• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of WO3/TiO2 Heterostructures for Efficiently Photocatalytic Gaseous Hydrocarbons Degradation: Origin of Photoactivity and Revisit the Role of WO3 Decoration①

    2018-03-12 08:38:21WANGDnPANXioYngWANGGungToYIZhiGuo
    結(jié)構(gòu)化學(xué) 2018年2期

    WANG Dn PAN Xio-Yng WANG Gung-To YI Zhi-Guo

    ?

    Fabrication of WO3/TiO2Heterostructures for Efficiently Photocatalytic Gaseous Hydrocarbons Degradation: Origin of Photoactivity and Revisit the Role of WO3Decoration①

    WANG Dana, bPAN Xiao-Yanga②WANG Guang-TaobYI Zhi-Guoa②

    a(350002)b(453007)

    Efficient oxidation of gaseous small molecular hydrocarbons under mild conditions remains a significant but challenging task to date. Here we report that WO3decoration can obviously improve the performance of TiO2(P25) toward the photocatalytic oxidation of several small molecular hydrocarbons (C2H6, C3H8and C2H4) under simulated solar light irradiation. Among the WO3/TiO2heterostructures, the 10wt%WO3/TiO2nanocomposite shows the best photoactivities, which can efficiently oxidize C2H6, C3H8and C2H4within 15, 9 and 8 minutes, respectively under simulated sunlight with a light intensity of 200 mW/cm2. By strong contrast, a decreased photoactivity of TiO2by coupling with WO3is observed when investigating the performance of photocatalysts toward the degradation of methylene blue (MB) in liquid phase. The opposing effect of WO3decoration on the performance of TiO2is thoroughly investigated, and it is found that the improved photoactivities for gaseous hydrocarbon degradation is ascribed to the enhanced oxygen adsorption, resulting from WO3decoration rather than efficient charge separation within the WO3/TiO2heterostructures.

    WO3, TiO2, photocatalytic, hydrocarbons;

    1 INTRODUCTION

    Air pollution caused by automobile exhaust is one of the major problems in urban areas[1]. Although most of the vehicles have been equipped with emission reduction systems[2], tailpipe emission from vehicles still contains high concentrations of light hydrocarbon pollutants (C2H6, C3H8, C2H4, etc.). Up to 80% of the emitted hydrocarbons is produced in the first 60 to 90 s following a cold-start because of the catalytic converter’s inability to oxidize hydro- carbons at low temperature (between 473 to 573 K)[3]These hydrocarbon pollutants in air have adverse effect on our health by reacting with NOunder solar light irradiation to form a more toxic photochemical smog[4]. Although thermocatalytic technique and adsorption method have been used to remove these pollutants, it still remains a challenge to effectively eliminate these hydrocarbon pollutants at ambient temperature because of their high C–H bond energy and weak molecule polarity[5, 6]. Therefore, it is necessary to develop an effective strategy to remove these hydrocarbon pollutants.

    In recent years, tremendous efforts have been devoted to developing heterogeneous photocatalysts for hydrocarbon purification at room temperature[1-3, 6-9], which utilize sunlight as a green and free energy source[10-12]. By far the most studied material is TiO2, as it is considered to represent the most suitable photocatalyst, in view of its effectiveness and stabi- lity against photocorrosion[11, 13-20]. However, the application of TiO2photocatalyst is limited by its insufficient visible light absorption and low quantum efficiency, owing to its wide bandgap and fast charge recombination[11]. To deal with these problems, one effective strategy is to couple TiO2with narrow- band-gap semiconductors (CdS, Fe2O3, WO3, etc) with matched band structure[21-26].

    Tungsten oxide (WO3) is a-type semiconductor with relatively small bandgap (g= 2.6 eV) and strong oxidizing power of photoexcited holes[27], which makes it a promising photocatalyst for hydro- carbon pollutant treatment. In addition, due to the matched band structure of TiO2and WO3, the photogenerated electrons of TiO2can be directly transferred to WO3[28], which was assumed to facile- tate the charge separation and thus may enhance the photoactivity of TiO2[29-31]. Under such assumption, the fabrication of WO3/TiO2nanocomposite has attracted much attention in the field of photo- catalysis[25, 28-33]. However, it seems there is paradox in the interpretation of the role of WO3decoration on the performance of TiO2as several studies have demonstrated that WO3decoration would result in decreased photoactivities of TiO2[26, 32], although electron transfer from TiO2to WO3is observed in WO3/TiO2nanocomposite[26]. Therefore, it is necessary to clarify the role of WO3decoration on the performance of TiO2and thus understand the origin of these inconsistent results.

    In this work, WO3/TiO2nanocomposites are pre- pared by a wet-impregnation method, which shows much higher photoactivities than those of TiO2(P25) toward gas-phase degradation of C2H6, C3H8and C2H4. By strong contrast, a deactivation of TiO2photocatalyst by coupling with WO3is observed when testing photoactivities of the as-synthesized samples for methylene blue oxidation in liquid phase. Further investigation revealed that the entirely different role of WO3decoration on the performance of TiO2is attributed to the different reaction mechanisms involved in these reactions. In the gaseous hydrocarbon photooxidation, the enhancement of photoactivities of TiO2is attributed to the improved oxygen adsorption resulting from WO3decoration rather than enhanced charge separation by WO3/TiO2heterostructures.

    2 EXPERIMENTAL

    2. 1 Chemicals and materials

    Degussa P25 was purchased from Hulls Cor- poration, Germany. Analytically pure ammonium tungstate hydrate ((NH4)10H2(W2O7)6), ammonium oxalate ((NH4)2C2O4),-butyl alcohol (C4H9OH) and methylene blue (C16H18ClN3S) were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used as received without further purification.

    2. 2 Synthesis

    To obtain the WO3/TiO2heterojunctions with different weight percentage of WO3, a modified impregnation method was employed. First, a certain amount (0.0579 g, 0.0956 g, 0.1222 g, 0.15 g, 0.1941 g, or 0.4714 g) of (NH4)10H2(W2O7)6was dissolved in 300 mL of deionized water with constant stirring to form a clear solution. Then 1 g of TiO2(P25) was added into the above solution and dispersed by ultrasonic treatment to obtainuniform suspension. After stirring for 12 h, the suspension was dried in a water bath at 363 K with constant stirring. After grinding in a mortar, the dried samples were then heat-treated in a muffle furnace at a rate of 5 K/min up to 723 K and dwelled for 90 minutes in air atmosphere.

