• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transitional Area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with Various Doping and Oxygen Vacancy Concentrations: A GGA + U Study①

    2018-03-12 08:40:50WUTongWeiJIAGuiXioWANGXioXiLILeiANShengLi
    結(jié)構(gòu)化學 2018年2期

    WU Tong-Wei JIA Gui-Xio, b WANG Xio-Xi LI Lei AN Sheng-Li, b

    ?

    Transitional Area of Ce4+to Ce3+in SmCaCe1-x-yO2-δwith Various Doping and Oxygen Vacancy Concentrations: A GGA +Study①

    WU Tong-WeiaJIA Gui-Xiaoa, b②WANG Xiao-XiaaLI LeiaAN Sheng-Lia, b

    a(,014010)b(014010)

    In this work, we perform DFT + U periodic calculations to study geometrical and electronic structures and oxygen vacancy formation energies of SmCaCe1-x-yO2-δsystems (= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125, 0.250 and 0.50) with different oxygen vacancy and doping concentrations. The calculated results show that the V1-Sm3+-V2structures where there is a position relationship of the face diagonal between V1and V2both nearest to Sm3+have the lowest energy configurations. The study on electronic structures of the SmCaCe1-x-yO2-δsystems finds that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, and Ca2+and Sm3+co-doping effectively restrains the reduction of Ce4+. In order to avoid the existence of Ce3+,andmust be both larger than 0.0625 as= 0.125 ormust be smaller than 0.125 as== 0.0625.The Ce3+/Ce4+change ratiohas an obvious monotonous increase with increasing the vacancy oxygen concentration. The introduction of Sm3+decreases.In addition, the doped Sm3+can restrain the reduction of Ce4+when the V1-Sm3+-V2structure with a face diagonal position relationship in lower reduced atmosphere exists. It need be pointed out that the Sm0.25Ce0.75O1.5system should be thought of as a Sm-doped Ce2O3one.

    cerium oxide, oxygen vacancies, doping, electronic structures, GGA+;

    1 INTRODUCTION

    Theoretically, the distributions of oxygen vacan- cies and dopants[23], their formation energies[24], geometric and electronic structures[25]and oxygen ionic migration energies of CeO2systems[15, 25, 26]have been investigated at the atomic level. CeO2systems with Sm3+among rare earth metals and Ca2+among alkaline earth metals have the smallest oxygen ionic migration energies[25, 27]and their doping can effectively restrain the electronic con- ductivity. Theoretical[9]and experimental[28, 29]studies showed that Ca2+and Sm3+co-doping could better improve the ionic conductivity. Effects of different oxygen vacancy and doping concentrations on the distributions of oxygen vacancies, dopants and Ce3+of the CeO2systems are investigated.Murgida’s study[30]showed that the oxygen vacancy concen- tration affected the distribution of Ce3+and excess electrons preferred to be localized in the cation sites such that the mean Ce3+coordination number was maximized, and two vacancies were inclined to be second-neighboring. For doped CeO2-δ, our and other studies found that dopants preferred to occupy the nearest neighbor (NN) and next-nearest neighbor (NNN) positions relative to the oxygen vacancy[20, 25]. Independent with oxygen vacancy and doping concentrations, Ce3+is distributed around the nearest neighbor oxygen vacancy[30-32].

    However, a systematically theoretical study on Ce3+/Ce4+electronic properties of CeO2with dif- ferent oxygen vacancy and doping concentrations is absent. As is well known, Ca and Sm doping can effectively restrain the reduction of Ce4+to Ce3+and the doped CeO2has the largest ionic conductivity. Hence, in order to better understand the effects of different oxygen vacancy and Ca-, Sm-doping concentrations on the electronic structures (Ce3+/Ce4+) of CeO2systems, in the work, we select various numbers of oxygen vacancies or Ca and Sm dopants in the same supercell to obtain a series of vacancy and doping concentrations. Ultimately, this work would plot transitional area of Ce4+to Ce3+and the Ce3+/Ce4+change ratiounder different oxygen vacancy and doping concentration conditions.

    2 Models and computational details

    2. 1 Models

    CeO2has a fluorite-type structure (3space group) with one formula unit per primitive unite cell[25]. In this work, we considered a number of oxygen vacancies or dopants of Ca2+and Sm3+to produce various oxygen vacancy and doping con- centrations in a 2×2×2 supercell, namely, SmCaCe1-x-yO2-δsystems with various,and(= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125, 0.250 and 0.50) were considered, see Table 1. When the doping concentration is larger than 0.30, SmCaCe1-x-yO2-δsystems were not doping but alloying ones. However, for convenience with description in the work, we would unify them to name as doping ones.

    Doped atoms are uniformly distributed in a 2×2×2 supercell to obtain systems with various doping concentrations. Hooper’s study[33]on Sm-doped CeO2systems found that the dopant-vacancy interac- tion was a hybrid NN/NNN mixture distribution as the Sm3+concentrations increased and more NN distributions were the most favored. Our previous studies found that the first oxygen vacancy (V1) was the nearest to the dopant (NN)[20, 25]. Here, the same structure model is used. For the CeO2systems where the number of the oxygen vacancy nearest to one Sm3+is more than one, these vacancies are chosen according to the rule of the NN distribution, namely, the second oxygen vacancy nearest to one Sm3+is introduced and named as V2. Thus, V1and V2would have three distinct position relationships in the cube of eight coordinated O2-for one Sm3+, namely, the side one in Fig. 1a, the face diagonal one in Fig. 1b and the body diagonal one in Fig. 1c. Calculation results show that the structures with the face diagonal relationship between V1and V2are the most stable, consistent with the case of pure CeO2systems with double oxygen vacancies[8]. For Ca-doped CeO2systems, the models where Ca2+has a NN or NNN distribution relationship with one oxygen vacancy are considered.

    Fig. 1. Geometric structures of Sm0.25Ca0.25Ce0.5O2-δor Sm0.5Ce0.5O2-δsystems with V1and V2. Red spheres note O, white ones note Ce, and the pink ones note one Sm3+. There is a similar notation in the following figures

    2. 2 Computational details

    All calculations were performed by a Viennasimulation package (VASP)[34]. Ce55645, O22, Ca334and Sm55645were treated as valence electrons. Structures were relaxed until forces on each ion were below 0.02 eV/? and the total energy was converged within 1×10-4eV. A plane-wave cut off energy of 400 eV, a 3×3×3 Monkhorst-Pack k point mesh and a Gaussian smearing parameter of 0.20 eV were used.

