• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal Structures, Thermal Behaviors and Biological Activities of Acylhydrazone Compounds Containing Pyrazine Rings and Halogen Atoms①

    2018-03-12 05:00:39YANGJieLIUXiangRongYUEWuSiYANGZaiWenZHAOShunShengYANGZheng
    結(jié)構(gòu)化學 2018年2期
    關(guān)鍵詞:契機數(shù)學教師習題

    YANG Jie LIU Xiang-Rong YUE Wu-Si YANG Zai-Wen ZHAO Shun-Sheng YANG Zheng

    ?

    Crystal Structures, Thermal Behaviors and Biological Activities of Acylhydrazone Compounds Containing Pyrazine Rings and Halogen Atoms①

    YANG Jie LIU Xiang-Rong②YUE Wu-Si YANG Zai-Wen ZHAO Shun-Sheng YANG Zheng

    (710054)

    acylhydrazone, crystal structure, CT-DNA/BSA,antibacterial activities, anticancer;

    1 INTRODUCTION

    Acylhydrazones are special Schiff base including -CONHN=CH- and have been widely used in medi- cine and pesticide fields[1-3]. The nitrogen and oxygen donor atoms in acylhydrazone make it easily form hydrogen bonds resulting in the inhibi- tion of many physiological chemical processes in organism[4-6]. Moreover, acylhydrazones often serve as ligand to create novel metal organic complexes which possess more attractive structures and outstanding bioactivity[7, 8].

    The synthesis of acylhydrazones is usually through the condensation reaction of hydrazine with aldehyde or ketone, so it is more flexible and has imaginary space to construct required acylhydra- zone molecules by not only selecting different hydrazine and aldehyde or ketone, but also depen-ding on the superposition effects of the two above groups.

    We intend to design a new kind of acylhydrazone compounds possessing higher bioactivities by combining the pyrazine rings and halogen atoms, because pyrazine has excellent antitumor, antibac- terial and antituberculous activities[9-12]. Further- more, the halogen atoms in molecules can enhance the bioactivities obviously[13-15].

    In this work, three acylhydrazone compounds were synthesized and their single crystals were all obtained. Among them, 1 and 3 arenovel com- pounds, while 2 was synthesized by Barbar Mil- czarska[16]but its single crystal structure has not been reported. The single-crystal structures of the three hydrazones were characterized by elemental analyses and single-crystal X-ray diffraction (XRD), and their thermal stabilities were studied by thermogravimetry.

    The interactions of the three compounds with calf thymus DNA (CT-DNA) were investigated by several methods like UV-Vis spectrum, fluores- cence spectrum and viscosity measurement.The interactions of three compounds and bovine serum albumin (BSA) were explored by fluorescence spectra. The antibacterial activities were tested against,and. And anticancer activities were also evaluated against human lung cancer cells A549 by MTT experiment. Synthetic routes of the three compounds are shown in Scheme 1.

    Scheme 1. Synthetic routes of the three compounds

    2 EXPERIMENTAL

    2. 1 Materials and instruments

    Hydrazine hydrate (80%), acetic acid, ethanol, 4-fluorobenzaldehyde, 4-chlorobenzaldehyde, 4- bromobenzaldehyde, methylene blue,thiazole blue and 2-amino-3-pyrazine-carboxylate were all of analytical grade and used without further purify- cation. CT-DNA was biological reagent and pur- chased from American Sigma Company. BSA was purchased from J&K Scientific LTD.,andwere obtained from China General Microbiological Cul- ture Collection Center.

    The melting points were measured on XT4-100B melting point apparatus (China). Elemental analyses (C, H, and N) were performed on a PE 2400-II elemental analyzer (America). Infrared spectra were recorded on a Bruker Tensor-II Fourier infrared spectrometer (Germany). Crystal structures were determined on a Bruker Apex-Ⅱ CCD diffract- tometer (Germany).1H NMR spectra were obtained on a Bruker Avance-400 MHz NMR spectrometer (Switzerland). UV-Vis absorption spectra were recorded on a TU-1900 ultraviolet visible spectro- photometer (China). Thermal decomposition pro- cesses were measured on a Mettler Toledo TG- DSC1 HT thermogravimetric analyzer (Swiss). Fluorescence spectra were recorded on a Perkin Elmer LS55 spectrofluorometer. Optical densities were measured using BAJIU SAF-680T microplate reader (China).