    2.3 Sample characterization

    The crystalline structure of the sample was analy- zed by X-ray diffraction (XRD, Rigaku Miniflex II) equipment with Curadiation at a scan step of 0.02o. UV-visible diffuse reflectance spectra were collected by a Peking Elmer Lamda 900 UV/VIS/NIR spectrometer equipped with an integrating sphere. BaSO4was used as the reflec- tance standard. The morphology, composition and microstructure of the samples were investigated by high-resolution transmission electron microscopy (TEM, JEM-2010) with an energy-dispersive X-ray (EDX) analysis attachment. The X-ray photoelectron spectroscopy (XPS) was employed to characterize the chemical states of the sample. The surface areas of the samples were measured by a TriStar II 3020-BET/BJH surface area analyzer. In situ diffuse reflectance Fourier transform infrared spectroscopy (DRFTIS) studies were performed on a spectrometer Nexus FT-IR (Thermo Nicolet) by using a diffuse reflectance attachment equipped with a reaction chamber. 128 single beam spectra had been co-added at a resolution of 4 cm?1and the spectra were presented as Kubelka-Munk function referred to adequate background spectra. The background and samples spectra were taken (the average of accumulated 32 scans) over the frequency range of 4000~600 cm?1. O2temperature-programmed desorption measurements were performed on Micromeritics AutoChem II 2920 instrument con- nected to a MKS cirrus mass spectrum. Before measurement, the catalyst powder (0.1 g) was heated in a He flow and kept at 423 K for 60 min, and then cooled to 333 K and flowed with O2for 60 min. After that, the O2flow was replaced by He flow for 60 min to remove any un-adsorbed O2. The TPD results were recorded at a heating rate of 10 K/min. The O2desorbed was measured quantitatively by mass spectrum. The photoluminescence (PL) spectra of the photocatalysts were obtained by a Varian Cary Eclipse spectrometer with an excitation wavelength of 325 nm.

    2. 4 Photocatalytic activity test

    The photocatalytic oxidation of gaseous hydro- carbons was carried out in a homemade fixed-bed pyrex reactor of 450 ml capacity (see Fig. S1) and a flow-bed quartz reactor (28mm × 18mm × 1mm, see Fig. S2), respectively. All experiments were conducted at atmospheric pressure and room temperature. In a typical fixed-bed reaction: the as-obtained sample (0.2 g) was spread uniformly on the bottom of the reactor. Then, the reactor was flushed with N2repeatedly to remove water and CO2that were adsorbed on the catalyst and the inwall of reactor. Subsequently, 5 mL of O2and 90 μL of hydrocarbons were injected into the reactor by micro-syringe, respectively. The initial concentration of hy- drocarbons is 200 ppm (Volume). Prior to the irradiation, the reactor was kept in the dark for 2 h to ensure the establishment of an adsorption-desorption equilibrium between the photocatalyst and reactants. Then, the reactor was irradiated by a 300 W Xe lamp. The Xe spectrum is provided in Fig. S3. At a certain time interval, 4 mL of gas was sampled from the reactor and analyzed by a gas chromatography (GC9720 Fuli) equipped with a HP-Plot/U capillary column, a molecular sieve 13X column, a flame ionization detector (FID) and a thermal conductivity detector (TCD). The degradation percentage of hydrocarbons is indicated as C/C0. Here C is the concentration of hydrocarbons at certain reaction time, and C0is the initial concentration of hydro- carbons.

    A typical flow-bed reaction was carried out as follows: the sample was placed in a quartz reactor, and then the mixed gas consisted of 78.9% N2and 21.1% O2, and small quantity of hydrocarbon gases (about 200 ppm) was flowed through the samples and analyzed directly by the gas chromatography (GC9720 Fuli). Before illumination, the flowing carrier gas was used to expel CO2and other species adsorbed on the surface of the catalysts. During the reaction, a 300 W Xe lamp was used to provide simulated solar light.

    The methylene blue (MB) photooxidation in liquid phase was carried out as follows: 30 mg of pho- tocatalyst was dispersed into 60 mL of MB solution (20 ppm) in a quartz vial. The resulting suspension was stirred in the dark for 1 h to ensure the establishment of an adsorption-desorption equili- brium between the sample and reactant. Then the reaction system was irradiated by a 300 W Xe lamp (CEL-HXF300) system (800>>300 nm). As the reactions proceed, 3 mL of the suspension was taken at a certain time interval and was centrifuged to remove the catalyst. Afterwards, the residual amount of MB in the solution was analyzed on the basis of its characteristic optical absorption at 660 nm, using a UV/Vis/NIR sepectrophotometer (Perking Elmer Lambada 900) to measure the change of MB concentration with irradiation time based on Lambert-Beer’s law. The percentage of degradation is denoted as/C. Hereis the absorption of MB solution at each irradiation time interval of the main peak of the absorption spectrum, andCis the absorption of the initial concentration when the adsorption-desorption equilibrium was achieved.

    3 RESULTS AND DISCUSSION

    3. 1 Characterization of photocatalysts

    The XRD patterns of the as-synthesized samples are shown in Fig. 1. For the blank WO3synthesized by calcination of ammonium tungstate hydrate, all the diffraction peaks can be indexed to the monoclinic phase (PDF # 71-2141) of WO3[34]. The commercial available TiO2(P25) consists of anatase and rutile phases. The presence of WO3in the 5wt%WO3/TiO2, 8wt%WO3/TiO2and 10wt%WO3/TiO2samples does not result in new XRD peaks, which may be ascribed to the even distribution and low WO3content in these samples[35]. When the addition ratio of WO3reaches 12%, 15% and 30%, besides the typical diffraction peaks of TiO2, additional peaks of WO3can be identified on these samples.

    Fig. 1. XRD patterns of the blank WO3,TiO2 (P25) and WO3/TiO2 nanocompositeswith different WO3 weight ratios

    The morphology and microstructure of the WO3/TiO2nanocomposite are investigated by TEM analysis. As shown in Fig. 3a and Fig. S5a, b, the average particle size of 10%WO3/TiO2nanocom- posite is determined to be 24 nm. The HRTEM image in Fig. 3b displays distinct lattice fringe of TiO2(101) facets (0.35 nm). In addition, the typical lattice spacing of 0.17 nm corresponding to the (–331) facet of WO3can also be identified in the HRTEM image. EDX analysis in Fig. 3c reveals the existence of Ti, W and O elements. Elemental mapping analysis (Fig. 3d-g) indicates that the Ti, W and O elements have uniform distribution, indicating that WO3is homogeneously decorated on the surface of TiO2.