    The standard DFT formulation usually fails to describe strongly the correlated electrons due to a deficient treatment of electron correlation. This limitation can be corrected by using a DFT + U method, where the introduction of a Hubbard parametermodifies the self-interaction error and enhances the description of the correlation effects[35]. This methodology has been widely used in reduced CeO2systems[6, 8, 32, 35]. Theoretical work showed that thevalue for Ce should be larger than 5.0 eV[25, 26, 34]. In this work, we used thevalue of 6.0 eV for Ce and-value of 8.0 eV and-value of 0.65 eV for Sm, consistent with the other work[35-47]. The exchange-correlation effects were described with the Perdew Burke Ernzerhof (PBE) functional within the generalized gradient approximation (GGA)[36].The calculated crystal lattice constant from the GGA +method is 5.48 ?, in agreement with the experiment value of 5.41 ?[48].

    The formation energies of oxygen vacanciesVofor CeO2-δsystems,Vo-Smfor SmCeO2-δsystems andVo-CaSmfor SmCaCeO2-δsystems can be defined as

    where[] and[] are total energies of pure or doped CeO2systems with and without oxygen vacancies, respectively.[O2] is the energy of one O2molecule set in a 10? × 10? × 10? supercell, andis the number of oxygen vacancies.

    3 RESULTS AND DISCUSSION

    3. 1 Geometric structures

    Model structures with the lowest energies are obtained.The V1-Sm3+-V2structures where there is a diagonal position relationship of the face between V1and V2both nearest to Sm3+have the lowest energy configurations, consistent with the case of pure CeO2systems with double oxygen vacancies[8]. The introduction of Sm3+, Ca2+and oxygen vacancies into CeO2can produce obvious geometric distortions, consistent with the other work[25]. Geometric struc- tures of CeO1.9688, Sm0.0312Ce0.9688O1.9688, Sm0.0312Ce0.9688O1.9375, Sm0.0312Ca0.0312Ce0.9376O1.9688and Sm0.0312Ca0.0312Ce0.9376O1.9375systems as examples are displayed in Fig. 2. Geometric struc- tures of SmCaCe1-x-yO2-δwith other oxygen vacancy and doping concentrations have a similar geometric distortion.

    It is well known that the oxygen vacancy is an area of effective positive potential, hence, the neighboring O2-move toward the vacancy, and the neighboring Ce4+move away from the vacancy. From Fig. 2a of the CeO1.9688system, we can see that three of four O2-near the oxygen vacancy move toward it and another O2-moves away from it. From the following electronic structures (see detail discussion on electronic structures), it is known that this O2-is bridged by two Ce3+which have larger negative potential than that of Ce4+. From Fig. 2b of the Sm0.0312Ce0.9688O1.9688system, it is similar to the CeO1.9688system in Fig. 2a and the difference is that one of two Ce3+is Sm3+, namely, the neighboring O2-move toward the vacancy, and the neighboring Ce4+and Sm3+move away from the vacancy. From Fig. 2c of the Sm0.0312Ce0.9688O1.9375system, we can see that the movements of four O2-toward two vacancies and two O2-toward Sm3+resulted from the common attraction of V1and V2to O2-, namely, an O2-bridged by Sm3+and Ce3+is not repelled, different from the systems with one oxygen vacancy. From Fig. 2d of the Sm0.0312Ca0.0312Ce0.9376O1.9688system, four O2-near the oxygen vacancies can be driven toward the vacancy and the neighboring Ce4+move away from the vacancy. The Sm0.0312Ca0.0312Ce0.9376O1.9375system in Fig. 2e is similar to the Sm0.0312Ce0.9688O1.9375system in Fig. 2c.

    Fig. 2. Optimized geometric structures of the CeO1.9688(a), Sm0.0312Ce0.9688O1.9688(b), Sm0.0312Ce0.9688O1.9375(c), Sm0.0312Ca0.0312Ce0.9376O1.9688(d) and Sm0.0312Ca0.0312Ce0.9376O1.9375(e) systems. Arrow directions indicate moving ones of ions

    3. 2 Oxygen vacancy formation energies

    Oxygen vacancy formation energies ofVofor CeO2-δsystems,Vo-Smfor SmCe1-xO2-δsystems andVo-CaSmfor SmCaCe1-x-yO2-δsystems are listed in Table 1.Vomonotonously increases with increasing, see Table 1 and Fig. 3. For SmCe1-xO2-δand SmCaCe1-x-yO2-δsystems, we can find thatVo-Smwith a certainandVo-CaSmwith certainandare large asislarge, and bothwith a certainare small asorand y are large, see Table 1 and Fig. 3. It need point out that the introduction of Ca and Sm makes the oxygen vacancy spontaneously form, similar to Fergus’s study on the Sm-doped CeO2systems[49].

    Table 1. Oxygen Vacancy Formation Energies (Unit: eV) of EVo for CeO2-δ, EVo-Sm for SmxCe1-xO2-δ andEVo-CaSm for SmxCayCe1-x-yO2-δ

    Fig. 3. Variation ofVo,Vo-Sm, andVo-CaSmasof corresponding CeO2-δSmCe1-xO2-δandSmCaCe1-x-yO2-δsystems

    3. 3 Electronic structures

    When oxygen vacancies in CeO2are formed, the Ce4state is split into two states: an empty Ce4emptystate and an occupied defect Ce3+4fullstate at the range of O2and Ce4empty, consistent with our previous[25]and the other work[32], see Fig. 4. Total electronic densities of states (DOS), partial electronic densities of states (PDOS) and localization electronic densities of states (LDOS) from the defect state of Ce3+for various SmCaCe1-x-yO2-δsystems with different,andare calculated, as shown in Figs. 4 and 5.

