for 24 h. After the reaction was completed, the resulting mixture was analyzed by GC-MS and GC.

    2. 5 Reuse experiments

    The reuse experiments were carried out for the oxidation of diphenylmethane under the optimum conditions. After the reaction was completed, the catalyst was retrieved by filtration (5.8 mg, 96% recovery), washed with MeOH (ca. 3* 5 mL), and air-dried prior to being used for the reuse experi- ment. The PXRD spectrum of the retrieved catalyst was identical to that of the fresh catalyst (Fig. 6). In addition, the retrieved catalyst could be reused for the second run of oxidation of diphenylmethane. After the second run reaction was completed, the catalyst was retrieved by filtration (5.5 mg, 95% recovery), washed with MeOH (ca. 3* 5mL), and air-dried prior to being used for the third run experiment. The experiment of the third run was prepared in the same way as that for the second run, and finally the 95.7% conversion of diphenyl- methane was also determined by GC. The PXRD spectrum of the third run retrieved catalyst was identical to that of the fresh catalyst (Fig. 6).

    2. 6 Structure determination

    Single-crystal X-ray diffraction data forcom- plexes 1and2 were performed with Moradia- tion (= 0.71073 ?) on a Bruker-AXS CCD diffractometer equipped with multi-scan technique at 296 K. The structures were solved by direct methods and refined through full-matrix leastsqua- res techniques method on2using the SHELXTL 97 crystallographic software package[14, 15]. The final refinements included anisotropic displacement parameters for all atoms. The selected bond lengths, bond angles and hydrogen bond parameters of 1and2 are shown in Tables 1 and 2, respectively.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Complexes 1 and 2

    Symmetry code: a: –+1, –+1, –3

    Table 2. Hydrogen BondLengths (?) and Bond Angles (°) for Complexes 1 and 2

    Symmetry codes: a:–+1, –+1, –+2; b:,,–1; c: –, –+1, –+3; d: –, –+1, –+3; e:, –+3/2,+1/2

    3 RESULTS AND DISCUSSION

    3. 1 Structure description of Cu(Hpca)2(H2O)2·2H2O (1)

    The single-crystal X-ray diffraction reveals thatcomplex 1 contains one crystallographically inde- pendentCu2+ion, one Hpca?anion and one coor- dination water molecule. As shown in Fig. 1a, the Cu2+ion is surrounded by two oxygen atoms, two nitrogen atoms (O(1), O(1A), N(1) and N(1A)) from two Hpca?anions, and two oxygen atoms (O(3), O(3A)) from two coordinated water mole- cules, and it exhibits a distorted {CuO4N2}octahe- dral geometry. The bond distances of the Cu?O and Cu?N are 1.9901(19)~2.508(2) and 1.976(2) ?, respectively, which are similar with those of repor- ted copper complexes[16]. The bond angles around Cu2+ion are in the range of 81.44(8)~180.0.00(5)°. The Hpca?anion adopts a chelate coordination mode: one oxygen atom and one nitrogen atom of Hpca?anion act as coordinationatoms connecting theadjacent Cu2+ions, forming a five-membered ring. The adjacent mononuclear structures are connected by two kinds of hydrogen bonding interactions to form a 1D supramolecular chain, in which the first hydrogen bonding interaction is formed by the oxygen atoms (O(3)) of coordinated water molecules and the carboxylic oxygen atoms (O(1)) of Hpca?anions with the O(3)?H(3C)···O(1) distance of 2.737(5) ?, and the second hydrogen bonding interaction is formed by oxygen atoms (O(3)) and nitrogen atoms (N(2)) of pyrazole rings from Hpca?anions with the N(2)?H(2)···O(3) distance of 2.733(4) ? (Fig. 1b). The coordinated water molecules and carboxylic oxygen atoms (O(2)) of the adjacent supramolecular chains are linked by the O(3)?H(3D)···O(2) (2.687(0) ?) hydrogen bonding interactions to construct a 2D supramo- lecular layer (Fig. 1c). It is noteworthy that there are 1D water chains formed by O(4)?H(4D)···O(4) (2.814(3) ?) hydrogen bonding interactions. The existence of hydrogen-bonding interactions (O(4)? H(4C)···O(2), 2.888(7) ?) between carboxylic oxygen atoms (O(2)) of the 2D supramolecular layers and the 1D water chains which further stabi- lize the whole structure leads to a 3D supramo- lecular structure (Fig. 1d).