    Fig. 2. UV-visible diffusive reflectance spectra of the blank WO3, TiO2(P25)and WO3/TiO2nanocomposites with different WO3weight ratios

    Fig. 3. TEM (a) and HRTEM images (b) of the 10wt%WO3/TiO2nanocomposite; EDX spectrum of the 10wt%WO3/TiO2nanocomposite (c); high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) image (d) and elemental mapping patterns of Ti (e), W (f) and O (g)

    3.2 Photocatalytic degradation of hydrocarbons

    The performance of WO3/TiO2nanocomposites is initially investigated by photocatalytic degradation of ethane (C2H6) under simulated solar light irradiation. Notably, C2H6is very stable because of its weak polarity as well as the inert C–C and C–H bonds[37]. As shown in Fig. 4a and b, WO3/TiO2nanocom- posites exhibit much higher photoactivities for C2H6oxidation than those of blank WO3and TiO2(P25). In particular, 10wt%WO3/TiO2demonstrates the highest C2H6oxidation rate among these samples, which is 5.3 times higher than that of blank TiO2(P25) (Table S1). This result indicates that the addition ratio of WO3is crucial to optimize the photoactivity of the nanocomposite. The highest photoactivity of 10wt%WO3/TiO2is in accordance with its highest surface area (Table S1). This result suggests that the surface area of catalyst can obviously affect the photoactivity, that is, the larger surface area of photocatalyst is beneficial for provi- ding more active sites for the reaction.

    To examine the efficiency of WO3/TiO2nanocom- posite, we also investigated the photoactivities of 10wt%WO3/TiO2toward propane (C3H8) and ethylene (C2H4) degradation under simulated solar light irradiation (Fig. 4c-f). It is clearly shown that the blank WO3exhibits almost no photoactivities for the oxidation of these hydrocarbons. In contrast, 10wt%WO3/TiO2shows much higher photoactivities for C3H8and C2H4oxidation than those of the blank TiO2(P25), indicating the beneficial effect of WO3/TiO2heterostructure for achieving efficient photocatalytic performance. It is worth noting that both C3H8and C2H4can be efficiently removed within 10 minutes under the simulated solar light illumination (300<<800 nm). In addition, after 5 times recycling photocatalytic test, the performance of used sample remains similar to those of the fresh sample (Fig. S6-c).

    Fig. 4. Photocatalytic degradation of C2H6over blank WO3, TiO2(P25) and WO3/TiO2nanocomposites under simulated solar light illumination (300<<800 nm) (a); Pseudo-first-order kinetics analysis of photocatalytic reaction over the samples (b); Photocatalytic degradation of C3H8(c, d), C2H4(e, f) over the TiO2(P25), WO3and 10wt%WO3/TiO2nanocomposite under simulated solar light illumination (300<<800 nm)

    The photoactivites of 10wt%WO3/TiO2nanocom- posite for C2H6, C3H8and C2H4oxidation were further investigated in a flow mode under simulated solar light irradiation. In this mode, the sample was put in a quartz reactor with nitrogen-oxygen (20% O2/N2) as carrier gas and hydrocarbons (C2H6, C3H8or C2H4) as reactant gas. The flowing rate was kept at 10 ml/min. The intensity of the simulated sunlight on the catalyst surface was approximately 200 mW/cm2measured using a calibrated thermopile detector. Before light irradiation, CO2in the reaction system was removed by flowing carrier gas. As shown in Fig. 5a-c, when the lamp is turned on, the amount of hydrocarbons decreases rapidly. Simultaneously, the concentration of CO2increases quickly to a constant value. When the light is turned off, the concentration of CO2rapidly decreases to zero. Meanwhile, the amount of hydrocarbons comes back to a constant value. These results indicate that the hydrocarbons (C2H6, C3H8and C2H4) degradation is truly driven by a photocatalytic process. In addition, it is worth noting that the mineral ratios of C2H6, C3H8and C2H4are all determined to be ~100%, indicating that the 10wt%WO3/TiO2nanocomposite is highly efficient for complete oxidation of these hydrocarbon pollutants.

    Fig. 5. Photocatalytic degradation of C2H6(a), C3H8(b) and C2H4(c) over 10wt%WO3/TiO2under simulated solar light irradiation in a flow mode

    In situ diffuse reflectance Fourier transform infrared spectroscopy (DRFTIS) was utilized to fur- ther investigate possible intermediate species during the photocatalytic reactions. As shown in Fig. 6a-c, characteristic IR modes for the hydrocarbons (C2H6, C3H8and C2H4) can be clearly identified on the surface of 10wt%WO3/TiO2, indicating that these hydrocarbons are successfully adsorbed onto the surface of the catalysts. Under the simulated solar light irradiation, the intensity of the band assigned to(C–H) of C2H6, C3H8or C2H4decreases with increasing the irradiation time (Fig. 6a-c)[38], whereas the bands assigned to the characteristic modes of CO2at 2360 and 2340 cm-1gradually grow[39]. These results indicate that these hydrocarbons are oxidized to CO2during the photocatalytic reactions. In addition, the typical(C=O) adsorption bands at 1700~1730 cm-1for carbonyls appear under the simulated solar light irradiation, indicating that the intermediate species (carbonyl compounds) may form during the photocatalytic reaction[40].

    Fig. 6. In situ diffuse reflectance Fourier transform infrared spectroscopy (DRFTIS)spectra on 10wt%WO3/TiO2during the photocatalytic C2H6(a), C3H8(b), C2H4(c)degradation under simulated solar light irradiation (300<<800 nm)

    3. 3 Origin of the enhanced catalytic activity of WO3/TiO2

    To understand the origin of the enhanced pho- tocatalytic activity of WO3/TiO2heterostructure, pho- toluminescence (PL) analysis was utilized to inves- tigate the charge separation process. As shown in Fig. 7a, 10wt%WO3/TiO2nanocomposite shows similar PL intensity to that of TiO2(P25), suggesting that WO3decoration does not promote the charge separa- tion in TiO2, although the charge transfer from TiO2to WO3is thermodynamically favorable. Even if the charge transfer from TiO2to WO3is successful, the electrons transferring from TiO2would be trapped at the W5+sites, thus they cannot be efficiently transferred to the O2molecules (Fig. 7b)[28], which is evidenced by XPS analysis. As shown in Fig. S7a, the XPS peak of W 4for the fresh 10wt%WO3/TiO2nanocomposite is symmetric, indicating fully coordinated W6+ions. However, a shoulder 1.1 eV at the right of the main W 4peak appears after the photocatalytic reactions, indicating the creation of W (V) species on the surface (Fig. S7b)[34]. These W (V) species are stable even when exposed to air for several days, suggesting that molecular oxygen is difficult to oxidize the W (V) species. Therefore, the enhanced photoactivity of WO3/TiO2nanocomposite cannot be explained by the constantly employed scenario that involves charge separation by forming WO3/TiO2heterojunction. Notably, the creation of W (V) species on the surface of WO3/TiO2nanocom- posite does not have harmful effect on the perfor- mance of the photocatalyst, since no deactivation is observed on the WO3/TiO2nanocomposite (Fig. S6a-c).