    3. 3. 1 Excess electron distribution

    From the PDOS of Ce4state for CeO1.9688, CeO1.9375, CeO1.875and CeO1.75systems in Fig. 4a, we can see that a new peak appears at the range of –1.2~0 eV for CeO1.9688, CeO1.9375, CeO1.875systems and –0.80~0.60 eV for the CeO1.75system, respectively, which are fully occupied by Ce3+electrons. Compared to the PDOS of Ce4state for the CeO1.75system, the Fermi level of the other systems approximately shift up by 0.50 eV, due to the decrease of oxygen vacancy concentration. Excess electrons arise from the oxygen vacancy and are localized on the-level traps of its neighbor Ce, which can be visually recognized from the corresponding LDOS of the defect Ce3+state in Fig. 4b-e. These are consistent with theoretical studies for CeO1.9843, CeO1.9687, CeO1.9375and CeO1.875[43]and CeO2(111), (110) and (100) surfaces[50].

    Fig. 4. DOS of the CeO2systems and PDOS of Ce4state for CeO1.9688, CeO1.9375, CeO1.875and CeO1.75systems (a) and the corresponding LDOS (b)-(e) of the defect peaks. The isosurface is shown in green and is set to 0.05 e/?. Here, one primitive cell of various CeO2-δsystems with a 2 × 2 × 2 supercell is shown

    From the PDOS of Ce4state for SmCe1-xO2-δ(0.0312≤≤0.25, 0.0312≤≤0.5) systems, see Fig. 5a, similar to CeO2-δsystems mentioned above, a new peak appears in the range of O2~Ce4empty. From the corresponding LDOS of the defect Ce3+state, see Fig. 5c-j, we can see that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, like the case of CeO2-δsystems[5, 26, 30, 32]. For the Sm0.0312Ce0.9688O1.9375system, see Fig. 5j, there are two oxygen vacancies in the 2×2×2 supercell, so they should induce four charge-compensation cations. However, the calculated result finds that there are three, maybe due to the existence of V1-Sm3+-V2structure with a face diagonal position relationship in lower reduced atmosphere and then doped Sm3+can restrain the reduction of Ce4+.

    In order to better restrain excess electrons, SmCaCe1-x-yO2-δ(0.0312≤≤0.25, 0.0312≤≤0.25, 0.0312≤≤0.5 ) systems with various,andare explored. From the DOS of Fig. 5b of SmCaCe1-x-yO2-δsystems, we can see that, except for the Sm0.0625Ca0.0625Ce0.875O1.875system, SmCaCe1-x-yO2-δsystems have no Ce3+. In other words, in order to avoid the existence of Ce3+,andmust be respectively larger than 0.0625 as= 0.125 ormust be smaller than 0.125 as== 0.0625. For a series of SmCaCe1-x-yO2-δsystems, from their corresponding LDOS of the defect Ce3+state in Fig. 5c-k, we can see that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, like the case of CeO2-δ[5, 26, 30, 32].

    Fig. 5. PDOS of Ce4states for the SmCe1-xO2-δ(0.0312≤≤0.25, 0.0312≤≤0.5) systems (a) and DOS of SmCaCe1-x-yO2-δ(0.0312≤≤0.25, 0.0312≤≤0.25, 0.0312≤≤0.5) systems (b) and the corresponding LDOS (c)~(k) of the defect peaks. Oxygen vacancies are represented by V1and V2. The isosurface is shown in green and set to 0.05 e/?

    3. 3. 2 Transitional area of Ce4+to Ce3+and Ce3+/Ce4+change ratio k forSmCaCe1-x-yO2-δsystems with different oxygen vacancy and doping concentrations

    In order to visually understand transitional area of Ce4+to Ce3+for the SmCaCe1-x-yO2-δsystems with various oxygen vacancy and doping concentrations, their transitional areas of Ce4+to Ce3+for the SmCe1-xO2-δ(Fig. 6a) and the SmCaCe1-x-yO2-δsystems (Fig. 6b) are plotted.

    Fig. 6. Transitional area of Ce4+to Ce3+and Ce3+/Ce4+change ratiofor SmCe1-xO2-δand SmCaCe1-x-yO2-δsystems with different oxygen vacancy and doping concentrations

    From Fig. 6a, we can see that no Ce3+exists for the SmCe1-xO2-δsystems with≥ 0.167 and≤0.0833 and Ce3+exists for the SmCe1-xO2-δsystems with≤ 0.0312 and≥ 0.0312,≤ 0.0625 and≥ 0.0625,≤ 0.125 and≥ 0.125,≤ 0.167 and≥ 0.166, and≤ 0.250 and≥ 0.250. For the SmCaCe1-x-yO2-δsystem as y ≠ 0, the substitution of Ce4+by Ca2+makes two excess electrons and the substitution of Ce4+by Sm3+makes one excess electron. Based on the case, for convenience of totally reflecting the effect of the doping concentration on the transition ratio of Ce4+to Ce3+, the doping effect of one Ca2+is transformed to that of two Sm3+, in which the ionic radius of doping Ca2+andSm3+is omitted, and its corres- ponding transitional area of Ce4+to Ce3+is plotted in Fig. 6b. From Fig. 6b, we can see that no Ce3+exists for the SmCaCe1-x-yO2-δsystems with≥0.0936 and≤ 0.0625,≥0.334 and≤ 0.166,≥0.375 and≤ 0.250, and≥0.750 and≤ 0.50 and Ce3+exists for the SmCaCe1-x-yO2-δsystems with≤ 0.187 and≥ 0.125.

    The Ce3+/Ce4+change ratioin SmCe1-xO2-δsystems with various oxygen vacancy and doping concentrations are studied, as shown in Fig. 6c. From Fig. 6c, we can see thathas obvious monotonous increase with increasing the vacancy concentration, and the introduction of Sm3+reduces,such as Sm0.0312Ce0.9688O1.9375, Sm0.0625Ce0.9375O1.875, Sm0.125Ce0.875O1.75, Sm0.166Ce0.834O1.668and Sm0.25Ce0.75O1.5systems, namely, the introduction of Sm3+restrains the reduction of Ce4+to Ce3+It need be pointed out that Sm0.25Ce0.75O1.5system can be thought of as Sm-doped Ce2O3, because of no unoccupied defect states between the occupied Ce3+states and the unoccupied Ce4empty, see Fig. 5a, in accordance with other theoretical work[51-53].