    Fig. 1. (a) Coordination environment of the Cu2+ions in 1 (Hydrogen atoms and lattice water molecules are omitted for clarity). (b) 1D supramolecular chain of 1 formed by hydrogen bonds in-axis. (c) 2D supramolecular layer of 1 formed by hydrogen bonds in theplane. (d) 3D supramolecular framework of 1 consisting of 1D water chains

    3. 2 Crystal structure of Cu2(pca)2(H2O)4 (2)

    The single-crystal X-ray data reveal the asym- metric unit of 2 consists of one Cu2+cation, one pca2-anion and two coordination water molecules (Fig. 2a). The Cu2+ion is five-coordinated by one oxygen atom (O(1)) and one nitrogen atom (N(1)) from one pca2-anion, one nitrogen atom (N2) from the other pca2-anion and two coordination water molecules (O(3), O(4) to give the {CuO3N2}tetragonal pyramidal geometry. The bond distances of Cu?O and Cu?N are 1.9684(17)~2.3624(18) and 1.9521(19)~1.9628(19) ?, respectively. The bond angles around Cu2+ion are in the range of 81.98(7)~172.52(8)°. The pca2-anion adopts the monodentate-chelating coordination mode connecting Cu2+ions to generate the dinuclear structure, in which two pyrazole rings from the adjacent pca2-anion are parallel with a dihedral angle of 0o, and the distance of Cu???Cu is 3.9060 ?. Four pyrazole nitrogen atoms and two Cu2+ions almost locate in a plane and construct a six-membered ring. The dinuclear structures are further connected to form a 1D supramolecular chain by the O–H???O hydrogen bonding interactions, which occur between the oxygen atoms (O(3)) from coordination water molecules and the carboxyl oxygen atoms (O(1)) from pca2-anions with the distance of 2.720(2) ? (Fig. 2b). The final 3D supramolecular architecture is formed through O(4)?H(8)···O(3), O(3)?H(6)···O(2) and O(4)? H(7)···O(2) hydrogen bonding interactions between the neighboring 1D supramolecular chains with the distances of 2.729(2), 2.749(2) and 2.736(3) ?, respectively (Fig. 2c).

    Fig. 2. (a) Coordination environment of the Cu2+ions in 2 (Hydrogen atoms are omitted for clarity). (b) 1D supramolecular chain of 2 formed by hydrogen bonds in-axis. (c) 3D supramolecular framework of 2 formed by hydrogen-bonding interactions

    3. 3 PXRD analysis

    The experimental and simulated PXRD patterns of complexes 1and2 are shown in Fig. 3. Their peak positions were in good agreement with each other, indicating the phase purity of complexes 1 and 2.

    3. 4 Thermal stability analysis

    In order to study the thermal stabilities of com- plexes 1 and 2, their TGA were performed. The TGA curves of complexes 1 and 2 are shown in Fig. 4. For 1, the weight loss from room temperature to 105 °C is 19.98% (calculated 20.12%), which corresponds to the loss of lattice water and coordinated water molecules. Then the network began to decompose totally at 410 °C, and the residual is CuO. Complex 2 displayed the first weight loss of 16.69% at the temperature of 90 °C (calculated 17.17%), which was due to the departure of coordinated water molecules, and then it kept stable until 225 °C. When the temperature was above 395 °C, the framework collapsed totally.

    Fig. 3. Powder X-ray diffraction patterns of complexes 1 and 2

    Fig. 4. TGA curves for complexes 1 and 2

    3. 5 Selective oxidation of alkylbenzenes catalyzed by complexes 1 and 2

    The oxidation of C?H bonds of alkylbenzenes, for instance, is a powerful tool to generate high value chemical feedstock from less expensive raw mate- rials such as alkyl aromatics, and great efforts have been made in exploring new catalysts[17]. In this regard, the means to convert benzylic hydrocarbons into valuable compounds have received considerable attention in recent years[18]. Herein, we report the oxidation of alkylbenzenes with TBHP as the oxidant using two copper complexes as catalysts.

    To investigate the effectiveness of complexes 1 and 2 in the oxidation of alkylbenzenes, the oxide- tion of diphenylmethane was first examined as a standard substrate with 70% TBHP inbenzonitrile at 80 oC for 24 h (Scheme 1). The conversion and selectivity of each reaction were summarized and illustrated in Fig. 5. After the preliminary optimiza- tion, we noted that complex 2 was active and more selective for the oxidation of diphenylmethane than other catalysts tested.

    Scheme 1. Oxidation of diphenylmethane to benzophenone with TBHP

    As the excellent performance, complex2was selected to examine the long-term stability in a heterogeneous system. After completion of the oxidation reaction, the catalyst can easily be separa- ted from the reaction mixture by filtration. The recovered catalyst was re-activated by washing with methanol and further reused directly in the subsequent oxidation reactions. The experiment results displayed that after three runs no obvious loss of activity (Conv. 96.2% (1st), 96.0% (2nd), 95.7% (3rd)) was observed (Fig. 5). The PXRD spectra of 2 collected before and after the catalytic reactions indicatedthat the structure was maintained under turnover conditions(Fig. 6).