    Fig. 7. Photoluminescence spectra of the TiO2(P25), WO3and 10wt%WO3/TiO2nanocomposite (a);proposed charge transfer process over WO3/TiO2nanocomposite under simulated solar light irradiation (b)

    In previous studies, it was shown that WO3is much more acidic than TiO2[25], which has higher affinity for chemical species having unpaired electrons[25]. Therefore, the adsorption of oxygen with unpaired electrons on the catalyst surface is investigated by temperature programmed desorption (TPD), as shown in Fig. 8. As compared to TiO2(P25), the O2desorption peak of 10wt%WO3/TiO2shows higher intensity and is shifted to higher temperature. These results indicate that WO3decoration facilitates more oxygen adsorption and enhances the interaction between oxygen and the catalyst surface. Since molecular oxygen is the pre- dominant oxidant during the photocatalytic degra- dation of gaseous hydrocarbons (Fig. S8), the enhan- ced oxygen adsorption can improve the photoactivity of TiO2.

    Fig. 8. O2temperature programmed desorption profiles of TiO2(P25) and 10wt%WO3/TiO2

    In addition, the enhanced visible light absorption by WO3decoration (Fig. 2) may also contribute to the enhancement of the photoactivities of WO3/TiO2nanocomposite. To study the possible contributions of enhanced visible light absorption on the perfor- mance of photocatalyst, we also investigated the performance of WO3/TiO2nanocomposite under UV and visible light irradiation. As shown in Fig. 9a-c, the 10wt% WO3/TiO2nanocomposite shows obvious photoactivities towards the degradation of C2H6, C3H8and C2H4under visible light irradiation. However, the visible light photoactivities of 10wt% WO3/TiO2are much lower than that of 10wt% WO3/TiO2under UV and simulated solar light irradiation. Moreover, it is found that the UV light photoactivities of the sample are similar to the photoactivity of 10wt% WO3/TiO2under simulated solar light irradiation. These results suggest that the enhanced visible light absorption by WO3decoration does facilitate activation of the WO3/TiO2nanocomposite under visible light irradiation, but it does not have an obvious influence on the perfor- mance of the photocatalyst under simulated solar light irradiation.

    Fig. 9. Photocatalytic degradation of C2H6(a), C3H8(b) and C2H4(c) over the 10wt%WO3/TiO2nanocomposite under UV light (300<<380 nm), visible light (420<<800 nm)and simulated solar light (300<<800 nm) illumination

    Notably, an obviously decreased photoactivity of TiO2(P25) by coupling with WO3is observed on the WO3/TiO2nanocomposites toward photocatalytic degradation of methylene blue in liquid phase (Fig. S9). To understand this phenomenon, con- trolled experiments were further conducted. As shown in Fig. S10, the addition of ammonium oxalate (AO) scavenger for photoexcited holes signi- ficantly suppresses the photocatalytic reac- tion[41]. A similar and obvious inhibition phenome- non for photocatalytic reaction is also observed when the scavenger of-butyl alcohol (TBA) for hydroxyl radicals is added[41]. These results indicate that the photogenerated holes and hydroxyl radicals play important roles during the liquid phase methylene blue photodegradation. By contrast, when the reaction system is saturated with N2to expel the dissolved oxygen in the solution, the photoactivity of 10wt%WO3/TiO2is almost not changed, indicating that molecular oxygen is not the primary oxidant during the liquid phase reaction. Therefore, the enhanced oxygen adsorption caused by WO3decora- tion has few effects on the methylene blue photo- degradation. Since the photoexcited electrons in the conduction band of WO3can be hardly scavenged by molecular oxygen, these electrons would recombine with the photogenerated holes or reduce W6+to form W5+(Fig. 7b). As a result, the photoactivity of WO3/TiO2is lower than pure TiO2(P25), which is consistent with the previous report[32].

    4 CONCLUSION

    In conclusion, our results suggest that the influe- nce of WO3decoration on the performance of TiO2is strongly dependent on the mechanism of photo- catalytic reactions. For different photocatalytic reac- tions, the WO3decoration may have opposite effects on the performance of TiO2. For gaseous hydrocar- bon degradation (C2H6, C3H8and C2H4), molecular oxygen is the predominant oxidant. Since WO3decoration could enhance the oxygen adsorption, the photoactivities of TiO2are enhanced by WO3decora- tion, whereas for MB degradation in liquid phase, photogenerated holes and hydroxyl radicals are the primary oxidants. Under such a condition, the elec- trons on the conduction band of WO3would either recombine with the photogenerated holes or react with W6+to form W5+and thus decrease the perfor- mance of TiO2.

    (1) Hüsken, G.; Hunger, M.; Brouwers, H. J. H. Experimental study of photocatalytic concrete products for air purification.2009, 44, 2463-2474.

    (2) Enterkin, J. A.; Setthapun, W.; Elam, J. W.; Christensen, S. T.; Rabuffetti, F. A.; Marks, L. D.; Stair, P. C.; Poeppelmeier, K. R.; Marshall, C. L. Propane oxidation over Pt/SrTiO3nanocuboids.2011, 1, 629-635.

    (3) Heck, R. M.; Farrauto, R. J. Automobile exhaust catalysts.2001, 221, 443-457.

    (4) Li, Y.; Cai, Y.; Chen, X.; Pan, X.; Yang, M.; Yi, Z. Photocatalytic oxidation of small molecule hydrocarbons over Pt/TiO2nanocatalysts.2016, 6, 2760-2767.

    (5) Choudhary, T. V.; Banerjee, S.; Choudhary, V. R. Catalysts for combustion of methane and lower alkanes.2002, 234, 1-23.

    (6) Schmale, J.; Shindell, D.; von Schneidemesser, E.; Chabay, I.; Lawrence, M. Air pollution: clean up our skies.2014, 515, 335-337.

    (7) Chen, X.; Huang, X.; Yi, Z. Enhanced ethylene photodegradation performance of g-C3N4–Ag3PO4composites with direct Z-scheme configuration.2014, 20, 17590-17596.

    (8) Keller, N.; Ducamp, M. N.; Robert, D.; Keller, V. Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation.2013, 113, 5029-5070.

    (9) Long, P.; Zhang, Y.; Chen, X.; Yi, Z. Fabrication of YBi1-xVO4solid solutions for efficient C2H4photodegradation.2015, 3, 4163-4169.