    2. 2 Syntheses of 1~3

    2. 2. 1 Synthesis of 2-amino-3-pyrazine-carbohydrazide(C5H7N5O)

    A solution of methyl 2-amino-3-pyrazine-car- boxylate (2 mmol, 0.3063 g) in ethanol (15 mL) was added to 80% hydrazine hydrate (5 mL). The mixture was placed in a thermostat water bath and heated at 80 ℃to reflux under stirring for 4~5 h,then slowly cooled to room temperature over 48 h. Yellow needle crystals were obtained,then filtered, washed with cold ethanol and dried.

    2. 2. 2 Syntheses of compounds 1~3

    Synthesis of 4-fluorobenzaldehyde-2-amino-3- pyrazine hydrazone (1): 2-amino-3-pyrazine- carbo- hydrazide (0.3 mmol, 0.0459 g) and 4-fluorobenzal- dehyde (0.3 mmol, 32 μL) were dissolved in ethanol. The mixture was placed in a thermostat water bath and heated at 80 ℃ to reflux under stirring for 4 h. Then the resultant solution of 4-fluorobenzalde- hyde-2-amino-3-pyrazine hydrazone (1) was fil- tered and the product recrystallized from etha- nol/acetic acid (v(ethanol):v(acetic) = 4:1, 20.0 mL). After 3 days, bright yellow flaky crystals suitable for X-ray crystallographic analysis were obtained. 4-chlorobenzaldehyde-2-amino-3-pyrazine hydra- zone (2) and 4-bromobenzaldehyde-2-amino-3-py- razine hydrazone (3) were synthesized as the same method.

    Compound 1: Yield: 70.38%. m.p. 198.48~198.68 ℃.Anal. Calcd. for C12H10FN5O·H2O (1, %): C, 55.55; H, 3.857; N, 27.00. Found (%): C, 52.98; H, 4.076; N, 24.00.IR (KBr, cm-1): 3260 (N–H), 3150 (N–H), 1680 (C=O), 1500 (C=N), 835 (C–F).1H NMR (400 MHz, DMSO-6): 12.09 (s, 1H, NH), 8.61 (s, 1H, CH), 8.30 (d,= 2.3 Hz, 1H, pyrazine-H), 7.91 (d,= 2.3 Hz, 1H, pyrazine-H), 7.82~7.72 (m, 2H, Ar–H), 7.64 (s, 2H, NH2), 7.37~7.26 (m, 2H, Ar–H).

    Compound 2: Yield: 74.24%. m.p. 261.78~262.08 ℃. Anal. Calcd. for C12H10ClN5O·2CH3COOH (2, %): C, 52.23; H, 3.627; N, 21.86. Found (%): C, 52.53; H, 3.564; N, 23.47. IR (KBr, cm-1): 3256 (N–H), 3146 (N–H), 1674 (C=O), 1514 (C=N), 556 (C–Cl);1H NMR (400 MHz, DMSO-d6): 12.14 (s, 1H, NH), 8.60 (s, 1H, CH), 8.29 (d,= 2.3 Hz, 1H, pyrazine-H), 7.90 (d,= 2.3 Hz, 1H, pyrazine-H), 7.77~7.68 (m, 2H, Ar-H), 7.63 (s, 2H, NH2), 7.57~7.49 (m, 2H, Ar-H).