    Fig. 5. Conversion of diphenylmethane to benzophenone with different catalysts. Reaction condtions: diphenylmethane (0.25 mmol), catalysts (5 mol%), 353 K, TBHP (0.625 mmol), benzonitrile (2 mL), 24 h. a) Blank; b) CuCl2(10 mol%);c) complex 1 (10 mol%); d) complex 2 (5 mol%); e) 1strun; f) 2ndrun; g) 3rdrun

    Fig. 6. PXRD spectra of comlpex 2 after three runs of catalytic cycles

    The mild reaction conditions, excellent stability, and high yield for the transformation of diphenyl- methane to benzophenone prompted us to extend the scope of 2 as heterogeneous catalyst for other benzylic hydrocarbons. As shown in Table 3, complex 2 exhibits excellent catalytic activity for oxidation of diphenylmethane, 9H-xanthenes, fluo- rene and derivates of fluorene to the corresponding aryl ketones with up to 97.6% yield (Table 3, entries 1-5). By comparison with previous reports, we found that 2 outperformed some heterogeneous catalysts, such as polyoxometalates[19], MOFs[20]in the oxidation of diphenylmethane, fluorene and 9H-xanthene (Table 3).

    4 CONCLUSION

    In summary, by controlling the reaction con-ditions, we have synthesized twopyrazole-3-car- boxylic acidcomplexes 1 and 2. The introduction of Cu2+cations make 1 and 2 more stable and can be used as heterogeneous catalysts in the selective oxidation of alkylbenzenes with high catalytic activities. Specifically, complex2 can convert alkylbenzenes to corresponding aromatic ketones efficiently and can be reused by filtration without the loss of its activity. Investigations on the use of these complexes for other potential catalytic reac-tions are in progress.

    Table 3. Results of Selective Oxidation of Benylic Compounds Catalyzed by Complex 2 Using TBHP Oxidant[a]

    [a] Reaction conditions: substrates (0.25 mmol), complex 2 (5 mol%), TBHP (0.625 mmol), benzonitrile (2 mL), 80 oC, 24 h.

    [b] Selectivity to ketones was analyzed by GC using the naphthalene as internal standard.

    The by-products are corresponding alcohols, which were analyzed by GC-MS.

    (1) (a) Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: from crystal engineering to functional materials.2012, 112, 1001-1033; (b) Jiang, X. Y.; Rong, N. X.; Wang, G. D.; Cui, C. S.; Huang, X. Q.An imidazole-functionalized dioxovanadium complex with the highly selective oxidation of sulphides.2017, 36, 429-437.

    (2) (a) Yin, Y.; Tan, Z.; Hu, L.; Yu, S.; Liu, J.; Jiang, G.Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications.2017, 117, 4462-4487; (b) Han, C. B.; Wang, Y. L.; Liu, Q. Y.Crystal structure and magnetic properties of a dinuclear terbium compound Tb2(2-anthc)4(anthc)2(1,10-phen)2.2017, 36, 705-710.

    (3) Paskevicius, M.; Jepsen, L. H.; Schouwink, P.; ?erny, R; Ravnsb?k, D. B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen T. R.Metal borohydrides and derivatives – synthesis, structure and properties.2017, 46, 1565-1634.

    (4) Zhao, Y.; Li, Z.; Sharma, U. K.; Sharma, N.; Song, G.; Eycken, E. V. V. Copper-catalyzed alkylarylation of activated alkenes using isocyanides as the alkyl source:an efficient radical access to 3,3-dialkylated oxindoles.2016, 52, 6395-6398

    (5) ?ili?, D.; Rakvin, B.; Mili?, D.; Paji?, D.; ?ilovi?, I. Crystal structures and magnetic properties of a set of dihalo-bridged oxalamidato copper(II) dimers.2014, 43, 11877-11887.

    (6) Teong, S. P.; Yu, D.; Sum, Y. N.; Zhang, Y. Copper catalysed alkynylation of tertiary amines with CaC2sp3C–H activation.2016, 18, 3499-3502.

    (7) Tirsoaga, A.; Cojocaru, B.; Teodorescu, C.; Vasiliu, F.; Grecu, M. N.; Ghica, D.; Parvulescu, V. I.; Garcia, H. C–N cross-coupling on supported copper catalysts: the effect of the support, oxidation state, base and solvent.2016, 341, 205-220.

    (8) Niu, M.; Li, Z.; Li, X.; Huang, X.Two chiral alkanolamine Schiff base Cu(II) complexes as potential anticancer agents: synthesis, structure, DNA/protein interactions, and cytotoxic activity.2016, 6, 98171-98179.

    (9) He, J.; Yin, Y. G.; Wu, T.; Li, D.; Huang, X. C. Design and solvothermal synthesis of luminescent copper(I)-pyrazolate coordination oligomer and polymer frameworks.2006, 2845-2847.