    (10) Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis.1993, 93, 341-357.

    (11) Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: present situation and future approaches.2006, 9, 750-760.

    (12) Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications.2011, 112, 1555-1614.

    (13) Zheng, Z.; Huang, B.; Meng, X.; Wang, J.; Wang, S.; Lou, Z.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y. Metallic zinc-assisted synthesis of Ti3+self-doped TiO2with tunable phase composition and visible-light photocatalytic activity.2013, 49, 868-870.

    (14) Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2nanocrystals leads to high photocatalytic efficiency.2011, 133, 16414-16417.

    (15) Pei, Z.; Ding, L.; Feng, W.; Weng, S.; Liu, P. Defect self-doped TiO2for visible light activity and direct noble metal anchoring.2014, 16, 21876-21881.

    (16) Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.; Wang, R. X.; Xu, A. W. Stable blue TiO2-xnanoparticles for efficient visible light photocatalysts.2014, 2, 4429-4437.

    (17) Umezawa, N.; Ye, J. Role of complex defects in photocatalytic activities of nitrogen-doped anatase TiO2.2012, 14, 5924-5934.

    (18) Li, K.; Gao, S.; Wang, Q.; Xu, H.; Wang, Z.; Huang, B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+self-doped TiO2/g-C3N4heterojunctions with high photocatalytic performance under LED light irradiation.2015, 7, 9023-9030.

    (19) Xiang, Q.; Yu, J.; Wang, W.; Jaroniec, M. Nitrogen self-doped nanosized TiO2sheets with exposed {001} facets for enhanced visible-light photocatalytic activity.2011, 47, 6906-6908.

    (20) Liu, G.; Yang, H. G.; Wang, X.; Cheng, L.; Lu, H.; Wang, L.; Lu, G. Q.; Cheng, H. M. Enhanced photoactivity of oxygen-deficient anatase TiO2sheets with dominant {001} Facets.2009, 113, 21784-21788.

    (21) Liu, S.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Synthesis of one-dimensional CdS@TiO2core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2shell.2012, 4, 6378-6385.

    (22) Zhang, N.; Zhang, Y.; Pan, X.; Yang, M. Q.; Xu, Y. J. Constructing ternary CdS-Graphene-TiO2hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation.2012, 116, 18023-18031.

    (23) Lou, Z.; Li, F.; Deng, J.; Wang, L.; Zhang, T. Branch-like hierarchical heterostructure (Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor.2013, 5, 12310-12316.

    (24) DeKrafft, K. E.; Wang, C.; Lin, W. Metal-organic framework templated synthesis of Fe2O3/TiO2nanocomposite for hydrogen production.2012, 24, 2014-2018.

    (25) Papp, J.; Soled, S.; Dwight, K.; Wold, A. Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2photocatalysts.1994, 6, 496-500.

    (26) Tada, H.; Kokubu, A.; Iwasaki, M.; Ito, S. Deactivation of the TiO2photocatalyst by coupling with WO3and the electrochemically assisted high photocatalytic activity of WO3.2004, 20, 4665-4670.

    (27) Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured tungsten oxide – properties, synthesis, and applications.2011, 21, 2175-2196.

    (28) Zhao, D.; Chen, C.; Yu, C.; Ma, W.; Zhao, J. Photoinduced electron storage in WO3/TiO2nanohybrid material in the presence of oxygen and postirradiated reduction of heavy metal ions.2009, 113, 13160-13165.

    (29) Paramasivam, I.; Nah, Y. C.; Das, C.; Shrestha, N. K.; Schmuki, P. WO3/TiO2nanotubes with strongly enhanced photocatalytic activity.2010, 16, 8993-8997.

    (30) Smith, W.; Zhao, Y. Enhanced photocatalytic activity by aligned WO3/TiO2two-layer nanorod arrays.2008, 112, 19635-19641.

    (31) Ismail, A. A.; Abdelfattah, I.; Helal, A.; Al-Sayari, S. A.; Robben, L.; Bahnemann, D. W. Ease synthesis of mesoporous WO3-TiO2nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination.2016, 307, 43-54.

    (32) Dozzi, M. V.; Marzorati, S.; Longhi, M.; Coduri, M.; Artiglia, L.; Selli, E. Photocatalytic activity of TiO2-WO3mixed oxides in relation to electron transfer efficiency.2016, 186, 157-165.

    (33) Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H. W.; Chung, W. J.; Lee, W. I. Preparation of transparent particulate MoO3/TiO2and WO3/TiO2films and their photocatalytic properties.2001, 13, 2349-2355.

    (34) Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3nanoflakes show enhanced photostability.2012, 5, 6180-6187.

    (35) Martín, C.; Solana, G.; Rives, V.; Marcì, G.; Palmisano, L.; Sclafani, A. Physico-chemical properties of WO3/TiO2systems employed for 4-nitrophenol photodegradation in aqueous medium.1997, 49, 235-243.

    (36) Pan, J. H.; Lee, W. I. Preparation of highly ordered cubic mesoporous WO3/TiO2films and their photocatalytic properties.2006, 18, 847-853.

    (37) Brigden, C. T.; Poulston, S.; Twigg, M. V.; Walker, A. P.; Wilkins, A. J. J. Photo-oxidation of short-chain hydrocarbons over titania.2001, 32, 63-71.

    (38) H?gglund, C.; Kasemo, B.; ?sterlund, L.reactivity and FTIR study of the wet and dry photooxidation of propane on anatase TiO2.2005, 109, 10886-10895.

    (39) Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Carbon dioxide capture by diamine-grafted SBA-15: a combined fourier transform infrared and mass spectrometry study.2005, 44, 3702-3708.

    (40) van der Meulen, T.; Mattson, A.; ?sterlund, L. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2nanoparticles: role of surface intermediates.2007, 251, 131-144.

    (41) Pan, X.; Xu, Y. J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2with oxygen vacancies for photocatalytic redox reactions under visible light.2013, 117, 17996-18005.