    4 CONCLUSION

    In this work, the influence of Sm3+single-doping or Ca2+and Sm3+co-doping, oxygen vacancies and their concentrations on the geometric and electronic structures of SmCaCe1-x-yO2-δsystems are studied. Results for the geometric structures show that the V1-Sm3+-V2structures where there is a position relationship of diagonal of the face between V1and V2both nearest to Sm3+are easily obtained, in agreement with the case of pure CeO2systems. Study for electronic structures finds that the oxygen vacancies are contributed to excess electrons and these electrons are localized on-level traps of its neighbor Ce for the SmCaCe1-x-yO2-δsystems. The Ce3+/Ce4+change ratiois related with the dopant and oxygen vacancy concentrationsIn addition, the existence of V1-Sm3+-V2structure with face diagonal position relationship in lower reduced atmosphere maybe makes the doped Sm3+restrain the reduction of Ce4+. It need be pointed out that Sm0.25Ce0.75O1.5system can be thought of as Sm-doped Ce2O3.

    (1) Brett, D. J. L.; Atkinson, A.; Brandon, N. P.; Skinner, S. J. Intermediate temperature solid oxide fuel cells.2008, 37, 1568–1578.

    (2) Ruiz, T. E.; Sirman, J. D.; Baikov, Y. M.; Kilner, J. A. Oxygen ion diffusivity, surface exchange and ionic conductivity in single crystal Gadolinia doped Ceria.1998,113, 565–569.

    (3) Park, S.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell.()2000, 404, 265–267.

    (4) Molinari, M.; Parker, S. C.; Sayle, D. C.; Islam, M. S. Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria.2012, 116, 7073–7082.

    (5) Kullgren, J.; Hermansson, K.; Castleton, C. Many competing ceria(110) oxygen vacancy structures: from small to large supercells.2012, 137, 044705.

    (6) Allen, J. P.; Watson, G. W. Occupation matrix control of- and-electron localisations using DFT +.2014, 16, 21016–21031.

    (7) Steele, B. C. H. Appraisal of Ce1-yGdO2-y/2electrolytes for IT-SOFC operation at 500 ℃.2000, 129, 95–110.

    (8) Ismail, A.; Hooper, J.; Giorgi, J. B. A DFT + U study of defect association and oxygen migration in samarium-doped ceria.2011, 13, 6116–6120.

    (9) Suparna, B.; Parukuttyamma, S. D.; Dinesh, T. S. M.; Krishnakumar, M. Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: unique effect of calcium Co-doping.2007, 17, 2847–2854.

    (10) Wang, F. Y.; Cheng, S.Gd3+and Sm3+co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells.2004, 6, 743–746.

    (11) Kim, N.; Kim, B. H.; Lee, D. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte.2000, 90, 139–143.

    (12) Mori, T.; Yamamura, H. Preparation of an alkali-element or alkali-earth-element-doped CeO2-Sm2O3system and its operation properties as the electrolyte in planar solid oxide fuel cells.1998, 6, 175–179.

    (13) Van, H. J.; Horita, T.; Kawada, T.; Sakai, N.; Yokokawa, H.Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte.1996, 86, 1255–1258.

    (14) Yang, N.; Belianinov, A.; Strelcov, E. Effect of doping on surface reactivity and conduction mechanism in samarium-doped ceria thin films.2014, 8, 12494–12501.

    (15) Ruiz-Trejo, E.; Sirman, J. D.; Baikov, Y. M.; Kilner, J. A. Nanoparticles and nanoceramics of Y-doped CeO2.1998, 113, 565–571.

    (16) Yoshida, H.; Deguchi, H.; Miura, K. Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement.2001,140, 191–199.

    (17) Andersson, D. A.; Simak, S. I.; Skorodumova, N. V.Optimization of ionic conductivity in doped ceria.2006, 103, 3518–3521.

    (18) Yin, Y. H.; Li, S. Y.; Zhu, W.; Xia, C. R. Research on calcium-doped ceria used in intermediate-temperature SOFCs anodes.2005, 03, 317–322.

    (19) Mogensen, M.; Lindegaard, T.; Hansen, U. R. Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2.1994, 141, 2122–2126.

    (20) Wei, X.; Pan, W.; Cheng, L. Atomistic calculation of association energy in doped ceria.2009, 180, 13–17.

    (21) Frayret, C.; Villesuzanne, A.; Pouchard, M.; Matar, S.Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials.2005, 101, 826–839.

    (22) Nakayama, M.; Martin, M. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations.2009, 11, 3241–3249.

    (23) Grinter, D. C.; Ithnin, R.; Pang, C. L.; Thorton, G. Defect structure of ultrathin ceria films on Pt(111): atomic views from scanning tunneling microscopy.2010, 114, 17036–17041.

    (24) Nolan, M.; Fearon, J. E.; Watson, G. W. Oxygen vacancy formation and migration in ceria.2006, 177, 3069–3074.

    (25) Jia, G. X.; Hao, W. X.; Pan, F.; Yang, J. C.; Zhang, Y. F. Electronic structures and oxygen ion migration energies of metal doped CeO2systems: a DFT+study.2013, 71, 1668–1675.

    (26) Wu, T. W.; Jia, G. X.; Bao, J. X.; Liu, Y. Y.; An, S. L. Electronic structures and oxygen ion migrations of the CaO or BaO and Sm2O3co-doped CeO2System: A DFT + U Study.2016, 32, 1363–1369.

    (27) Yahiro, H.; Eguchi, K.; Arai, H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell.1989, 36, 71–75.

    (28) Kumar, A.; Devi, P. S.; Maiti, H. S.A novel approach to develop dense lanthanum calcium chromite sintered ceramics with very high conductivity.2004, 16, 5562–5563.

    (29) Banerjee, S. P.; Devi, S. Sinter-active nanocrystalline CeO2powder prepared by a mixed fuel process: effect of fuel on particle agglomeration.2007, 9, 1097–1107.

    (30) Murgida, G. E.; Ferrari, V.; Ganduglia, P. M. V. Ordering of oxygen vacancies and excess charge localization in bulk ceria: a DFT + U study.2014, 90, 115120/1–10.