    (10) Fernandes, T. A.; Santos, C. I. M.; Andre?, V.; K?ak, J.; Kirillova, M. V.; Kirillov, A. M. Copper(II) coordination polymers self-assembled from aminoalcohols and pyromellitic acid: highly active precatalysts for the mild water-promoted oxidation of alkanes.2016, 55, 125-135.

    (11) Artetxe, B.; Reinoso, S.; Felices, L. S.; Vitoria, P.; Pache, A.; Martín-Caballero, J.; Gutie?rrez-Zorrilla, J. M. Functionalization of krebs-type polyoxometalates with N,O-chelating ligands: a systematic study.2015, 54, 241-245.

    (12) López-Viserasa, M. E.; Fernández, B.; Hilfiker, S.; González, C. S.; González, J. L.; Calahorro, A. J.; Colacio, E.; Rodríguez-Diéguez, A. In vivo potential antidiabetic activity of a novel zinc coordination compound based on 3-carboxy-pyrazole.2014, 131, 64-67.

    (13) Liu, G. N.; Zhu, W. J.; Chu, Y. N.; Li, C. C. Three10metal coordination compounds based on pyrazole-3-carboxylic acid showing mixed-ligand characteristic: syntheses, crystal structures, and photoluminescent properties.2015, 425, 28-35.

    (14) Sheldrick, G. M.. University of G?ttingen, Germany 1997.

    (15) Brese, N. E.; O’Keeffe, M. Bond-valence parameters for solids.1991, 47, 192-197.

    (16) Li, B.; Zhao, J. W.; Zheng, S. T.; Yang, G. Y. Hydrothermal synthesis and structure of di-copper(II)-complex substituted monovacant polyoxotungstate with a 1D chain structure.2008, 11, 1288-1291.

    (17) Chen, H.; Deng, Y.; Yu, Z.; Zhao, H.; Yao, Q.; Zou, X.; Ba?ckvall, J. E.; Sun, J. 3D Open-framework vanadoborate as a highly effective heterogeneous pre-catalyst for the oxidation of alkylbenzenes.2013, 25, 5031?5036.

    (18) Shi, D.; Ren, Y.; Jiang, H.; Lu, J.; Cheng, X. A new three-dimensional metal-organic framework constructed from 9,10-anthracene dibenzoate and Cd(II) as a highly active heterogeneous catalyst for oxidation of alkylbenzenes.2013, 42, 484-491.

    (19) Yang, X. L.; Xie, M. H.; Zou, C.; He, Y.; Chen, B.; O’Keeffe, M.; Wu, C. D. Porous metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin for highly efficient and selective catalyticoxidation of alkylbenzenes.2012, 134, 10638-10645.

    (20) He,Q. T.; Li, X. P.; Chen, L. F.; Zhang, L.; Wang, W.; Su, C. Y. Nanosized coordination cages incorporating multiple Cu(I) reactive sites: host-guest modulated catalytic activity.2013, 3, 1-9.

    23 May 2017;

    12 October 2017 (CCDC 1055760 for 1 and 1055762 for 2)

    10.14102/j.cnki.0254-5861.2011-1731

    ①This project was supported by the NNSFC (Nos. 21401094 and 21501086), the Project of Shandong Province Higher Educational Science and Technology Program (No. J16LC53), and the College Students' Science and Technology Innovation Fund (No. CXCY2017028 and CXCY2017037)