    7 June 2017;

    23 November 2017

    10.14102/j.cnki.0254-5861.2011-1748

    ① Supported by the National Key Project on Basic Research (No. 2013CB933203), the Strategic Priority Research Program of the Chinese Academy

    of Sciences (No. XDB20000000), the National Natural Science Foundation of China (No. 21607153, 21373224 and 21577143), the Natural Science Foundation of Fujian Province (No. 2015J05044), and the Frontier Science Key Project of the Chinese Academy of Sciences (QYZDB-SSW-JSC027)

    ②Pan Xiao-Yang, E-mail: xypan@fjirsm.ac.cn; Yi Zhi-Guo, E-mail: zhiguo@fjirsm.ac.cn

    or卡值多少钱| 午夜福利视频精品| 亚洲精品第二区| 精品人妻一区二区三区麻豆| 欧美不卡视频在线免费观看| 国产黄色免费在线视频| 色吧在线观看| 午夜福利视频精品| 久久精品国产亚洲av天美| 91狼人影院| 国产女主播在线喷水免费视频网站 | 男女啪啪激烈高潮av片| 亚州av有码| 天天躁日日操中文字幕| 久热久热在线精品观看| 日韩国内少妇激情av| 人妻夜夜爽99麻豆av| 久久这里只有精品中国| 久久97久久精品| 女人被狂操c到高潮| 美女被艹到高潮喷水动态| 夜夜看夜夜爽夜夜摸| 亚洲国产av新网站| 午夜免费激情av| 别揉我奶头 嗯啊视频| 成人高潮视频无遮挡免费网站| 人人妻人人澡欧美一区二区| 综合色av麻豆| 免费看av在线观看网站| 欧美+日韩+精品| 神马国产精品三级电影在线观看| 97在线视频观看| 一本一本综合久久| 又黄又爽又刺激的免费视频.| av福利片在线观看| 婷婷六月久久综合丁香| 久久国内精品自在自线图片| 国产乱人偷精品视频| 成人亚洲精品一区在线观看 | 搞女人的毛片| 最新中文字幕久久久久| 午夜老司机福利剧场| 亚洲美女搞黄在线观看| 高清午夜精品一区二区三区| 色综合亚洲欧美另类图片| 女人十人毛片免费观看3o分钟| 亚洲成人一二三区av| 色5月婷婷丁香| 国产av在哪里看| 激情 狠狠 欧美| 日韩 亚洲 欧美在线| 成人欧美大片| 亚洲真实伦在线观看| 欧美另类一区| 最近2019中文字幕mv第一页| 日韩欧美一区视频在线观看 | 99热全是精品| 在线播放无遮挡| 日韩av不卡免费在线播放| 国产国拍精品亚洲av在线观看| 三级经典国产精品| 亚洲成人中文字幕在线播放| 久久6这里有精品| 18禁动态无遮挡网站| 日韩,欧美,国产一区二区三区| 国产亚洲5aaaaa淫片| a级毛片免费高清观看在线播放| av女优亚洲男人天堂| av在线老鸭窝| 两个人的视频大全免费| 天堂√8在线中文| 五月天丁香电影| 成人亚洲欧美一区二区av| 国产av在哪里看| 一级毛片久久久久久久久女| 欧美 日韩 精品 国产| 免费看光身美女| 日本午夜av视频| 国产精品女同一区二区软件| 一级av片app| 国产探花极品一区二区| 亚洲国产精品专区欧美| 中文乱码字字幕精品一区二区三区 | 成年女人看的毛片在线观看| 免费观看a级毛片全部| 综合色av麻豆| 亚洲最大成人手机在线| a级一级毛片免费在线观看| 国产乱人视频| 观看美女的网站| 欧美成人精品欧美一级黄| www.av在线官网国产| 精品国产三级普通话版| 久久国内精品自在自线图片| 国产探花在线观看一区二区| 亚洲av中文av极速乱| 18禁在线播放成人免费| 欧美高清性xxxxhd video| av天堂中文字幕网| 2018国产大陆天天弄谢| 精品人妻熟女av久视频| 日本熟妇午夜| 亚洲自偷自拍三级| 欧美丝袜亚洲另类| www.av在线官网国产| 男女边吃奶边做爰视频| 日本色播在线视频| 人人妻人人澡人人爽人人夜夜 | av网站免费在线观看视频 | 久久久国产一区二区| 真实男女啪啪啪动态图| 22中文网久久字幕| 国产精品精品国产色婷婷| 久久99热6这里只有精品| 欧美成人午夜免费资源| 天堂影院成人在线观看| 18+在线观看网站| 2022亚洲国产成人精品| 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 国产男女超爽视频在线观看| 精品久久久久久电影网| 熟女人妻精品中文字幕| 一个人免费在线观看电影| 久久精品国产亚洲网站| 黄色日韩在线| 一边亲一边摸免费视频| 午夜精品在线福利| 亚洲无线观看免费| 菩萨蛮人人尽说江南好唐韦庄| 国产综合精华液| 国产一区二区在线观看日韩| 少妇熟女欧美另类| 午夜老司机福利剧场| 日日干狠狠操夜夜爽| 久久久久性生活片| 看十八女毛片水多多多| 国产亚洲91精品色在线| 亚洲成人一二三区av| 国产成人freesex在线| 3wmmmm亚洲av在线观看| 免费观看的影片在线观看| 精品一区二区三卡| 欧美日韩在线观看h| 久久6这里有精品| 国产在线一区二区三区精| 亚洲电影在线观看av| 国产成人精品婷婷| 男人狂女人下面高潮的视频| .