• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis①

    2018-03-12 08:40:49YIMingZHAORuXiaWANGDunQiuXIAOYu
    結(jié)構(gòu)化學(xué) 2018年2期

    YI Ming ZHAO Ru-Xia WANG Dun-Qiu XIAO Yu

    ?

    A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis①

    YI Ming ZHAO Ru-Xia WANG Dun-Qiu②XIAO Yu②

    (541004)

    room temperature synthesis; dinuclear zinc polymer; crystal structure; luminescence; Hirshfeld surface analysis;

    1 INTRODUCTION

    The rational design and syntheses of novel coor- dination polymers (CPs) have achieved considera- ble progress in the field of supramolecular che- mistry and crystal engineering, owing to their fascinating structural diversities and potential applications, such as sensor technology[1], separa- tion processes[2, 3], gas storage[4, 5]luminescence[6, 7], ion exchange[8]magnetism[9–13], catalytic mate- rials[14], analytic crystal structures[15]and electro- chemiluminescence(ECL)[16]. Many complexes with novel structures and interesting physical properties have been constructed through organic ligands, which contain different functional groups, such as-donor (COOH, PO3H2, SO3H, OH)[18–20]and-donor (4,4?-bipy, 2,2?-bipy, 1,10-phen, Schiff base ligands)[21–23]. The design and synthesis of new coordination polymers based on the Hmhbd ligand have attracted considerable attention due to both structures and fascinating properties[24–30]. As is well known, Hmhbd ligand has been reported offour coordination modes including3:2:2:1(Scheme 1a)[24],1:1:1(Scheme 1b)[25, 26],2:1:2:1(Scheme 1c)[27–29]and4:3:2:1(Scheme 1d)[30].

    Scheme 1. Coordination modes of Hmhbd

    To facilitate the use CPs in these applications, many researches are focused on the generation of new structures and functionalization, as well as synthesis methods[31]. Undoubtedly, the synthesis condition is one important parameter that is invol- ved in the applicability and property determination of CPs materials. The solvothermal procedure is used most frequently to synthesize CPs and the quality of the obtained crystals is mostly suitable for crystal analysis (single-crystal X-ray diffraction). On the other hand, solvothermal synthesis of CPs is time-(days to weeks) and energy-(heating system) consuming before CPs materials can be obtained. Several new developed methods are more efficient, such as mechanochemical[32, 33]and microwave assisted methods[9, 10, 12, 18, 34]. However, these methods have special requirement for the reactors or apparatus. The solvothermal procedure is even more disadvantageous since certain starting materials are unstable at high temperature and sensitive to the reaction environment. By com- parison, the room-temperature synthesis method has the pronounced advantages of low energy cost, easy and inexpensive apparatus, and even short reaction time. In recent years, many coordination complexes, such as CPs, MOFs, clusters have been synthesized under the ambient temperature or room temperature[35–39].

    Recently, Hirshfeld surface analysis as a useful tool described the surface characteristics of the crystal structures[40]. Thenormsurface is used for describing the very close intermolecular interactions in the crystals using a red-white-blue color scheme. Another important supplement for the Hirshfeld surface is the 2-D fingerprint plots. It quantitatively analyzes the nature and type of intermolecular interactions between the molecules inside the crystal[40]. Hirshfeld surface analysis and the 2-D fingerprint plot have been rapidly gaining promi- nence as a powerful technique in exploring the inter- molecular interactions of crystals[13, 16, 41-45].Herein, a dinuclear zinc ploymer [Zn2(mhbd)2(dca)2]nhas been synthesized under room temperature. Hirshfeld surface analysis and the 2-D fingerprint plot of 1 were also studied.

    2 EXPERIMENTAL

    2. 1 Synthesis of [Zn2(mhbd)2(dca)2]n (1)

    A mixture of Zn(ClO4)2·6H2O (0.279 g, 0.75 mmol), Hmhbd (0.114 g, 0.75 mmol), NaN(CN)2(0.133 g, 1.5 mmol), and methanol (10 mL) with a pH adjusted to 7.5 by the addition of triethylamine was stirred for 30 min at room temperature. The resulting solution was left at room temperature and colorless crystals of 1 were obtained after 3 d (yield: 83 mg,. 39.16% based on Hmhbd). Anal. Calcd. (%) for C20H14N6O6Zn2: C, 42.50; H, 2.50; N, 14.86. Found (%): C, 42.45; H, 2.57; N, 14.95. IR (KBr, cm?1): 3440 m, 2801 s, 2334 m, 2271 m, 2214 s, 1640 s, 1555 m, 1473 s, 1304 s, 1216 s, 1083 m, 965 m, 854 w, 731 m, 508 w, 417 w.

    2. 2 Structure determination

    The diffraction data were collected on an Agilent G8910A CCD diffractometer with graphite mono- chromated Mo-radiation (= 0.71073 ?), using thescan mode in the range of 3.62≤≤26.95°. Raw frame data were integrated with the SAINT program[46]. The structure was solved by direct methods using SHELXS-97[46]and refined by full-matrix least-squares on2using SHELXS- 97[46]. An empirical absorption correction was applied with the program SADABS[46]. All non- hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined as riding. Selected bond lengths and bond angles for 1 are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    Symmetry transformation: (A),, 1;(B) 1,,

    2. 3 Hirshfeld surface calculations of 1

    Molecular Hirshfeld surface calculations were performed by using the CrystalExplorer program[47]. When the CIF file of 1 is read into the Crystal- Explorer program, all bond lengths to hydrogen were automatically modified to the typical standard neutron values (C–H = 1.083 ?). In this study, all the Hirshfeld surfaces were generated using a high (standard) surface resolution. The 3Dnormsurfaces were mapped by using a fixed color scale of 0.76 (red) to 2.4 (blue). The 2D fingerprint plots were displayed by using the standard 0.4~2.6 ? view with thedandddistance scales displayed on the graph axes[48].