    ②E-mails: hxq@lcu.edu.cnand yaoqx_666@163.com

    亚洲无线观看免费| 深爱激情五月婷婷| 麻豆久久精品国产亚洲av| 日韩国内少妇激情av| 国产毛片a区久久久久| 在线a可以看的网站| 欧美区成人在线视频| 特级一级黄色大片| 黄色欧美视频在线观看| 激情 狠狠 欧美| 亚洲精品视频女| 亚洲,欧美,日韩| 亚洲欧美成人精品一区二区| 久久久欧美国产精品| 久久久久久久久久成人| 全区人妻精品视频| 黄片无遮挡物在线观看| 五月玫瑰六月丁香| 综合色丁香网| 简卡轻食公司| 欧美3d第一页| 干丝袜人妻中文字幕| 国产在线一区二区三区精| 亚洲天堂国产精品一区在线| 夜夜爽夜夜爽视频| 国产高清三级在线| 黄色欧美视频在线观看| 亚洲无线观看免费| 在线a可以看的网站| 边亲边吃奶的免费视频| 久久久午夜欧美精品| 久久国产乱子免费精品| 久久99热这里只有精品18| 久久久久久九九精品二区国产| 成人毛片60女人毛片免费| 亚洲欧美精品专区久久| 七月丁香在线播放| 国产亚洲午夜精品一区二区久久 | 男人狂女人下面高潮的视频| 久久久久久久国产电影| tube8黄色片| 欧美+日韩+精品| 白带黄色成豆腐渣| 三级男女做爰猛烈吃奶摸视频| 国产爱豆传媒在线观看| 少妇被粗大猛烈的视频| 夫妻午夜视频| 日本爱情动作片www.在线观看| 老司机影院成人| 晚上一个人看的免费电影| 夜夜爽夜夜爽视频| www.av在线官网国产| 国产精品一区二区性色av| 亚洲熟女精品中文字幕| 亚洲精品色激情综合| 中文天堂在线官网| 久久久亚洲精品成人影院| 国产精品av视频在线免费观看| 国产成人福利小说| 色播亚洲综合网| 狂野欧美白嫩少妇大欣赏| 熟妇人妻不卡中文字幕| 美女被艹到高潮喷水动态| 国产毛片在线视频| 插逼视频在线观看| 久久99蜜桃精品久久| 99久久中文字幕三级久久日本| 久久精品综合一区二区三区| 丰满少妇做爰视频| 久久精品久久久久久久性| 婷婷色av中文字幕| 久久精品国产亚洲av天美| 欧美潮喷喷水| 人人妻人人爽人人添夜夜欢视频 | 亚洲高清免费不卡视频| 久久久久网色| 亚洲欧美中文字幕日韩二区| 51国产日韩欧美| 国产大屁股一区二区在线视频| 国产 一区 欧美 日韩| 久久亚洲国产成人精品v| 午夜福利高清视频| 国产亚洲91精品色在线| 天天躁日日操中文字幕| 日本黄色片子视频| 91狼人影院| 日韩人妻高清精品专区| 免费电影在线观看免费观看| 一个人观看的视频www高清免费观看| 韩国av在线不卡| 80岁老熟妇乱子伦牲交| 成人亚洲欧美一区二区av| 亚洲av二区三区四区| 少妇高潮的动态图| 男的添女的下面高潮视频| 亚洲精品久久久久久婷婷小说| 日本色播在线视频| 七月丁香在线播放| 国产视频首页在线观看| 成人漫画全彩无遮挡| 亚洲婷婷狠狠爱综合网| av女优亚洲男人天堂| 美女视频免费永久观看网站| 久久久a久久爽久久v久久| 波多野结衣巨乳人妻| 黄色一级大片看看| 精品国产一区二区三区久久久樱花 | 嫩草影院入口| av在线app专区| 熟女电影av网| 啦啦啦在线观看免费高清www| 在线免费十八禁| 成人午夜精彩视频在线观看| 汤姆久久久久久久影院中文字幕| 少妇猛男粗大的猛烈进出视频 | 欧美少妇被猛烈插入视频| a级毛色黄片| 黄色配什么色好看| 国产一区亚洲一区在线观看| 人妻系列 视频| 日本熟妇午夜| 亚洲欧美成人综合另类久久久| 丝袜美腿在线中文| 乱码一卡2卡4卡精品| 三级国产精品欧美在线观看| 丰满乱子伦码专区| 欧美丝袜亚洲另类| 久久女婷五月综合色啪小说 | 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| 综合色av麻豆| 免费看av在线观看网站| 黄色配什么色好看| 九色成人免费人妻av| 国产亚洲一区二区精品| 在线a可以看的网站| 男女下面进入的视频免费午夜| 男女边吃奶边做爰视频| 又爽又黄无遮挡网站| 成人综合一区亚洲| 国产精品国产三级专区第一集| 色视频在线一区二区三区| 午夜精品国产一区二区电影 | 女人十人毛片免费观看3o分钟| 日本三级黄在线观看| av.