国产精品久久| 亚洲av免费在线观看| 人妻少妇偷人精品九色| 欧美不卡视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 青青草视频在线视频观看| 成人亚洲精品av一区二区| 久久久久久久久久人人人人人人| 亚洲av福利一区| 少妇人妻精品综合一区二区| 成人高潮视频无遮挡免费网站| 亚洲欧美精品自产自拍| 午夜福利高清视频| 中国国产av一级| 99久国产av精品| 成人亚洲欧美一区二区av| 2018国产大陆天天弄谢| 国产精品蜜桃在线观看| 国产精品一区二区性色av| a级毛片免费高清观看在线播放| 女人被狂操c到高潮| 欧美最新免费一区二区三区| 2018国产大陆天天弄谢| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 少妇裸体淫交视频免费看高清| 内地一区二区视频在线| 日韩av不卡免费在线播放| 青青草视频在线视频观看| 99久久人妻综合| 精品一区二区三区人妻视频| 欧美性感艳星| 亚洲av成人精品一区久久| 午夜日本视频在线| 欧美xxxx黑人xx丫x性爽| 欧美97在线视频| 免费高清在线观看视频在线观看| av卡一久久| 免费少妇av软件| 2022亚洲国产成人精品| 免费观看的影片在线观看| 少妇的逼水好多| 亚洲精品成人久久久久久| 一级毛片我不卡| 精品久久久久久久人妻蜜臀av| 哪个播放器可以免费观看大片| 一级毛片我不卡| 国产午夜精品一二区理论片| 婷婷六月久久综合丁香| 久久精品国产亚洲网站| 免费观看av网站的网址| 综合色丁香网| 大又大粗又爽又黄少妇毛片口| 亚洲自拍偷在线| 精品久久久精品久久久| 一个人看视频在线观看www免费| 色综合亚洲欧美另类图片| 麻豆成人午夜福利视频| 看十八女毛片水多多多| 国产精品精品国产色婷婷| 精品亚洲乱码少妇综合久久| 神马国产精品三级电影在线观看| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 一级毛片 在线播放| 国产麻豆成人av免费视频| 国内精品一区二区在线观看| 九色成人免费人妻av| 欧美日韩亚洲高清精品| 在线观看av片永久免费下载| 国产精品久久久久久av不卡| kizo精华| 天堂√8在线中文| 嘟嘟电影网在线观看| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| videos熟女内射| freevideosex欧美| 国产老妇伦熟女老妇高清| 99re6热这里在线精品视频| 日韩欧美三级三区| 午夜精品国产一区二区电影 | 亚洲欧美精品专区久久| 中文乱码字字幕精品一区二区三区 | 日韩一本色道免费dvd| 日韩av在线大香蕉| 亚洲精品一二三| 亚洲av男天堂| 欧美日韩亚洲高清精品| 国产极品天堂在线| 亚洲精品日本国产第一区| 免费看光身美女| 久久人人爽人人爽人人片va| 日本三级黄在线观看| 久久久午夜欧美精品| av国产久精品久网站免费入址| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 精品欧美国产一区二区三| 久久久久免费精品人妻一区二区| 亚洲av成人av| 高清在线视频一区二区三区| 91av网一区二区| 成人性生交大片免费视频hd| 国产黄片美女视频| 嫩草影院新地址| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 大香蕉97超碰在线| 国产白丝娇喘喷水9色精品| 男女国产视频网站| 亚洲在线自拍视频| 日韩制服骚丝袜av| 国产一级毛片在线| 两个人的视频大全免费| 午夜老司机福利剧场| 特级一级黄色大片| 综合色av麻豆| 成人一区二区视频在线观看| 亚洲综合色惰| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 丰满少妇做爰视频| 大香蕉久久网| 观看美女的网站| 可以在线观看毛片的网站| 黄片wwwwww| 日韩一区二区三区影片| 天天躁夜夜躁狠狠久久av| 一区二区三区乱码不卡18| 伊人久久精品亚洲午夜| 在线观看一区二区三区| 激情 狠狠 欧美| 欧美成人一区二区免费高清观看| 亚洲国产精品成人久久小说| 中文字幕制服av| 日韩电影二区| 99re6热这里在线精品视频| 神马国产精品三级电影在线观看| 男女边吃奶边做爰视频| 中文乱码字字幕精品一区二区三区 | 搞女人的毛片| 亚洲精品日韩av片在线观看| 国产综合精华液| 国产69精品久久久久777片| 少妇的逼水好多| 亚洲精品久久久久久婷婷小说| 淫秽高清视频在线观看| 亚洲一区高清亚洲精品| 亚洲在久久综合| 人人妻人人澡欧美一区二区| 久久精品综合一区二区三区| 久久精品夜色国产| 日韩欧美 国产精品| 日韩欧美精品免费久久| 三级经典国产精品| 日韩av在线大香蕉| 精品酒店卫生间| 深爱激情五月婷婷| 18+在线观看网站| 国产av不卡久久| 亚洲天堂国产精品一区在线| 日韩制服骚丝袜av| 丝瓜视频免费看黄片| 美女大奶头视频| 亚洲精品第二区| 国产成人精品久久久久久| 性插视频无遮挡在线免费观看| 色5月婷婷丁香| 国产亚洲午夜精品一区二区久久 | 免费观看在线日韩| 久久国内精品自在自线图片| 在线a可以看的网站| 免费观看性生交大片5| 97超碰精品成人国产| 麻豆国产97在线/欧美| av在线老鸭窝| 日韩大片免费观看网站| 久久久a久久爽久久v久久| 久久99热这里只有精品18| 极品教师在线视频| 97人妻精品一区二区三区麻豆| 麻豆精品久久久久久蜜桃| 男的添女的下面高潮视频| 高清欧美精品videossex| 亚洲经典国产精华液单| av卡一久久| 看免费成人av毛片| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 欧美另类一区| 97超碰精品成人国产| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 欧美精品国产亚洲| 夜夜爽夜夜爽视频| 中文精品一卡2卡3卡4更新| 国产在视频线在精品| 精品国产三级普通话版| 国产在线一区二区三区精| 欧美bdsm另类| 亚洲久久久久久中文字幕| 黄片wwwwww| 欧美 日韩 精品 国产| 国产一区二区三区av在线| 青春草国产在线视频| 亚洲激情五月婷婷啪啪| 非洲黑人性xxxx精品又粗又长| 91久久精品电影网| 成人性生交大片免费视频hd| 日韩一本色道免费dvd| 久99久视频精品免费| 欧美三级亚洲精品| 国内精品宾馆在线| 中文天堂在线官网| 乱系列少妇在线播放| 成人毛片60女人毛片免费| 2021少妇久久久久久久久久久| 国产男女超爽视频在线观看| 亚洲综合精品二区| 欧美xxⅹ黑人| 国产人妻一区二区三区在| 亚洲精品aⅴ在线观看| 成年人午夜在线观看视频 | 97热精品久久久久久| 亚洲色图av天堂| 成人午夜高清在线视频| 看十八女毛片水多多多| 最后的刺客免费高清国语| 最近中文字幕2019免费版| 一级毛片我不卡| 在线天堂最新版资源| 国产在视频线精品| 大话2 男鬼变身卡| 亚洲成人久久爱视频| ponron亚洲| 人妻少妇偷人精品九色| 免费高清在线观看视频在线观看| 国产单亲对白刺激| 又大又黄又爽视频免费| 国产乱人偷精品视频| 色综合亚洲欧美另类图片| 尤物成人国产欧美一区二区三区| 欧美bdsm另类| 色视频www国产| 日韩一本色道免费dvd| 51国产日韩欧美| 国产高清不卡午夜福利| 日本爱情动作片www.