    3 RESULTS AND DISCUSSION

    3. 1 Description of the crystal structure

    Fig. 1. Structure of 1, symmetry codes: (a) –, –, 1–; (b) 1–, –, –. All hydrogen atoms were omitted

    Complex 1 constructs double chains through double1,5-dca bridges. It must be noted that the distances of Zn(1)···Zn(2a) and Zn(1)···Zn(2b) (symmetry code: (b) 1 –, –, –z) in the chain are 8.060(1) and 8.190(1) ?, respectively. The 1D chains further formed 2D layer through C–H···O hydrogen bonds (C(7)–H(7C)···O(6I), 3.392 ?, C(15)–H(15C)···O(3II), 3.367 ?, symmetry codes: (I) 1 +,– 1,, (II),– 1,, Fig. 2b). The weakstacking extends the 2D layers into a 3D supramolecular framework (Fig. 2a). Herein,distances are 3.795(1) and 3.792(1) ?, respectively. It must be noted thatdistances between the C(1)-C(6) and {C(1)-C(6)}irings is 3.795(1) whiledistances between the C(9)–C(14) and {C(9)–C(14)}iirings is 3.792(1) ? (symmetry codes: (i) 1 –, –, 1 –, (ii) –, –, –. Fig. 3).

    Fig. 2. 3-D network of 1 (a); 2-D layers of 1(b)

    Fig. 3.interaction of 1

    3. 2 Luminescent property

    In this study, luminescent property of complex 1 and the free Hmhbd ligand have been investigated in DMF solvent with the concentrations of 4 × 10–6and 8 × 10–6mol·L–1, respectively, as shown in Fig. 4. Upon photoexcitation at 375 nm, the free ligand Hmhbd is green luminescent with the maximum at 500 nm predominantly assigned to*→transition luminescence. With photoexcitation at 375 nm, 1 also exhibits a green luminescent emission band at 465 nm. ? The emission at 465 nm probably originates from metal-to-ligand charge transfer (MLCT)[53]. Complex 1 represents a novel qualita- tive change of luminescence property resulted from the interaction between metal ion and ligand. The ligand Hmhbd has relatively larger-conjugated system of benzene ring and phenolato oxygen, aldehyde oxygen, and methoxy oxygen donors forming4:1:2:1-dentate coordinate to two zinc ions which benefits the charge transfer from Zn ion to mhbd ligands. At the same time, the 310electric structure of Zn ion benefits from metal-to-ligand charge transfer. As a result, the luminescence intensity of complex 1 is much higher than that of the Hmhbd ligand. In addition, the chelation of the ligand to metal ion increases their rigidity and thus reduces the loss of energy by thermal vibration decay. At last, the result indicates that the fluorescence intensity of complex 1 is forty-one times the fluorescence intensity of Hmhbd ligand. Complex 1 may be a good candidate for useful photoactive material due to its strong luminescent emissions.

    Fig. 4. Luminescent of 1 and the free Hmhbd ligand

    3. 3 IR spectrum property

    The IR spectral data of the ligand Hmhbd and complex 1 are shown in Fig. 5. Contrast to the Hmhbd ligand, complex 1 shows three new strong characteristic stretching vibrations (2334, 2271, 2214 cm–1) which may be assigned to the1,5-1:1coordination mode of the dca bridged ligand[24]. The vibration bands at 2801 cm–1for 1 and 2844 cm–1for the Hmhbd ligand were observed, which are attributable to the saturation -CH2- stretching frequency in 1 and the Hmhbd ligand. The band at 3440 cm–1stretching vibration may be attributed to the intermolecular hydrogen bonds (C7–H7C···O6I, 3.392 ?, C15–H15C···O3II, 3.367 ?). It is signi- ficant that the band at 1653 cm–1is attributable to the carbonyl bond(C=O) of the free Hmhbd ligand[54–56]which red shifts to 1640 cm–1for 1. The results indicate that the aldehydo oxygen of the Hmhbd ligand is coordinated[6, 30]. The bond originating from the C–O stretching vibrations of the free Hmhbd ligand at 1254 cm–1exhibit red shifts to 1216 cm–1for 1, suggesting its partici- pation in chelation[6, 57]. At very low frequencies (510~440 cm–1), two weak bands at 417 and 508 cm–1were observed from Zn–N and Zn–O bonds, respectively. The IR attribution is consistent with the crystal structure determination.

    3. 4 Hirshfeld surface analysis

    Hirshfeld surface analysis and 2D fingerprint plots are often used to identify the types of the intermolecular interactions and the proportion of this interaction. It is a useful tool for describing the surface characteristics of the molecules in the crystals. The molecular Hirshfeld surface (norm) of complex 1 is shown in Fig. 6a. They clearly show the influences of different relationship on the intermolecular interactions of complex 1. The large and deep red spots on the 3D Hirshfeld surfaces indicate the close-contact interactions. Herein, the red spots mean the Zn–N coordination bonds.

    The 2D fingerprint plotsare used for quan- titatively analyzing the nature and type of intermo- lecular interactions between the molecules inside the crystal (Fig.6b–6h). The fingerprint plots can be decomposed to highlight particular close contacts between the elements. This decomposition enables separation of contributions from different interac- tion types, which overlap in the full fingerprint. For 1, C···H interactions have the most significant contribution (26.1%) to the total Hirshfeld surface. They are reflected in the middle of scattered points in the 2D fingerprint plots. The N···H intermo- lecular interactions have 24.0% contribution to the total Hirshfeld surface. The H···H intermolecular interactions appear as an acanthosphere in the 2D fingerprint plots, which have 16.3% contribution to the total Hirshfeld surface. TheO···H intermo- lecular interactions have 10.0% contribution to the total Hirshfeld surface, including C–H···O hydro- gen bonds. In addition, the C···C intermolecular interactions have 7.6% contribution to the total Hirshfeld surface which mainly includeinteractions. It must be noted that the maximum interaction for each kind interaction is labeled in Fig.6c–6h (red ring). In general, it is obvious that the maincontacts in complex1 are C···H and N···H interactions (Fig.7).