在线天堂| 亚洲内射少妇av| 国产精品国产三级国产专区5o| 国产成人精品福利久久| 亚洲av福利一区| 午夜激情福利司机影院| 欧美日韩综合久久久久久| 99热网站在线观看| 日韩一区二区三区影片| 插逼视频在线观看| 国产综合精华液| 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 日韩强制内射视频| 久久精品国产鲁丝片午夜精品| 国产女主播在线喷水免费视频网站| 18禁在线播放成人免费| 精品久久久噜噜| 国内少妇人妻偷人精品xxx网站| 国产精品女同一区二区软件| 久久久久久久亚洲中文字幕| 深夜a级毛片| 亚洲国产最新在线播放| 国产毛片在线视频| 国产亚洲91精品色在线| 国产91av在线免费观看| 亚洲精品视频女| 国产成人a∨麻豆精品| 中文字幕久久专区| 成人国产麻豆网| 在线免费十八禁| 精品少妇黑人巨大在线播放| 麻豆国产97在线/欧美| 又大又黄又爽视频免费| av卡一久久| 美女被艹到高潮喷水动态| 97人妻精品一区二区三区麻豆| 插阴视频在线观看视频| 国产一区二区三区综合在线观看 | 春色校园在线视频观看| 成人午夜精彩视频在线观看| 成人国产麻豆网| 亚洲国产色片| 岛国毛片在线播放| 夫妻午夜视频| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 男女那种视频在线观看| 亚洲精品成人久久久久久| 一本一本综合久久| 国产毛片在线视频| 大片电影免费在线观看免费| 亚洲美女搞黄在线观看| 欧美亚洲 丝袜 人妻 在线| 女人十人毛片免费观看3o分钟| 大又大粗又爽又黄少妇毛片口| 亚洲自拍偷在线| 午夜老司机福利剧场| 欧美97在线视频| 欧美日韩在线观看h| 午夜老司机福利剧场| 午夜免费男女啪啪视频观看| 色吧在线观看| 亚洲精品第二区| 国产成人精品福利久久| 99九九线精品视频在线观看视频| 真实男女啪啪啪动态图| 日本与韩国留学比较| 卡戴珊不雅视频在线播放| 大又大粗又爽又黄少妇毛片口| 婷婷色综合大香蕉| 久久精品国产亚洲网站| 亚洲成色77777| 久久久久久国产a免费观看| 香蕉精品网在线| 亚洲欧美一区二区三区黑人 | 综合色av麻豆| 97在线人人人人妻| 婷婷色综合大香蕉| 熟女人妻精品中文字幕| 国产有黄有色有爽视频| 免费观看无遮挡的男女| 亚洲,欧美,日韩| 啦啦啦在线观看免费高清www| 如何舔出高潮| 欧美精品人与动牲交sv欧美| 亚洲精品国产av成人精品| 国产精品不卡视频一区二区| 777米奇影视久久| 热re99久久精品国产66热6| av.在线天堂| 69人妻影院| 国产淫语在线视频| 久久久久久伊人网av| 色视频www国产| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻熟女av久视频| 熟女电影av网| av国产精品久久久久影院| 夜夜爽夜夜爽视频| 丰满人妻一区二区三区视频av| 亚洲成人一二三区av| 我的老师免费观看完整版| av国产精品久久久久影院| a级一级毛片免费在线观看| 亚洲美女视频黄频| 免费看日本二区| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 欧美老熟妇乱子伦牲交| 国产精品三级大全| 青春草视频在线免费观看| 男女下面进入的视频免费午夜| 国产中年淑女户外野战色| 美女脱内裤让男人舔精品视频| 综合色丁香网| 午夜视频国产福利| 啦啦啦在线观看免费高清www| 亚洲美女搞黄在线观看| 久久精品国产自在天天线| 在线免费观看不下载黄p国产| 夜夜看夜夜爽夜夜摸| 日本av手机在线免费观看| 成年女人在线观看亚洲视频 | 欧美潮喷喷水| 美女国产视频在线观看| 中文字幕免费在线视频6| 亚洲av中文av极速乱| 亚洲最大成人手机在线| 一级毛片黄色毛片免费观看视频| 久久韩国三级中文字幕| 九草在线视频观看| 视频中文字幕在线观看| 欧美变态另类bdsm刘玥| 国产男女内射视频| 亚洲国产精品国产精品| 国产黄色免费在线视频| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 免费不卡的大黄色大毛片视频在线观看| 日本一二三区视频观看| 日韩,欧美,国产一区二区三区| 欧美另类一区| 亚洲人成网站高清观看| 18禁裸乳无遮挡动漫免费视频 | 777米奇影视久久| 亚洲av在线观看美女高潮| 中文欧美无线码| 国产淫片久久久久久久久| 人人妻人人澡人人爽人人夜夜| 久久影院123| 成人综合一区亚洲| 中文精品一卡2卡3卡4更新| 丝瓜视频免费看黄片| 精品人妻视频免费看| 亚洲欧美一区二区三区国产| 国内少妇人妻偷人精品xxx网站| 禁无遮挡网站| 亚洲色图av天堂| 午夜亚洲福利在线播放| 国产又色又爽无遮挡免| 久久久精品94久久精品| 