在线观看| 高清视频免费观看一区二区 | 国产精品久久久久久久电影| 国产淫片久久久久久久久| av网站免费在线观看视频 | 三级国产精品欧美在线观看| 国产成人aa在线观看| 亚洲av国产av综合av卡| 嘟嘟电影网在线观看| 在线观看一区二区三区| 尤物成人国产欧美一区二区三区| xxx大片免费视频| 美女被艹到高潮喷水动态| 久久精品综合一区二区三区| 欧美+日韩+精品| 午夜亚洲福利在线播放| 久久久久久久久中文| 在线免费观看的www视频| 五月伊人婷婷丁香| 一夜夜www| 欧美潮喷喷水| 菩萨蛮人人尽说江南好唐韦庄| 久99久视频精品免费| 一区二区三区乱码不卡18| .国产精品久久| 成人午夜高清在线视频| 国产又色又爽无遮挡免| 国产一区亚洲一区在线观看| 精品久久久久久成人av| 免费高清在线观看视频在线观看| 精品欧美国产一区二区三| 国产精品1区2区在线观看.| 少妇裸体淫交视频免费看高清| 美女被艹到高潮喷水动态| 亚洲一级一片aⅴ在线观看| 国产精品蜜桃在线观看| 黄片无遮挡物在线观看| 熟女人妻精品中文字幕| 亚洲av日韩在线播放| 一级毛片我不卡| 色综合色国产| 久久久精品欧美日韩精品| 成人综合一区亚洲| 最新中文字幕久久久久| 最近最新中文字幕大全电影3| 亚洲国产欧美在线一区| 日韩在线高清观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人av在线免费| 大香蕉97超碰在线| 亚洲精品久久久久久婷婷小说| 如何舔出高潮| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人成网站在线播| 久久久久久久久大av| 联通29元200g的流量卡| 一级a做视频免费观看| 国产成人精品一,二区| 免费高清在线观看视频在线观看| 婷婷色麻豆天堂久久| 啦啦啦中文免费视频观看日本| 欧美一级a爱片免费观看看| 最新中文字幕久久久久| 国产在线一区二区三区精| 亚洲av福利一区| 亚洲精品一二三| 免费少妇av软件| 中文精品一卡2卡3卡4更新| 国产成人午夜福利电影在线观看| 啦啦啦中文免费视频观看日本| 99视频精品全部免费 在线| 性色avwww在线观看| 成人毛片a级毛片在线播放| 99热全是精品| 国产伦精品一区二区三区视频9| 国产精品麻豆人妻色哟哟久久 | 青春草视频在线免费观看| 亚洲最大成人av| 黄色配什么色好看| 一本一本综合久久| 免费高清在线观看视频在线观看| 亚洲图色成人| 2018国产大陆天天弄谢| 国产探花极品一区二区| 禁无遮挡网站| 日韩av在线免费看完整版不卡| 欧美 日韩 精品 国产| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 亚洲欧美日韩卡通动漫| 午夜福利在线观看免费完整高清在| 51国产日韩欧美| 国产一区二区在线观看日韩| 国产色婷婷99| 一级毛片久久久久久久久女| 全区人妻精品视频| 韩国av在线不卡| 国产精品av视频在线免费观看| 大又大粗又爽又黄少妇毛片口| 视频中文字幕在线观看| 插逼视频在线观看| 麻豆乱淫一区二区| 热99在线观看视频| 成人欧美大片| 91久久精品国产一区二区成人| 人妻夜夜爽99麻豆av| 亚洲成人一二三区av| 免费电影在线观看免费观看| 日韩成人伦理影院| 精品久久久久久久末码| 日韩一本色道免费dvd| 午夜精品国产一区二区电影 | 校园人妻丝袜中文字幕| 欧美xxⅹ黑人| 亚洲精品中文字幕在线视频 | 极品少妇高潮喷水抽搐| 精品一区在线观看国产| 国产精品一区二区在线观看99 | 永久网站在线| 成人二区视频| 亚洲自偷自拍三级| 熟妇人妻久久中文字幕3abv| 国产精品熟女久久久久浪| 国产午夜精品久久久久久一区二区三区| 亚洲天堂国产精品一区在线| 亚洲av电影在线观看一区二区三区 | 国产一级毛片七仙女欲春2| 欧美丝袜亚洲另类| 最新中文字幕久久久久| 久久这里有精品视频免费| 日韩av在线大香蕉| 精品人妻偷拍中文字幕| 精品久久久久久成人av| 欧美另类一区| 在线a可以看的网站| 秋霞在线观看毛片| 久久久久久伊人网av| 中文字幕av在线有码专区| 亚洲国产精品成人综合色| 久久热精品热| 亚洲图色成人| 久久久精品欧美日韩精品| 99视频精品全部免费 在线| 国产视频内射| 久久久久久久久久黄片| 国产精品99久久久久久久久| 国内精品宾馆在线| eeuss影院久久| 亚洲三级黄色毛片| 日日干狠狠操夜夜爽| 纵有疾风起免费观看全集完整版 | 蜜臀久久99精品久久宅男| 尤物成人国产欧美一区二区三区| 成人漫画全彩无遮挡| 夜夜看夜夜爽夜夜摸| 免费看av在线观看网站| 国产成人精品婷婷| 女人久久www免费人成看片| 亚洲欧美中文字幕日韩二区| 日韩伦理黄色片| 国产在线男女| 精品久久久精品久久久| 亚洲成人精品中文字幕电影| 欧美97在线视频| 日韩av在线大香蕉| 亚洲精品自拍成人| 久久精品国产鲁丝片午夜精品| 乱人视频在线观看| 一级毛片黄色毛片免费观看视频| 婷婷色av中文字幕| 国产av不卡久久| h日本视频在线播放| 99热全是精品| 日韩欧美三级三区| 亚洲最大成人中文| 欧美xxxx性猛交bbbb| 亚洲欧美成人综合另类久久久| 少妇的逼水好多| 亚洲精品国产av成人精品| 日本色播在线视频| 亚洲av中文字字幕乱码综合| 日韩欧美精品免费久久| 国产 一区精品| 青春草视频在线免费观看| 天天躁日日操中文字幕| 国产黄频视频在线观看| 青春草视频在线免费观看| av卡一久久| 2021天堂中文幕一二区在线观| 亚洲av成人精品一区久久| 一二三四中文在线观看免费高清| 日韩av在线免费看完整版不卡| 国产综合懂色| 国产黄色小视频在线观看| 国产永久视频网站| 中文在线观看免费www的网站| 搡老妇女老女人老熟妇| 日韩一本色道免费dvd| 观看免费一级毛片| 亚洲欧美日韩卡通动漫| 2022亚洲国产成人精品| 国产免费又黄又爽又色| 性插视频无遮挡在线免费观看| 久久99蜜桃精品久久| 啦啦啦韩国在线观看视频| 欧美成人一区二区免费高清观看| 亚洲乱码一区二区免费版| 欧美97在线视频| 一区二区三区免费毛片| 美女大奶头视频| 小蜜桃在线观看免费完整版高清| 男插女下体视频免费在线播放| 黄片无遮挡物在线观看| 天堂av国产一区二区熟女人妻| 久久精品久久精品一区二区三区| 国产男女超爽视频在线观看| 在线免费十八禁| 99久久人妻综合|