    Fig. 5. IR of 1 and the free Hmhbd ligand

    Fig. 6. Hirshfeld surface mapped with dnorm (a); 2D finger print plot for 1(b–h)

    Fig. 7. Hirshfeld surface calculations for 1

    4 CONCLUSION

    At room temperature, a dinuclear zinc polymer [Zn2(mhbd)2(dca)2]nwas synthesized which is astraightforward and energy-saving procedure to produce CPs. Complex 1 presents a double 1-Dchain linked by the dca ligand which further constructs a 2-D layer through hydrogen bonds.The 2-D layer formed a 3-D framework thoughstacking. In 1, the mhbd ligand displays a2:1:2:1-mhbd coordination mode, while the dca group does a1,5-dca coordination mode. The result indicates that the fluorescence intensity of complex 1 is forty-one times the fluorescence intensity of Hmhbd ligand. Complex 1may be a good candidate for useful photoactive material. Hirshfeld surface analysis indicates thatthe mainly contacts in complex 1 are C···H and N···H interactions.

    (1) Wu, C.D.; Hu, A.; Zhang, L.; Lin, W. B. A Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis.. 2005, 127, 8940–8941.

    (2) Lee, E.Y.; Jang, S.Y.; Suh, M. P.Multifunctionality and crystal dynamics of a highly stable, porous metal-organic framework [Zn4O(NTB)2].. 2005,127, 6374–6381.

    (3) Dybtsev, D.N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. Microporous manganese formate:?asimple metal-organic porous material with high framework stability and highly selective gas sorption properties..2004, 126, 32–33.

    (4) Ma, L.F.; Wang, L.Y.; Huo, X.K.; Wang, Y.Y.; Fan, Y.T.; Wang, J.G.; Chen,S.H.Chain, pillar, layer, and different pores: a-[(3-carboxyphenyl)-sulfonyl]glycine ligand as a versatile building block for the construction of coordination polymers.2008, 8, 620–628.

    (5) Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks.2003, 300, 1127–1129.

    (6) Zhang, S.H.; Zhao, R.X.; Li, G.; Zhang, H.Y.; Huang, Q.P.; Liang, F.P.Room temperature syntheses, crystal structures and propertiesof two new heterometallic polymers based on3-ethoxy-2-hydroxybenzaldehyde ligand.2014, 220, 206–212.

    (7) Zhao, B.; Gao, H.L.; Chen, X.Y.; Cheng, P.; Shi, W.; Liao, D.Z.; Yan, S.P.; Jiang, Z. H. A promising MgII-ion-selective luminescent probe: structures and properties of Dy–Mn polymers with high symmetry.2006, 12, 149–158.

    (8) Min, K.S.; Suh, M.P.Silver(I)-polynitrile network solids for anion exchange:? anion-induced transformation of supramolecular structure in the crystalline state.2000, 122, 6834–6840.

    (9) Wang, W.; Hai, H.; Zhang, S. H.; Yang, L.; Zhang, C. L.; Qin, X. Y. Microwave-assisted synthesis, crystal structure and magnetic behavior of a schiff base heptanuclear cobalt cluster.. 2014, 25, 357–365.

    (10) Huang, Q.P.; Li, G.; Zhang, H. Y.; Zhang, S.H.; Li, H.P.Microwave-assisted synthesis, structure, and properties of a heptanuclear cobalt cluster with 2-ethyliminomethyl-6-methoxy-phenol.2014, 640, 1403–1407.

    (11) Yang, L.; Zhang, S.H.; Wang, W.; Guo, J.J.; Huang, Q. P.; Zhao, R.X.; Zhang, C.L.; Muller, G. Ligand induced diversification from tetranuclear to mononuclear compounds: syntheses, structures and magnetic properties.2014,74, 49–56.

    (12) Huang,Q.P.; Zhang, S.H.; Zhang, H.Y.; Li, G.; Wu, M.C.Microwave-assisted synthesis, structure and properties of a nano-double-bowl-like heptanuclear nickel(II) cluster.2014, 25, 1489–1499.

    (13) Zhang, H.Y.; Li, Y.; Wang, W.; Zhang, X.Q.; Wang, J.M.; Zhang, S.H.Tetranuclear nickel(II) clusters: syntheses, crystal structures, magnetic properties and Hirshfeld surface analysis.2016, 69, 1938–1948.

    (14) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y.; Kim, K.A homochiral metal-organic porous material for enantioselective separation and catalysis.2000,404, 982–986.

    (15) Lee, S.; Kapustin, E.; Yaghi, O. M.Coordinative alignment of molecules in chiral metal-organic frameworks.2016, 353, 808–811.

    (16) Zhang, S. H.; Wang, J. M.; Zhang, H. Y.; Fan, Y. P.; Xiao, Y. Highly efficient electrochemiluminescence based on 4-amino-1,2,4-triazole Schiff base two-dimensional Zn/Cd coordination polymers.2017, 46, 410–419.

    (17) Siman, P.; Trickett, C. A.; Furukawa, H.; Yaghi, O. M.L-aspartate links for stable sodium metal-organic frameworks..2015, 51, 17463–17466.

    (18) Lin, S.; Diercks, C.S.; Zhang, Y.B.; Kornienko, N.; Nichols, E.M.; Zhao, Y.; Paris, A.R.; Kim, D.; Yang, P.;Yaghi, O.M.; Chang, C.J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2reduction in water.2015, 349, 1208–1213.

    (19) Jiang, J.; Yaghi, O. M.Br?nsted acidity in metal-organic frameworks..2015, 115, 6966–6997.