    (31) Zhang, C.; Michaelides, A.; King, D. A.; Jenkins, S. J. Oxygen vacancy clusters on ceria: decisive role of ceriumelectrons.2009, 79, 075433/1–11.

    (32) Graciani, J.; Antonio, M.; Márquez, J. J.; Plata, Y. O.; Norge, C.; Meyer, H. A.; Claudio, M.; Zicovich, W.; Javier, F. S. Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: the case of CeO2and Ce2O3.2011, 7, 56–65.

    (33) Hooper, J.; Ismail, A.; Giorgi, J. B. Computational insights into the nature of increased ionic conductivity in concentrated samarium-doped ceria: a genetic algorithm study.2010, 12, 12969–12972.

    (34) Kresse, G.; Furthmüller, J. Efficiency oftotal energy calculations for metals and semiconductors using a plane-wave basis set.. 1996, 6, 15–50.

    (35) Delfina, G. P.; Alfredo, J.; Beatriz, I. Mn-doped CeO2: DFT + U study of a catalyst for oxidation reactions.2013, 117, 18063–18073.

    (36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple.1996, 77, 3865–3867.

    (37) Castleton, C. W.; Kullgren, J.; Hermansson, K. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria.2007, 127, 244704/1–11.

    (38) Loschen, C.; Carrasco, J.; Neyman, K. M. Illas, F. First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter.2007, 75, 035115/1–8.

    (39) Nolan, M.; Parker, S. C.; Watson, G. W. Reduction of NO2 on ceria surfaces.2006, 110, 2256–2262.

    (40) Nolan, M.; Watson, G. W. The surface dependence of CO adsorption on ceria.2006, 110, 16600–16606.

    (41) Nolan, M.; Parker, S. C.; Watson, G. W. CeO2catalysed conversion of CO, NO2and NO from first principles energetics.2006, 8, 216–218.

    (42) Scanlon, D. O.; Galea, N. M.; Morgan, B. J.; Watson, G. W. Reactivity on the (110) surface of ceria: a GGA+study of surface reduction and the adsorption of CO and NO2.2009, 113, 11095–11103.

    (43) Keating, P. R. L.; Scanlon, D. O.; Watson, G. W. Intrinsic ferromagnetism in CeO2: dispelling the myth of vacancy site localization mediated superexchange.2009, 21, 405502/1–6.

    (44) Dudarev, S. L.;Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4(001) surface.1998, 57, 1505–1517.

    (45) Larson, P. W.; Lambrecht, R. L.; Chantis, A. N.; Schilfgaarde, V. M. Electronic structure of rare-earth nitrides using the LSDA+approach: importance of allowing 4orbitals to break the cubic crystal symmetry.2007, 75, 045114/1–14.

    (46) Dorado, B.; Jomard, G.; Freyss, M.; Bertolus, M. Stability of oxygen point defects in UO2by first-principles DFT + U calculations: occupation matrix control and Jahn-Teller distortion.2010, 82, 035114/1–11.

    (47) Feng, J.; Xiao, B.; Wan, C. L.Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7(Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore.2011, 59, 1742–1760.

    (48) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations.1976, 13, 5188–5192.

    (49) Fergus, J. W. Recent developments in cathode materials for lithium ion batteries.2006, 189, 30–36.

    (50) Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria.2005, 595, 223–232.

    (51) Silva, D. G. L. F.; Ganduglia, P. M. V.; Sauer, J.; Bayer, V.; Kresse, G. Hybrid functionals applied to rare-earth oxides: the example of ceria.2007, 75, 045121/1–10.

    (52) Skorodumova, N. V.; Ahuja, R.; Simak, S. I.; Abrikosov, A.; Johansson, B.; Lundqvist, B. I. Electronic, bonding, and optical properties of CeO2and Ce2O3from first principles.2001, 64, 115108/1–9.

    (53) Andersson, D. A.; Simak, S. I.; Johansson, B.; Abrikosov, I. A.; Skorodumova, N. V. Modeling of CeO2, Ce2O3, and CeO2-xin the LDA+formalism.2007, 75, 035109/1–6.

    9 May 2017;

    8 August 2017

    10.14102/j.cnki.0254-5861.2011-1715

    ①the National Natural Science Foundation of China (No. 51474133) and Inner Mongolia Natural Science Foundation (No. 2016MS0513)