欧美一级a爱片免费观看看| 亚洲综合色惰| 免费黄网站久久成人精品| 久久99蜜桃精品久久| 久久精品夜色国产| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说 | 久久久久久九九精品二区国产| 日本一二三区视频观看| 欧美三级亚洲精品| 日本欧美国产在线视频| 制服丝袜香蕉在线| 毛片女人毛片| av天堂中文字幕网| 亚洲精品影视一区二区三区av| 内射极品少妇av片p| 听说在线观看完整版免费高清| 日韩一区二区视频免费看| 欧美精品国产亚洲| 国产免费又黄又爽又色| 久久久国产一区二区| 老女人水多毛片| 成人国产麻豆网| 亚洲国产成人一精品久久久| 精品久久久久久久久亚洲| 性色av一级| 汤姆久久久久久久影院中文字幕| 麻豆精品久久久久久蜜桃| 午夜福利高清视频| 欧美xxxx性猛交bbbb| 老司机影院毛片| 亚洲国产av新网站| 九九爱精品视频在线观看| 少妇被粗大猛烈的视频| 蜜桃久久精品国产亚洲av| 成人黄色视频免费在线看| 免费在线观看成人毛片| 久久99精品国语久久久| 久久精品国产亚洲网站| 国产精品偷伦视频观看了| 一级黄片播放器| 日韩一本色道免费dvd| 丝袜脚勾引网站| 国产精品一区二区性色av| 国内精品宾馆在线| 美女脱内裤让男人舔精品视频| 精品久久久久久久末码| av天堂中文字幕网| 最近手机中文字幕大全| 在线看a的网站| 国产在视频线精品| 在线看a的网站| 亚洲av免费高清在线观看| 国产午夜福利久久久久久| 99久久精品国产国产毛片| 日本免费在线观看一区| 高清欧美精品videossex| 全区人妻精品视频| 老司机影院成人| 国产精品一区二区性色av| 国产老妇伦熟女老妇高清| 人妻夜夜爽99麻豆av| 毛片女人毛片| 人妻夜夜爽99麻豆av| 色婷婷久久久亚洲欧美| 全区人妻精品视频| 久久久久网色| 欧美精品人与动牲交sv欧美| 秋霞在线观看毛片| 国产 一区精品| 成人二区视频| 精品久久久久久久久亚洲| 在线亚洲精品国产二区图片欧美 | 日韩电影二区| 亚洲精品色激情综合| 亚洲在线观看片| 啦啦啦在线观看免费高清www| 日韩视频在线欧美| 成人特级av手机在线观看| 日韩欧美一区视频在线观看 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本午夜av视频| 亚洲精品一二三| 久久久精品94久久精品| 亚洲性久久影院| 欧美一区二区亚洲| 亚洲欧美日韩东京热| 免费观看无遮挡的男女| 国产老妇女一区| 日韩欧美精品免费久久| 日本黄大片高清| 在现免费观看毛片| 亚洲精品亚洲一区二区| 韩国高清视频一区二区三区| 久久国产乱子免费精品| 久久精品国产a三级三级三级| 美女国产视频在线观看| 大又大粗又爽又黄少妇毛片口| 麻豆国产97在线/欧美| 另类亚洲欧美激情| 天美传媒精品一区二区| 亚洲国产精品999| 嫩草影院新地址| 99久久九九国产精品国产免费| 国产免费视频播放在线视频| 国产高清不卡午夜福利| 久久久久网色| 国产黄色免费在线视频| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 别揉我奶头 嗯啊视频| 九九久久精品国产亚洲av麻豆| 极品少妇高潮喷水抽搐| 五月玫瑰六月丁香| 国产精品人妻久久久久久| 青春草亚洲视频在线观看| 91狼人影院| 亚洲,一卡二卡三卡| 国产精品一区二区三区四区免费观看| 精品久久久精品久久久| 我的老师免费观看完整版| 久久久久国产精品人妻一区二区| 免费高清在线观看视频在线观看| 国产亚洲一区二区精品| 亚洲av成人精品一二三区| 尤物成人国产欧美一区二区三区| 久久人人爽人人爽人人片va| 亚洲精华国产精华液的使用体验| 国产av国产精品国产| 大陆偷拍与自拍| 久久久久网色| av在线观看视频网站免费| 婷婷色av中文字幕| 国产成人91sexporn| 夜夜爽夜夜爽视频| 一级二级三级毛片免费看| 国产成人freesex在线| 国产精品久久久久久av不卡| 国内精品美女久久久久久| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 国产欧美日韩一区二区三区在线 | 久久亚洲国产成人精品v| 69人妻影院| 亚洲成人av在线免费| 精品一区二区三区视频在线| 中文欧美无线码| 亚洲久久久久久中文字幕| 各种免费的搞黄视频| 联通29元200g的流量卡| 综合色丁香网| 99精国产麻豆久久婷婷| 