    (20) Choi, K. M.; Na, K.; Somorjai, G.A.; Yaghi, O.M.Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal-organic frameworks.2015, 137, 7810–7816.

    (21) Yang, L.; Guo, J.J.; Zhang, C. L.; Zhang, S. H.Syntheses, crystal structure, and properties of a newCo(II) coordination polymer constructed from 1,10–phenanthroline.2015,45, 1112–1115.

    (22) Zhang, S.H.; Li, G.; Zhang, H.Y.; Li, H.P. Microwave-assisted synthesis, structure andproperty of a spin-glass heptanuclear nickelcluster with 2-iminomethyl-6-methoxy-phenol.2015, 230, 479–484.

    (23) Xiao, Y.; Huang, P.; Wang, W.Ligand structure induced diversification from dinuclear to 1D chain compounds: syntheses, structures and fluorescence properties.. 2015, 26, 1091–1102.

    (24) Yang, X.P.; Jones, R.A.; Wiester, M.J.A nanoscale slipped sandwich of Tb10-stabilization of a benzaldehyde methyl hemiacetyl.2004, 1787–1788.

    (25) Costes, J. P.; Vendier, L.Structural and magnetic studies of new NiII–LnIIIcomplexes.2010, 2768–2773.

    (26) Zhang, S.H.; Zhang, Y.D.; Zou, H.H.; Guo, J.J.; Li, H.P.; Song, Y.; Liang, H.A family of cubane cobalt and nickel clusters: syntheses, structures and magnetic properties.2013, 396, 119–125.

    (27) Zhang, S.H.; Li, N.; Ge, C.M.; Feng, C.; Ma, L.F.Structures and magnetism of {Ni2Na2}, {Ni4} and {Ni6IINiIII} 2-hydroxy-3-alkoxy- benzaldehyde clusters.. 2011, 40, 3000–3007.

    (28) Costes, J.P.; Dahan, F.; Nicodeme, F.A trinuclear gadolinium complex:? structure and magnetic properties.2001, 40, 5285–5287.

    (29) Chaudhari,A.K.; Joarder, B.; Rivière, E.; Rogez, G.; Ghosh, S.K.Nitrate-bridged “pseudo-double-propeller”-type lanthanide(III)-copper(II) heterometallic clusters: syntheses, structures, and magnetic properties.2012, 51, 9159–9161.

    (30) Lalia-Kantouri, M.; Papadopoulos, C.D.; Hatzidimitriou, A.G.; Skoulika, S.Hetero-heptanuclear (Fe-Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8·Νa5]·3OH·8H2Ο.2009,20, 177–184.

    (31) Kitagawa, S.; Kitaura, R.; Noro, S.I.Functional porous coordination polymers.2004,43, 2334–2375.

    (32) Do, J.L.; Mottillo, C.; Tan, D.; ?trukil, V.; Fri??i?, T.Mechanochemical ruthenium-catalyzed olefin metathesis..2015, 137, 2476–2479.

    (33) Karthikeyan, S.; Potisek, S.; Piermattei, A.; Sijbesma, R.P.Highly efficient mechanochemical scission of silver-carbene coordination polymers.2008, 130, 14968–14969.

    (34) Zhang,S.H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; liang, H.Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(II) cluster.2014, 67, 3155–3166.

    (35) Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M.Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0.2008, 64, 8553–8557.

    (36) Zhao, R.X.; Zhang, J.L.; Zhang, S.H.; Zhang,H.Y.Room temperature synthesis, crystal structure, and properties of a new heterometallic one-dimensional Cu–Na polymer.2016, 46, 1462–1467.

    (37) Zhou, K.; Chaemchuen, S.; Wu, Z.X.; Verpoort, F.Rapid room temperature synthesis forming pillared metal-organic frameworks with Kagomé net topology..2017, 239,28–33.

    (38) Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J.Room-temperature synthesis of manganese oxide monosheets..2008, 130, 15938–15943.

    (39) Zhao, R. X.; Zhang, S. H.; Zhang, H. Y.; Li, G.; Ding, G. H.; Li, H. P. Room temperature synthesis, crystal structure and magnetic property of a two-dimensional copper(II) polymer bridged by end-on and end-to-end azide bridges.2015, 26, 949–958.

    (40) Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis.. 2009, 11, 19–32.

    (41) Zhang, H. Y.; Xiao, Y.; Zhu, Y. A novel copper(II) complex based on 4-Amino-1,2,4-triazole Schiff-base: synthesis, crystal structure, spectral characterization, and Hirshfeld surface analysis.. 2017, 36, 848-855.

    (42) Zhang, H. Y.; Wang, W.; Chen, H.; Zhang, S.-H.; Li, Y. Five novel dinuclear copper(II) complexes: crystal structures, properties, Hirshfeld surface analysis and vitro antitumor activity study.2016, 453, 507-515.

    (43) Luo, Y. H.; Zhang, C. G.; Xu, B.; Sun, B. W. A cocrystal strategy for the precipitation of liquid 2,3-dimethyl pyrazine with hydroxyl substituted benzoic acid and a Hirshfeld surfaces analysis of them.2012, 14, 6860–6868.

    (44) Seth, S. K.; Saha, I.; Estarellas, C.; Frontera, A.; Kar, T.; Mukhopadhyay, S. Supramolecular self-assembly of M-IDA complexes involving lone-pair···π interactions: crystal structures, Hirshfeld surface analysis, and DFT calculations (H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)).. 2011, 11, 3250–3265.

    (45) Feng, C.; Ma, Y. H.; Zhang, D.; Li, X. J.; Zhao, H. Highly efficient electrochemiluminescence based on pyrazolecarboxylic metal organic framework.. 2016, 45, 5081–5091.

    (46) Sheldrick, G. M.A short history of SHELX.2008, A64, 112–122.