    ②E-mail: guixiao.jia@163.com

    久久久久久免费高清国产稀缺| 成人影院久久| 丝袜美腿诱惑在线| 啦啦啦免费观看视频1| 在线十欧美十亚洲十日本专区| 欧洲精品卡2卡3卡4卡5卡区| 在线观看免费日韩欧美大片| a级片在线免费高清观看视频| 亚洲专区中文字幕在线| 91九色精品人成在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美一区二区三区黑人| 国产精品国产av在线观看| 国产成人欧美| av电影中文网址| 欧美中文日本在线观看视频| 亚洲五月天丁香| 国产一区二区三区综合在线观看| 国产99白浆流出| 一本综合久久免费| 国内久久婷婷六月综合欲色啪| 后天国语完整版免费观看| 大陆偷拍与自拍| 亚洲国产毛片av蜜桃av| a级毛片黄视频| 精品国产乱子伦一区二区三区| 久久久久久亚洲精品国产蜜桃av| 99国产精品一区二区蜜桃av| 岛国视频午夜一区免费看| 男女午夜视频在线观看| 亚洲专区国产一区二区| 麻豆一二三区av精品| 国产精品久久电影中文字幕| 国产熟女午夜一区二区三区| 少妇裸体淫交视频免费看高清 | 精品少妇一区二区三区视频日本电影| 午夜成年电影在线免费观看| 黄片大片在线免费观看| 国产一区二区三区综合在线观看| 久久久国产欧美日韩av| 欧美精品亚洲一区二区| 久久青草综合色| 久久久久久亚洲精品国产蜜桃av| 免费人成视频x8x8入口观看| 亚洲av美国av| 日本免费一区二区三区高清不卡 | 国产aⅴ精品一区二区三区波| 久9热在线精品视频| 欧美日韩亚洲综合一区二区三区_| 精品一品国产午夜福利视频| 亚洲精品中文字幕在线视频| 色老头精品视频在线观看| 国产激情欧美一区二区| 中出人妻视频一区二区| 国产精华一区二区三区| 国产一区二区在线av高清观看| 欧美av亚洲av综合av国产av| 日本黄色视频三级网站网址| 97碰自拍视频| 欧美日本亚洲视频在线播放| 丝袜在线中文字幕| 神马国产精品三级电影在线观看 | 国产又色又爽无遮挡免费看| 国产无遮挡羞羞视频在线观看| 亚洲精品在线观看二区| av欧美777| 露出奶头的视频| 中国美女看黄片| 99热国产这里只有精品6| 法律面前人人平等表现在哪些方面| 在线播放国产精品三级| 9191精品国产免费久久| 亚洲欧美精品综合一区二区三区| 三上悠亚av全集在线观看| 美女午夜性视频免费| 亚洲精品国产精品久久久不卡| а√天堂www在线а√下载| 亚洲狠狠婷婷综合久久图片| 亚洲欧美一区二区三区黑人| 亚洲成人免费av在线播放| 婷婷精品国产亚洲av在线| 亚洲自拍偷在线| 黄片小视频在线播放| 村上凉子中文字幕在线| 伊人久久大香线蕉亚洲五| 好男人电影高清在线观看| 精品久久久久久,| 国产精品国产av在线观看| 国产午夜精品久久久久久| 亚洲国产欧美一区二区综合| 美女 人体艺术 gogo| 免费久久久久久久精品成人欧美视频| 99久久99久久久精品蜜桃| 国产一区二区三区视频了| 欧美日本亚洲视频在线播放| 亚洲精品久久成人aⅴ小说| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻丝袜一区二区| 亚洲狠狠婷婷综合久久图片| 国产精品偷伦视频观看了| 精品久久蜜臀av无| 一级毛片高清免费大全| 精品福利观看| 国产欧美日韩一区二区三区在线| 村上凉子中文字幕在线| 午夜免费观看网址| 大陆偷拍与自拍| 十八禁人妻一区二区| 一进一出抽搐动态| 日韩欧美在线二视频| 窝窝影院91人妻| 日韩国内少妇激情av| 欧美 亚洲 国产 日韩一| 999久久久精品免费观看国产| 日韩成人在线观看一区二区三区| 99国产精品免费福利视频| 亚洲七黄色美女视频| 在线观看日韩欧美| www.精华液| 午夜日韩欧美国产| 女同久久另类99精品国产91| 亚洲美女黄片视频| 亚洲成av片中文字幕在线观看| 黄色视频不卡| 成在线人永久免费视频| 国产成人精品久久二区二区91| 久久精品成人免费网站| 久99久视频精品免费| 亚洲成国产人片在线观看| 成人18禁高潮啪啪吃奶动态图| 法律面前人人平等表现在哪些方面| 国产精品久久电影中文字幕| 欧美一级毛片孕妇| 精品久久蜜臀av无| 精品日产1卡2卡| www.精华液| 国产精品一区二区在线不卡| 国产精品一区二区在线不卡| 欧美大码av| 黄色怎么调成土黄色| 亚洲在线自拍视频| 中文字幕最新亚洲高清| 欧美乱色亚洲激情| 成年版毛片免费区| 欧美日韩亚洲高清精品| 免费少妇av软件| 亚洲,欧美精品.| 香蕉丝袜av| 国产成人精品久久二区二区91| 欧美在线一区亚洲| 国产精品 国内视频| 久久久久国内视频| 99在线视频只有这里精品首页| 热99re8久久精品国产| 两人在一起打扑克的视频| 人妻久久中文字幕网| 多毛熟女@视频| 久久久久久久久免费视频了| 免费在线观看日本一区| 午夜日韩欧美国产| 色婷婷久久久亚洲欧美| 亚洲五月色婷婷综合| 黄色 视频免费看| 99国产极品粉嫩在线观看| 一级a爱片免费观看的视频| 日韩精品免费视频一区二区三区| 亚洲熟妇中文字幕五十中出 | 波多野结衣一区麻豆| 欧美人与性动交α欧美精品济南到| 成年人黄色毛片网站| 国产精品成人在线| 久久性视频一级片| 欧美精品一区二区免费开放| 如日韩欧美国产精品一区二区三区| 青草久久国产| 69精品国产乱码久久久| 欧美日韩福利视频一区二区| 操出白浆在线播放| 久久这里只有精品19| 桃色一区二区三区在线观看| 又大又爽又粗| 日本免费a在线| 亚洲成人国产一区在线观看| 久热这里只有精品99| 国内毛片毛片毛片毛片毛片| 国产av又大| 热99re8久久精品国产| 性少妇av在线| 久久久久久亚洲精品国产蜜桃av| 成年女人毛片免费观看观看9| 国产亚洲欧美精品永久| 男女下面插进去视频免费观看| 电影成人av| 欧美成狂野欧美在线观看| 亚洲人成电影免费在线| 黄色片一级片一级黄色片| 两人在一起打扑克的视频| 午夜久久久在线观看| 日韩大尺度精品在线看网址 | 中文字幕精品免费在线观看视频| 国产成人欧美| 日本黄色日本黄色录像| 欧美成狂野欧美在线观看| 91大片在线观看| 成年版毛片免费区| 国产av一区二区精品久久| 免费人成视频x8x8入口观看| 婷婷丁香在线五月| 色老头精品视频在线观看| 国产精品香港三级国产av潘金莲| 