久久久久精品性色| 成人黄色视频免费在线看| 日日啪夜夜爽| 午夜激情久久久久久久| 色5月婷婷丁香| 免费观看无遮挡的男女| 国产成人精品久久久久久| 秋霞在线观看毛片| 亚洲av成人精品一二三区| 国产成人a区在线观看| 91久久精品国产一区二区三区| 制服丝袜香蕉在线| 一级毛片我不卡| 麻豆久久精品国产亚洲av| 日韩一区二区三区影片| 99久久精品热视频| 久热这里只有精品99| 欧美一区二区亚洲| 精品国产一区二区三区久久久樱花 | 亚洲精品影视一区二区三区av| 国产成人精品久久久久久| 麻豆精品久久久久久蜜桃| 成人国产麻豆网| 欧美97在线视频| 欧美一区二区亚洲| 精品国产露脸久久av麻豆| 精品人妻熟女av久视频| 少妇被粗大猛烈的视频| 日韩视频在线欧美| 午夜免费鲁丝| 成年女人看的毛片在线观看| 成年免费大片在线观看| 亚洲怡红院男人天堂| 亚洲丝袜综合中文字幕| 亚洲av一区综合| av天堂中文字幕网| 最近的中文字幕免费完整| 深夜a级毛片| 观看免费一级毛片| 嫩草影院精品99| 国产精品一区二区在线观看99| 日本欧美国产在线视频| 亚洲成人精品中文字幕电影| 亚洲天堂国产精品一区在线| 国产亚洲午夜精品一区二区久久 | 国产精品熟女久久久久浪| 蜜臀久久99精品久久宅男| 狠狠精品人妻久久久久久综合| 亚洲自偷自拍三级| 欧美激情国产日韩精品一区| 一级毛片我不卡| 国产黄色免费在线视频| 亚洲av在线观看美女高潮| 亚洲国产欧美人成| 白带黄色成豆腐渣| 亚洲欧美一区二区三区国产| 99热国产这里只有精品6| 国产精品麻豆人妻色哟哟久久| 国产高清国产精品国产三级 | 男插女下体视频免费在线播放| 22中文网久久字幕| 欧美极品一区二区三区四区| 国产男女内射视频| 少妇高潮的动态图| 水蜜桃什么品种好| 日韩不卡一区二区三区视频在线| 久热这里只有精品99| 91久久精品国产一区二区成人| 两个人的视频大全免费| 亚洲精品456在线播放app| 黑人高潮一二区| 熟女av电影| 最后的刺客免费高清国语| 汤姆久久久久久久影院中文字幕| 尤物成人国产欧美一区二区三区| 久久久精品欧美日韩精品| 三级经典国产精品| 国产美女午夜福利| 少妇丰满av| 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 国产免费一级a男人的天堂| 女的被弄到高潮叫床怎么办| 国产男人的电影天堂91| 国产成人一区二区在线| 最近手机中文字幕大全| 精品人妻视频免费看| 亚洲在线观看片| 啦啦啦中文免费视频观看日本| 我的老师免费观看完整版| 久久久久久久大尺度免费视频| 九色成人免费人妻av| 伦理电影大哥的女人| 下体分泌物呈黄色| 亚洲av成人精品一二三区| 国产午夜精品一二区理论片| 日韩欧美精品免费久久| 亚洲自拍偷在线| 午夜精品一区二区三区免费看| 久久精品久久精品一区二区三区| 国产成人精品久久久久久| 亚洲国产成人一精品久久久| 久久久久久国产a免费观看| 免费av不卡在线播放| 国产老妇伦熟女老妇高清| 日韩伦理黄色片| 欧美变态另类bdsm刘玥| 精品久久久精品久久久| 国产精品无大码| 精品一区二区三卡| 亚洲国产精品成人综合色| 在线看a的网站| 99热这里只有精品一区| 噜噜噜噜噜久久久久久91| 三级男女做爰猛烈吃奶摸视频| 久久99热6这里只有精品| 亚洲国产欧美在线一区| 色综合色国产| 久久久久性生活片| av又黄又爽大尺度在线免费看| 精品少妇黑人巨大在线播放| 丝袜脚勾引网站| www.色视频.com| 人妻一区二区av| 男插女下体视频免费在线播放| 免费观看a级毛片全部| 亚洲三级黄色毛片| 六月丁香七月| 亚洲真实伦在线观看| 最近最新中文字幕大全电影3| 国产黄片视频在线免费观看| 日韩人妻高清精品专区| 国产综合懂色| 黄色怎么调成土黄色| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜爽| 嫩草影院新地址| 亚洲精品乱码久久久久久按摩| 国产乱人偷精品视频| 激情 狠狠 欧美| 亚洲国产高清在线一区二区三| 中文字幕亚洲精品专区| 亚洲精品国产色婷婷电影| 亚洲第一区二区三区不卡| 香蕉精品网在线| 亚洲精品国产成人久久av| 天堂中文最新版在线下载 | 2021天堂中文幕一二区在线观| 男女那种视频在线观看| 国产免费视频播放在线视频| 免费高清在线观看视频在线观看| 夜夜爽夜夜爽视频| videossex国产| 日本午夜av视频| 亚洲精华国产精华液的使用体验|