    (47) Wolff, S.; Grimwood, D.; McKinnon, J.; Jayatilaka, D.; Spackman, M. Crystal explorer.2007, 377.

    (48) Spackman, M.A.; McKinnon, J.J.Fingerprinting intermolecular interactions in molecular crystals.2002, 4, 378–392.

    (49) Lo, W.K.; Wong, W.K.; Guo, J.P.; Wong, W.Y.; Li, K.F.; Cheah, K.W. Synthesis, structures and luminescent properties of new heterobimetallic Zn–4schiff base complexes.2004, 357, 4510–4521.

    (50) Wang, J.; Lin, Z.J.; Ou, Y.C.; Yang, N.L.; Zhang, Y.H.; Tong, M.L.Hydrothermal synthesis, structures, and photoluminescent properties of benzenepentacarboxylate bridged networks incorporating Zinc(II)?hydroxide clusters or Zinc(II)?carboxylate layers.. 2008,47, 190–199.

    (51) Zhang, Y. D.; Zhang, S. H.; Ge, C. M.; Wang, Y. G.; Huang, Y. H.; Li, H. P. Synthesis and crystal structures of two heterobinuclear nickel polymers [NiNaL(dca)]nand[NiNaL(dca)]2n·(CH3COOCH3)n·(H2O)n.2013, 43, 990–994.

    (52) Lin, H. H.; Mohanta, S.; Lee, C. J.; Wei, H. H.Syntheses,crystal engineering, and magnetic property of a dicyanamide bridged three-dimensional manganese(II)-nitronyl nitroxide coordination polymer derived from a new radical.2003, 42, 1584–1589.

    (53) Zhang, S.H.; Feng, C.Microwave-assisted synthesis, crystal structure and fluorescence of novel coordination complexes with Schiff base ligands.2010, 977, 62–66.

    (54) van Albada, G.A.; Quiroz-Castro, M.E.; Mutikainen, I.; Turpeinen, U.; Reedijk,J.The first structural evidence of a polymeric Cu(II) compound with a bridging dicyanamide anion: X-ray structure, spectroscopy and magnetism of-[polybis(2-aminopyrimidine)copper(II)bis(-dicyanamido)].2000, 298, 221–225.

    (55) Bhaumik, P.K.; Harms, K.; Chattopadhyay, S.Synthesis and characterization of four dicyanamide bridged copper(II) complexes with N2O donor tridentate Schiff bases as blocking ligands.2013, 405, 400–409.

    (56) Ray, A.; Pilet, G.; Gómez–García, C.J.; Mitra, S.Designing dicyanamide bridged 1D molecular architecture from a mononuclear copper(II) Schiff base precursor: syntheses, structural variations and magnetic study.2009, 28, 511–520.

    (57) Shebl, M.Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes.2014, 117, 127–137.

    18 May 2017;

    11 October 2017

    10.14102/j.cnki.0254-5861.2011-1726

    ① This work was financially supported by the National Natural Science Foundation of China (Nos. 51638006 and 51569008) and the Natural Science Foundation of Guangxi Province (No. 2015GXNSFAA139240)

    ②Tel: +86 773 2537332, Fax: +86 773 2537332, E-mails: wangdunqiu@sohu.com(Wang D. Q.) and 657683458@qq.com(Xiao Y.)