    Compound 3: Yield: 76.56%. m.p. 272.14~272.44 ℃. Anal. Calcd. for C12H10BrN5O (3, %): C, 44.98; H, 3.123; N, 21.86. Found (%): C, 45.27; H, 3.088; N, 20.62. IR (KBr, cm–1): 3256 (N–H), 3148 (N–H), 1673 (C=O), 1511 (C=N), 573 (C–Br).1H NMR (400 MHz, DMSO-d6): 12.15 (s, 1H, NH), 8.58 (s, 1H, CH), 8.29 (d,= 2.3 Hz, 1H, pyrazine-H), 7.90 (d,= 2.3 Hz, 1H, pyrazine-H), 7.71~7.61 (m, 6H, 4×Ar–H, 2×NH2).

    2. 3 Crystal structure determination

    Three kinds of single crystals with dimensions of 0.35 × 0.28 × 0.23 mm3(1), 0.37 × 0.28 × 0.14 mm3(2) and 0.31 × 0.23 × 0.15 mm3(3) were put on a Bruker ApexⅡCCD diffractometer with a graphite- monochromatic Moradiation (= 0.71073 ?) at room temperature by using anscan mode. Absorption corrections were applied with the program SADABS[17]. The crystal structure was solved by direct methods using SHELXS-97 pro- gram[18]. Non-hydrogen atoms were refined by full-matrix least-squares using SHELXL-97 and the hydrogen atoms were placed in the calculated positions.

    2. 4 Thermogravimetric experiments

    5~10 mg compound was placed in the N2atmos- phere and the thermogravimetric experiment was carried out for each compound from room tempera- ture to 800 ℃ at heating rates of 5, 10 and 15.00 ℃·min-1, respectively.

    2. 5 Interactions of compounds with CT-DNA

    2. 5. 1 UV-Vis absorption spectra[19]

    The compounds were dissolved in tris-HCl (0.01 mol·L-1pH = 7.90) buffer solution with con- centration of 1 × 10-5mol·L-1. 3.0 mLcompound solution was added into a cuvette and tris-HCl buffer solution was the reference solution. And 50 μL CT-DNA solution (100.0 mg·L-1) was then gradually added into the compound solution 5 times at 1 minute intervals by using micro inject- tor. The UV absorption spectrum was determined in the wavelength range of 250~500 nm.

    2. 5. 2 Fluorescence spectra[20]

    CT-DNA solution (100.0 mg·L-1) was mixed with methylene-blue liquid (1 × 103mol·L-1) and the concentration ratio of CT-DNA solution to methylene blue liquor was 10:1. Then 3.0 mL mixture was added into a cuvette. 50 μL compounds solution (1 × 10-5mol·L-1) were added into the cuvette 5 times at 1 minute interval by using micro injector. The fluorescence spectra were recorded at an excitation wavelength of 630 nm and cover a wavelength range of 650~900 nm. The widths of entrance and exit slits were 5 nm.

    2. 5. 3 Viscosity measurements[21]

    The viscosity measurements were carried out on an Ubbelodhe viscometer immersed in a thermostat water bath at 25 ℃. 10 mL Tris-HCl (0.01 mol·L-1pH = 7.90) buffer solution was added into the Ubbelodhe viscometer. The flow time0was measured by a digital stopwatch. Then CT-DNA concentration remained unchanged (10 mL 1.88 × 10-4mol·L-1) and the compound solutions (1.88 × 10-3mol·L-1) were gradually and continuously added into the CT-DNA for 6 times with an interval to be 30 min. Each sample was measured three times, and the average flow time was calculated. Relative viscosities were calculated from the following formula:

    where0is the viscosity of CT-DNA alone andis the viscosity of mixed solution of compounds and CT-DNA. Data are presented as (/0)1/3versus(compound)/(CT-DNA).

    2. 6 Interactions of compounds with BSA[22]

    BSA was dissolved in Tris-NaCl (0.01 mol·L-1, pH = 7.20) buffer solution with concentration of 110-7mol·L-1. Then 3.0 mL solution was added into a cuvette. 30 μL compound solution (1 × 10-5mol·L-1) was added into the cuvette 6 times at 1 minute interval by using microinjector. The fluorescence spectra were recorded at an excitation wavelength of 280 nm over a wavelength range of 300~540 nm.The widths of entrance and exit slits were 5 nm.