国产成人精品无人区| 久久久国产一区二区| 欧美激情久久久久久爽电影 | 18禁国产床啪视频网站| 十八禁人妻一区二区| 国产日韩一区二区三区精品不卡| 一级黄色大片毛片| 99热只有精品国产| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 悠悠久久av| 色综合站精品国产| 两人在一起打扑克的视频| 无限看片的www在线观看| 波多野结衣av一区二区av| 日本a在线网址| 国产亚洲欧美精品永久| 欧美日韩av久久| 国产精品香港三级国产av潘金莲| 日日干狠狠操夜夜爽| 两人在一起打扑克的视频| 亚洲 欧美一区二区三区| 精品福利观看| 一a级毛片在线观看| 黑丝袜美女国产一区| 午夜精品久久久久久毛片777| xxxhd国产人妻xxx| 自线自在国产av| 亚洲精品美女久久av网站| 一区在线观看完整版| 久久国产亚洲av麻豆专区| 午夜视频精品福利| 天天添夜夜摸| 欧美黄色淫秽网站| 丝袜美足系列| 嫩草影视91久久| 免费高清在线观看日韩| 亚洲人成电影免费在线| 日韩大尺度精品在线看网址 | 欧美精品啪啪一区二区三区| av天堂在线播放| 国产有黄有色有爽视频| 女人被狂操c到高潮| av电影中文网址| 午夜福利欧美成人| 亚洲aⅴ乱码一区二区在线播放 | 成人国产一区最新在线观看| 欧美成狂野欧美在线观看| 女性被躁到高潮视频| 黄色视频不卡| 亚洲欧美日韩高清在线视频| 国产又爽黄色视频| 国产亚洲欧美98| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 757午夜福利合集在线观看| 国产精品九九99| 高清在线国产一区| 亚洲精品久久成人aⅴ小说| 亚洲人成伊人成综合网2020| 99久久久亚洲精品蜜臀av| 老鸭窝网址在线观看| 色播在线永久视频| 国产欧美日韩精品亚洲av| 午夜成年电影在线免费观看| 欧美在线黄色| 少妇的丰满在线观看| 激情视频va一区二区三区| www.999成人在线观看| 日本wwww免费看| 久热爱精品视频在线9| 久久久精品欧美日韩精品| 亚洲在线自拍视频| 精品乱码久久久久久99久播| 成人18禁在线播放| 国产高清激情床上av| 女人精品久久久久毛片| 国产深夜福利视频在线观看| 久99久视频精品免费| 黄网站色视频无遮挡免费观看| 精品免费久久久久久久清纯| 在线观看免费高清a一片| 午夜免费观看网址| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣av一区二区av| 日本一区二区免费在线视频| 成人av一区二区三区在线看| 欧美色视频一区免费| 亚洲精品成人av观看孕妇| 欧美成人性av电影在线观看| 国产精品久久久久成人av| 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 亚洲,欧美精品.| 亚洲国产中文字幕在线视频| 国产精品香港三级国产av潘金莲| 老司机福利观看| 乱人伦中国视频| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 制服诱惑二区| 在线观看66精品国产| 高清黄色对白视频在线免费看| 久久精品国产综合久久久| 久久久水蜜桃国产精品网| 伦理电影免费视频| 国产免费av片在线观看野外av| 久久精品国产99精品国产亚洲性色 | 久久 成人 亚洲| 亚洲成人国产一区在线观看| 91大片在线观看| 日韩欧美一区视频在线观看| 国产成人啪精品午夜网站| 亚洲国产毛片av蜜桃av| 国产麻豆69| 国产精品综合久久久久久久免费 | 色婷婷av一区二区三区视频| 伊人久久大香线蕉亚洲五| 国产熟女午夜一区二区三区| 少妇粗大呻吟视频| 两性夫妻黄色片| 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 在线国产一区二区在线| 亚洲精品美女久久久久99蜜臀| 制服人妻中文乱码| 岛国视频午夜一区免费看| 正在播放国产对白刺激| a级片在线免费高清观看视频| 成人18禁在线播放| 国产精品国产av在线观看| www.精华液| 国产又色又爽无遮挡免费看| 亚洲成国产人片在线观看| 新久久久久国产一级毛片| 热99re8久久精品国产| ponron亚洲| 后天国语完整版免费观看| 天堂俺去俺来也www色官网| 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区mp4| 日韩av在线大香蕉| 国产精品99久久99久久久不卡| 满18在线观看网站| 曰老女人黄片| 日韩欧美免费精品| 咕卡用的链子| 中文字幕另类日韩欧美亚洲嫩草| 一本综合久久免费| 日本a在线网址| 欧美乱色亚洲激情| 国产成人精品无人区| 欧美日韩瑟瑟在线播放| 老鸭窝网址在线观看| 亚洲午夜精品一区,二区,三区| 18禁美女被吸乳视频| 欧美 亚洲 国产 日韩一| 午夜亚洲福利在线播放| 热99国产精品久久久久久7| 性色av乱码一区二区三区2| av电影中文网址| 国内毛片毛片毛片毛片毛片| 亚洲va日本ⅴa欧美va伊人久久| 免费观看人在逋| 一本大道久久a久久精品| 国产精品自产拍在线观看55亚洲| 又黄又粗又硬又大视频| 久久精品国产亚洲av高清一级| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 无限看片的www在线观看| 欧美日韩乱码在线| 日韩精品中文字幕看吧| 久久亚洲真实| 精品福利观看| 午夜免费激情av| 丰满饥渴人妻一区二区三| 桃红色精品国产亚洲av| 成人av一区二区三区在线看| 久久这里只有精品19| 久久久久亚洲av毛片大全| 精品久久久久久电影网| 久久国产乱子伦精品免费另类| 首页视频小说图片口味搜索| 一a级毛片在线观看| 国产成人啪精品午夜网站| 久久精品国产亚洲av香蕉五月| 男女高潮啪啪啪动态图| 亚洲男人天堂网一区| 精品一区二区三区av网在线观看| 久久香蕉国产精品| 搡老熟女国产l中国老女人| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 男女下面插进去视频免费观看| 亚洲av五月六月丁香网| 日韩av在线大香蕉| 国产亚洲精品久久久久久毛片| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| 