    亚洲三区欧美一区| 亚洲成人手机| 色播在线永久视频| 美女视频免费永久观看网站| 欧美97在线视频| 女性生殖器流出的白浆| 亚洲精品一区蜜桃| 少妇 在线观看| 久久久久久久精品精品| 黑人欧美特级aaaaaa片| 精品午夜福利在线看| 99久久中文字幕三级久久日本| av又黄又爽大尺度在线免费看| 中国三级夫妇交换| 黑人猛操日本美女一级片| 在线观看美女被高潮喷水网站| 亚洲欧洲日产国产| 国产亚洲午夜精品一区二区久久| 久久影院123| 日本av手机在线免费观看| 国产免费一区二区三区四区乱码| 女性被躁到高潮视频| 飞空精品影院首页| 侵犯人妻中文字幕一二三四区| 我要看黄色一级片免费的| 欧美亚洲日本最大视频资源| 欧美97在线视频| 免费观看在线日韩| 色婷婷av一区二区三区视频| 黄色毛片三级朝国网站| 亚洲精品中文字幕在线视频| 免费看不卡的av| 男的添女的下面高潮视频| 亚洲国产av新网站| 一二三四中文在线观看免费高清| 国产无遮挡羞羞视频在线观看| 午夜免费男女啪啪视频观看| 男女免费视频国产| 七月丁香在线播放| 国产精品久久久久久av不卡| 亚洲精品国产av蜜桃| 久久久久精品人妻al黑| 久久99蜜桃精品久久| 欧美另类一区| 欧美日韩av久久| 男人添女人高潮全过程视频| 成年美女黄网站色视频大全免费| 日韩大片免费观看网站| 天天躁日日躁夜夜躁夜夜| 久久久久久人妻| 国产欧美亚洲国产| 免费观看a级毛片全部| 两个人看的免费小视频| 少妇熟女欧美另类| 国产精品国产av在线观看| 老鸭窝网址在线观看| www.精华液| 老司机亚洲免费影院| 天天躁狠狠躁夜夜躁狠狠躁| 日本免费在线观看一区| 亚洲一级一片aⅴ在线观看| 亚洲欧美一区二区三区久久| 久久99热这里只频精品6学生| 天堂8中文在线网| 欧美日韩国产mv在线观看视频| 欧美日韩av久久| 精品99又大又爽又粗少妇毛片| 欧美av亚洲av综合av国产av | 欧美精品亚洲一区二区| 丝袜在线中文字幕| 精品99又大又爽又粗少妇毛片| 国产不卡av网站在线观看| 国产有黄有色有爽视频| 亚洲色图 男人天堂 中文字幕| 免费久久久久久久精品成人欧美视频| 亚洲国产欧美网| 欧美日韩av久久| av在线老鸭窝| 成人亚洲精品一区在线观看| 在线观看三级黄色| 我的亚洲天堂| 中国国产av一级| 国产精品嫩草影院av在线观看| 高清在线视频一区二区三区| 欧美+日韩+精品| 精品福利永久在线观看| av福利片在线| www.熟女人妻精品国产| 精品卡一卡二卡四卡免费| 亚洲精品第二区| 高清在线视频一区二区三区| 秋霞伦理黄片| 免费大片黄手机在线观看| 免费女性裸体啪啪无遮挡网站| 久久99蜜桃精品久久| 国产麻豆69| 王馨瑶露胸无遮挡在线观看| 伊人久久国产一区二区| 99精国产麻豆久久婷婷| 亚洲一级一片aⅴ在线观看| 欧美国产精品va在线观看不卡| 少妇精品久久久久久久| 最近最新中文字幕大全免费视频 | 亚洲精品,欧美精品| 亚洲欧洲日产国产| 欧美成人午夜精品| 在线精品无人区一区二区三| av免费观看日本| 一区二区三区四区激情视频| 狠狠精品人妻久久久久久综合| 日韩熟女老妇一区二区性免费视频| 搡女人真爽免费视频火全软件| 亚洲婷婷狠狠爱综合网| 丁香六月天网| 大话2 男鬼变身卡| 欧美中文综合在线视频| 五月天丁香电影| 久久精品aⅴ一区二区三区四区 | 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲精品美女久久av网站| 精品福利永久在线观看| 免费在线观看黄色视频的| 亚洲av福利一区| 亚洲,一卡二卡三卡| 久久精品夜色国产| 极品少妇高潮喷水抽搐| 国产成人一区二区在线| 大话2 男鬼变身卡| 777米奇影视久久| 99久久精品国产国产毛片| 日韩精品免费视频一区二区三区| 在线天堂最新版资源| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 午夜老司机福利剧场| 国产精品一二三区在线看| 国产淫语在线视频| 精品酒店卫生间| 久久人妻熟女aⅴ| 久久久国产一区二区| 一级黄片播放器| 国产一区二区三区综合在线观看| 亚洲伊人久久精品综合| 成年人午夜在线观看视频| 亚洲精品一二三| 久久精品国产自在天天线| 美女福利国产在线| 欧美av亚洲av综合av国产av | 亚洲综合色网址| 亚洲五月色婷婷综合| 国产探花极品一区二区| 少妇人妻久久综合中文| www日本在线高清视频| 亚洲精华国产精华液的使用体验| 69精品国产乱码久久久| 咕卡用的链子| 日韩欧美一区视频在线观看| 制服诱惑二区| 日韩免费高清中文字幕av| 天天影视国产精品| 国产黄色免费在线视频| 一区二区三区四区激情视频| 丝袜喷水一区| 亚洲一区二区三区欧美精品| av国产精品久久久久影院| 飞空精品影院首页| 九草在线视频观看| 久久99蜜桃精品久久| 国产亚洲午夜精品一区二区久久| 在线 av 中文字幕| videos熟女内射| videosex国产| 黄片无遮挡物在线观看| 国产欧美日韩综合在线一区二区| 亚洲美女搞黄在线观看| 欧美97在线视频| 亚洲国产精品999| 成人毛片a级毛片在线播放| 国产成人免费无遮挡视频| a级毛片在线看网站| 久久精品久久久久久噜噜老黄| 久久影院123| 欧美日韩av久久| 成年动漫av网址| 欧美精品人与动牲交sv欧美| 午夜激情久久久久久久| 婷婷色综合www| 国产爽快片一区二区三区| 久久久久国产网址| 男女边摸边吃奶| av网站在线播放免费| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 国产一区二区三区综合在线观看| 午夜av观看不卡| 欧美日韩视频高清一区二区三区二| 晚上一个人看的免费电影| 色94色欧美一区二区| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| 飞空精品影院首页| 亚洲精品aⅴ在线观看| 久久热在线av| 久热久热在线精品观看| 国产在线免费精品| 大香蕉久久成人网| 纵有疾风起免费观看全集完整版| 黑丝袜美女国产一区| 亚洲综合色惰| av国产久精品久网站免费入址| 少妇精品久久久久久久| 国产精品 国内视频| 观看美女的网站| 超碰97精品在线观看| 亚洲男人天堂网一区| 90打野战视频偷拍视频| 99热网站在线观看| 午夜日韩欧美国产| 亚洲少妇的诱惑av| 亚洲成人av在线免费| 国产精品人妻久久久影院| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 成人黄色视频免费在线看| 男男h啪啪无遮挡| 国产又爽黄色视频| 2022亚洲国产成人精品| 亚洲精品国产色婷婷电影| 国产精品一二三区在线看| 久久精品人人爽人人爽视色| 日韩中文字幕视频在线看片| 欧美日韩av久久| 免费看不卡的av| 亚洲天堂av无毛| 亚洲情色 制服丝袜| 亚洲精品中文字幕在线视频| 99re6热这里在线精品视频| 中文天堂在线官网| 又大又黄又爽视频免费| 成人影院久久| 久久久精品94久久精品| 久久久久网色| 国产日韩欧美在线精品| 大陆偷拍与自拍| av又黄又爽大尺度在线免费看| 丝袜脚勾引网站| 亚洲av在线观看美女高潮| 日韩成人av中文字幕在线观看| 国产 精品1| 考比视频在线观看| 母亲3免费完整高清在线观看 | 一本色道久久久久久精品综合| av在线播放精品| 婷婷成人精品国产| 人妻一区二区av| 日韩伦理黄色片| 一本久久精品| 99国产精品免费福利视频| 在线观看三级黄色| 久久精品国产亚洲av天美| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 亚洲中文av在线| 精品一区在线观看国产| 欧美精品高潮呻吟av久久| 美女主播在线视频| 少妇熟女欧美另类| 在线看a的网站| 黄色毛片三级朝国网站| 欧美激情 高清一区二区三区| 国产精品人妻久久久影院| 三上悠亚av全集在线观看| 2022亚洲国产成人精品| 美女国产高潮福利片在线看| 欧美日韩综合久久久久久| 精品少妇久久久久久888优播| 午夜免费观看性视频| 日本vs欧美在线观看视频| 亚洲精品中文字幕在线视频| 免费看不卡的av| 国产在线免费精品| 精品亚洲成国产av| 宅男免费午夜| 大香蕉久久成人网| 国精品久久久久久国模美| av线在线观看网站| 黄频高清免费视频| 男女国产视频网站| 妹子高潮喷水视频| 免费观看在线日韩| 热re99久久国产66热| 亚洲国产精品999| 中文字幕人妻熟女乱码| 国产日韩欧美视频二区| 中文天堂在线官网| 亚洲综合精品二区| 人人妻人人澡人人爽人人夜夜| 欧美日韩视频高清一区二区三区二| 欧美激情高清一区二区三区 | 日韩中文字幕视频在线看片| 自线自在国产av| 制服诱惑二区| 日韩一区二区三区影片| 伊人亚洲综合成人网| 高清欧美精品videossex| 久久久久久久久久久免费av| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 亚洲综合色网址| 国产亚洲精品第一综合不卡| 亚洲av成人精品一二三区| 啦啦啦啦在线视频资源| 2022亚洲国产成人精品| 国产精品免费视频内射| 边亲边吃奶的免费视频| 国产精品熟女久久久久浪| 精品国产一区二区三区久久久樱花| 亚洲精品av麻豆狂野| 人人妻人人爽人人添夜夜欢视频| 丰满乱子伦码专区| 国产色婷婷99| 最近最新中文字幕免费大全7| 欧美成人午夜免费资源| 看非洲黑人一级黄片| 下体分泌物呈黄色| 高清黄色对白视频在线免费看| 亚洲综合精品二区| 最近中文字幕2019免费版| 卡戴珊不雅视频在线播放| 亚洲精品美女久久av网站| 亚洲情色 制服丝袜| 国产不卡av网站在线观看| www.精华液| 在线观看一区二区三区激情| 国产精品亚洲av一区麻豆 | 人人妻人人澡人人爽人人夜夜| 亚洲 欧美一区二区三区| 亚洲精品一二三| 欧美中文综合在线视频| 新久久久久国产一级毛片| 日本wwww免费看| 亚洲精品国产av蜜桃| 国产精品无大码| 下体分泌物呈黄色| 五月开心婷婷网| 少妇的丰满在线观看| 亚洲精品第二区| 国产精品av久久久久免费| av一本久久久久| 欧美 日韩 精品 国产| 天堂中文最新版在线下载| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产av蜜桃| 国产女主播在线喷水免费视频网站| xxxhd国产人妻xxx| 美女中出高潮动态图| 亚洲色图 男人天堂 中文字幕| 午夜福利影视在线免费观看| 宅男免费午夜| 色吧在线观看| av女优亚洲男人天堂| 大香蕉久久网| 各种免费的搞黄视频| 青春草国产在线视频| 精品国产一区二区三区久久久樱花| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片| 久久久亚洲精品成人影院| 在线观看国产h片| 久久精品国产亚洲av天美| 亚洲精品日韩在线中文字幕| 午夜日韩欧美国产| 日韩在线高清观看一区二区三区| 日韩不卡一区二区三区视频在线| a 毛片基地| 女性生殖器流出的白浆| 精品一区二区免费观看| 日韩三级伦理在线观看| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 国产综合精华液| av在线老鸭窝| 最黄视频免费看| 99热全是精品| 国产av码专区亚洲av| 亚洲 欧美一区二区三区| 男女无遮挡免费网站观看| 亚洲av日韩在线播放| 一级毛片黄色毛片免费观看视频| 国产极品天堂在线| 夜夜骑夜夜射夜夜干| 国产精品.