麻豆国产av国片精品| 纯流量卡能插随身wifi吗| bbb黄色大片| 国产av在哪里看| 在线av久久热| 亚洲精品久久成人aⅴ小说| 亚洲欧洲精品一区二区精品久久久| 国产精品免费一区二区三区在线| 看免费av毛片| 黑丝袜美女国产一区| 一本大道久久a久久精品| 满18在线观看网站| 亚洲欧美激情在线| 欧美日韩一级在线毛片| 国产野战对白在线观看| 亚洲男人的天堂狠狠| 久久天堂一区二区三区四区| 国产99久久九九免费精品| 琪琪午夜伦伦电影理论片6080| 亚洲av片天天在线观看| 日日干狠狠操夜夜爽| 九色亚洲精品在线播放| 国产精华一区二区三区| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 搡老岳熟女国产| 成人18禁在线播放| 天堂√8在线中文| 成人精品一区二区免费| 亚洲精品中文字幕一二三四区| 777久久人妻少妇嫩草av网站| 丝袜人妻中文字幕| ponron亚洲| 国产亚洲欧美98| 国产又色又爽无遮挡免费看| 最近最新中文字幕大全电影3 | 最近最新中文字幕大全免费视频| 欧美日韩国产mv在线观看视频| 国产伦人伦偷精品视频| 变态另类成人亚洲欧美熟女 | 免费在线观看日本一区| 一个人免费在线观看的高清视频| 女性被躁到高潮视频| 久久久久国内视频| ponron亚洲| 老司机午夜十八禁免费视频| 在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 久久久久久久午夜电影 | 又大又爽又粗| 亚洲专区中文字幕在线| 91麻豆av在线| 欧美黄色片欧美黄色片| 丝袜美足系列| 免费人成视频x8x8入口观看| 欧美日韩黄片免| 精品无人区乱码1区二区| 亚洲第一av免费看| 精品第一国产精品| 亚洲人成77777在线视频| 亚洲国产精品合色在线| 两性夫妻黄色片| 国产深夜福利视频在线观看| 一级片'在线观看视频| 亚洲,欧美精品.| 成人精品一区二区免费| 男女之事视频高清在线观看| 亚洲人成网站在线播放欧美日韩| 欧美日韩一级在线毛片| 在线观看一区二区三区激情| 久久国产精品人妻蜜桃| 国产一区二区三区在线臀色熟女 | 亚洲色图 男人天堂 中文字幕| 99久久人妻综合| 校园春色视频在线观看| 亚洲精品美女久久久久99蜜臀| netflix在线观看网站| 国产成人精品无人区| 丰满饥渴人妻一区二区三| 精品一区二区三区四区五区乱码| 日韩 欧美 亚洲 中文字幕| 两个人看的免费小视频| 国产精品爽爽va在线观看网站 | 国产激情久久老熟女| 亚洲av美国av| 亚洲精品av麻豆狂野| 日韩三级视频一区二区三区| 欧美最黄视频在线播放免费 | 亚洲人成电影免费在线| 麻豆久久精品国产亚洲av | 身体一侧抽搐| 中文欧美无线码| 精品国产超薄肉色丝袜足j| 一区二区三区精品91| 亚洲 欧美 日韩 在线 免费| 久久午夜亚洲精品久久| 亚洲成人久久性| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久久亚洲精品蜜臀av| 午夜精品久久久久久毛片777| 亚洲成人久久性| 亚洲人成电影免费在线| 三上悠亚av全集在线观看| 欧美日韩一级在线毛片| 嫩草影视91久久| 日韩一卡2卡3卡4卡2021年| 嫩草影视91久久| 国产国语露脸激情在线看| 99久久久亚洲精品蜜臀av| 真人一进一出gif抽搐免费| 国产无遮挡羞羞视频在线观看| 如日韩欧美国产精品一区二区三区| 国产精品久久电影中文字幕| 国产真人三级小视频在线观看| 国产97色在线日韩免费| 精品一区二区三卡| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 久久人人爽av亚洲精品天堂| 国产亚洲精品久久久久5区| 精品国产亚洲在线| 亚洲免费av在线视频| 欧美激情 高清一区二区三区| 精品久久久精品久久久| 国产精华一区二区三区| 91成人精品电影| 9色porny在线观看| 精品国产乱码久久久久久男人| 在线观看免费视频日本深夜| 日本撒尿小便嘘嘘汇集6| 18禁国产床啪视频网站| 亚洲专区字幕在线| 真人一进一出gif抽搐免费| 久久国产精品男人的天堂亚洲| xxxhd国产人妻xxx| 69av精品久久久久久| 日本免费一区二区三区高清不卡 | 不卡av一区二区三区| 成人手机av| 亚洲第一av免费看| 日日爽夜夜爽网站| 大型av网站在线播放| 亚洲国产欧美日韩在线播放| 亚洲男人的天堂狠狠| 久久久国产精品麻豆| 亚洲欧美日韩另类电影网站| 久久久久久亚洲精品国产蜜桃av| 日本精品一区二区三区蜜桃| 久久久久国产精品人妻aⅴ院| 在线观看免费午夜福利视频| 两个人免费观看高清视频| 亚洲午夜理论影院| 久久精品成人免费网站| 午夜影院日韩av| 50天的宝宝边吃奶边哭怎么回事| 亚洲av熟女| 好男人电影高清在线观看| 国产高清videossex| 欧美日韩亚洲综合一区二区三区_| 热re99久久精品国产66热6| 精品午夜福利视频在线观看一区| 国产一区二区激情短视频| 亚洲专区国产一区二区| 亚洲免费av在线视频| www.999成人在线观看| 9热在线视频观看99| 精品国产一区二区久久| 黄片小视频在线播放| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩一级在线毛片| 日韩欧美一区二区三区在线观看| netflix在线观看网站| 两性夫妻黄色片| 国产精品香港三级国产av潘金莲| 色综合婷婷激情| www.www免费av| 丁香欧美五月| 日日爽夜夜爽网站| 日韩高清综合在线| 日本欧美视频一区| 成人精品一区二区免费| 大香蕉久久成人网| 国产一区在线观看成人免费| 欧美最黄视频在线播放免费 | netflix在线观看网站| 黄频高清免费视频| 亚洲熟女毛片儿| 亚洲欧美激情综合另类| 精品国产美女av久久久久小说| 亚洲自偷自拍图片 自拍| 操出白浆在线播放| 欧美老熟妇乱子伦牲交| 色婷婷久久久亚洲欧美| 精品一区二区三区四区五区乱码| 国产成年人精品一区二区 | 制服诱惑二区| 男女做爰动态图高潮gif福利片 | 精品少妇一区二区三区视频日本电影| 国产单亲对白刺激| 亚洲av日韩精品久久久久久密| 亚洲中文字幕日韩| 91麻豆av在线| 嫩草影院精品99| 99久久久亚洲精品蜜臀av| 成人影院久久|