久久久| 国产成人免费观看mmmm| 亚洲国产最新在线播放| 亚洲精品国产av蜜桃| 国产伦理片在线播放av一区| 欧美中文综合在线视频| 国产深夜福利视频在线观看| 波多野结衣一区麻豆| 超碰成人久久| 国产精品国产av在线观看| 久久久久精品久久久久真实原创| 国产精品熟女久久久久浪| 午夜影院在线不卡| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 欧美日韩综合久久久久久| 国产成人免费无遮挡视频| 精品视频人人做人人爽| 欧美日韩一级在线毛片| 美女福利国产在线| 日韩电影二区| 成人国产麻豆网| 又黄又粗又硬又大视频| 久久av网站| 国产男人的电影天堂91| 免费看av在线观看网站| 天堂中文最新版在线下载| 黄色毛片三级朝国网站| 18+在线观看网站| 成人国语在线视频| 999久久久国产精品视频| 久久久亚洲精品成人影院| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 国产精品女同一区二区软件| 国产xxxxx性猛交| 日韩一卡2卡3卡4卡2021年| 激情视频va一区二区三区| 少妇 在线观看| 亚洲男人天堂网一区| 精品午夜福利在线看| 日韩制服丝袜自拍偷拍| 纵有疾风起免费观看全集完整版| 国产1区2区3区精品| 精品人妻一区二区三区麻豆| 宅男免费午夜| 午夜激情久久久久久久| 少妇精品久久久久久久| 久久精品亚洲av国产电影网| 国产精品99久久99久久久不卡 | 亚洲久久久国产精品| 午夜久久久在线观看| 久久久国产欧美日韩av| 国产一区二区在线观看av| av线在线观看网站| 亚洲人成电影观看| av卡一久久| 一区福利在线观看| 91aial.com中文字幕在线观看| 一级a爱视频在线免费观看| 久久精品aⅴ一区二区三区四区 | 老司机亚洲免费影院| 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| av有码第一页| 国产av国产精品国产| 成人午夜精彩视频在线观看| 久久久国产一区二区| 亚洲三级黄色毛片| 一级片'在线观看视频| 亚洲第一av免费看| 亚洲av.av天堂| 成人亚洲精品一区在线观看| 国产一区二区三区综合在线观看| 亚洲欧洲精品一区二区精品久久久 | 精品酒店卫生间| 9色porny在线观看| 黄片小视频在线播放| 精品一区在线观看国产| 少妇被粗大的猛进出69影院| 欧美日韩亚洲国产一区二区在线观看 | 国产黄色视频一区二区在线观看| 狠狠婷婷综合久久久久久88av| 99久久综合免费| 老汉色av国产亚洲站长工具| 黑人欧美特级aaaaaa片| 久久亚洲国产成人精品v| 国产精品一区二区在线不卡| 性高湖久久久久久久久免费观看| 在现免费观看毛片| 在线观看免费日韩欧美大片| 欧美成人午夜免费资源| 亚洲内射少妇av| 伦精品一区二区三区| 男男h啪啪无遮挡| 国产福利在线免费观看视频| 天堂俺去俺来也www色官网| 看非洲黑人一级黄片| 国产一区有黄有色的免费视频| 久久ye,这里只有精品| 美女高潮到喷水免费观看| 又黄又粗又硬又大视频| 只有这里有精品99| 伊人久久国产一区二区| 久久久精品94久久精品| 欧美激情极品国产一区二区三区| 老司机亚洲免费影院| 91国产中文字幕| 国产深夜福利视频在线观看| √禁漫天堂资源中文www| 精品人妻熟女毛片av久久网站| 午夜91福利影院| 天天躁夜夜躁狠狠久久av| 女人被躁到高潮嗷嗷叫费观| 国产精品人妻久久久影院| 国产伦理片在线播放av一区| 性色avwww在线观看| 精品人妻偷拍中文字幕| 中文字幕亚洲精品专区| av网站在线播放免费| 精品少妇黑人巨大在线播放| 又黄又粗又硬又大视频| 91国产中文字幕| 男女午夜视频在线观看| 激情五月婷婷亚洲| 亚洲成色77777| 亚洲国产色片| 欧美bdsm另类| 男人添女人高潮全过程视频| 久久青草综合色| 欧美日韩一区二区视频在线观看视频在线| 免费黄色在线免费观看| 精品国产一区二区久久| 少妇被粗大的猛进出69影院| 亚洲婷婷狠狠爱综合网| 国产黄色免费在线视频| 精品亚洲乱码少妇综合久久| 亚洲欧洲日产国产| 久久精品人人爽人人爽视色| 国产精品免费视频内射| 精品久久久久久电影网| 国产淫语在线视频| 国产亚洲最大av| kizo精华| 亚洲国产最新在线播放| 久久99精品国语久久久| 国产欧美日韩一区二区三区在线| 搡女人真爽免费视频火全软件| 极品少妇高潮喷水抽搐| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区久久久樱花| 国产精品99久久99久久久不卡 | 国产1区2区3区精品| 免费观看av网站的网址| 999精品在线视频| 777米奇影视久久| 欧美日本中文国产一区发布| 亚洲国产色片| 亚洲av成人精品一二三区| av视频免费观看在线观看| 亚洲婷婷狠狠爱综合网| 日产精品乱码卡一卡2卡三| 国产亚洲精品第一综合不卡| 男女边吃奶边做爰视频| 午夜福利在线免费观看网站| 国产日韩欧美视频二区| 国产精品亚洲av一区麻豆 | 国产一区二区三区av在线| av在线app专区| www.熟女人妻精品国产| 久久女婷五月综合色啪小说| 日本欧美国产在线视频| 亚洲精品自拍成人| 建设人人有责人人尽责人人享有的| 免费人妻精品一区二区三区视频| 蜜桃国产av成人99| 国产麻豆69| 一级爰片在线观看| 男女边吃奶边做爰视频| 国产不卡av网站在线观看| 成人国产麻豆网| 欧美国产精品一级二级三级| 久久久久久久亚洲中文字幕| 亚洲欧洲日产国产| 18禁国产床啪视频网站| 国产综合精华液| 国产免费现黄频在线看| 我要看黄色一级片免费的| 亚洲欧美精品自产自拍| 又黄又粗又硬又大视频| 亚洲精品久久久久久婷婷小说| 自线自在国产av| 欧美精品国产亚洲| 欧美黄色片欧美黄色片| 王馨瑶露胸无遮挡在线观看| 纵有疾风起免费观看全集完整版| 亚洲精品在线美女| 少妇人妻久久综合中文| h视频一区二区三区| 丰满迷人的少妇在线观看| 成年人免费黄色播放视频| 性色avwww在线观看| 视频在线观看一区二区三区| 国产精品蜜桃在线观看| xxx大片免费视频| 高清视频免费观看一区二区| 亚洲国产最新在线播放| 亚洲激情五月婷婷啪啪| 亚洲av综合色区一区| 精品一区二区免费观看| 人妻 亚洲 视频| 国产日韩一区二区三区精品不卡| 亚洲av电影在线进入| 一级a爱视频在线免费观看| 久久精品国产自在天天线| 国产精品麻豆人妻色哟哟久久| 熟女少妇亚洲综合色aaa.| 国产成人一区二区在线| 精品卡一卡二卡四卡免费| 久久久久久久久久久久大奶| 国产无遮挡羞羞视频在线观看|