    2. 7 Antibacterial activity

    Antibacterial activities of compounds were tested by microplate reader method[23]. Three strains were inoculated into 5 mL of Luria-Bertani (LB) medium at 37 ℃ for 3.5 h. Compound solutions were prepared with LB medium and diluted into various concentrations. Then 5 μL bacterial suspen- sions with concentration of 105colony forming units per mL were added into 5 mL compound solution. 250 μL mixture was put into a sterile 96-well plate. After 6 h incubation, optical densities (OD) were measured by microplate reader at 630 nm and inhibition rates were calculated as:

    Inhibition rate = (1–ODsample/ODcontrol) × 100% (2)

    And IC50was calculated by PASW Statistics software.

    2. 8 Cytotoxic activity[24]

    Cytotoxicities of compounds 1~3 against human lung cancer cells (A549) were determined by using the MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphe- nyl-tetrazolium bromide) assay. The logarithmic growth phase cells were plated in 96-well plate and incubated at 37 ℃ for 24 h to allow cell attachment. Then the A549 cells were treated with three compounds separately at the concentration of 0, 10, 20, 30, 40, 50 and 100 uM for 24 h, and then 90 uL of culture medium and 10 uL of MTT solution (5 mg/mL in PBS) were added to each well. After 4 h incubation, the medium was discarded and 100 uL of DMSO was added to each well for dissolving the formazan crystals. OD was also measured by a microplate reader at 570 nm and inhibition rates were calculated by formula (2).

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure

    Fig. 1. Crystal structure of 1(Probability of ellipsoid is 30%)

    Fig. 2. Crystal packing structure of 1

    Fig. 3. Crystal packing structure of 2

    Fig. 4. Crystal packing structure of 3

    Table 1. Crystallographic Data for 1~3

    Table 2. Selected Bond Distances (?) and Bond Angles (o) for 1~3

    Table 3. Hydrogen Bond Distances (?) and Bond Angles (°) for 1~3

    Symmetry codes: for 1 (a)1,,; (b)1,,;(c)–+2, –+1, –+1; for 2 (a),– 1,

    ; (b),+ 1,; (c) –+ 1, –+ 1, –+ 1; (d)– 1,,; for 3 (a) –, –+ 1, –+ 2

    Table 4. Selected π-π Stacking Interactions of Compounds 2 and 3

    As seen in Fig. 1 and Table 2,the dihedral angle of pyrazine and benzene rings in compound 1 is 8.18°, which indicates the two rings are not in the same plane. The torsion angles of C(8)–C(7)– C(6)–N(5) and C(12)–C(7)–C(6)–N(5) are 57.9(4)° and –174.3(2)°, also illustrating that C(6)–N(5) is obviously deviated from the benzene ring. The bond length of C(6)–N(5) (1.227(2) ?) is shorter than N(4)–C(5) (1.347(2) ?), attributed to a C=N double bond existing between C(6)–N(5)[25]. The C(5)– O(1) bond distance is 1.227(2) ?, which is the typical C=O double bond[26]. As shown in Fig. 2, there are three kinds of hydrogen bonds in 1: N–H···N, O–H···O and N–H···O.Through the hydrogen bonds between intermolecules, the 1D chains are further linked into a 2D network which stabilizes the structure.Hydrogen bond distances and anglesare given inTable 3.

    The dihedral angles of pyrazine and benzene rings in compounds 2 and 3 are 1.47° and 4.69°. Thus compound 2 shows better coplanarity among 1~3.Moreover, interchain-stacking interac- tions are founded between the pyrazine and benzene rings in the crystals of 2 and 3. The parameters of-stacking interactions are shown in Table 4.-stacking interactions and hydrogen bonds extend the structure of compounds 2 and 3 into 1D double-chain structures. All the three compounds exist in a keto form.

    3. 2 Thermal stabilities

    The TG-DTG curve of compound 1is shown in Fig. 5. The TG curves at the heating rates of 10.00 and 15.00 ℃·min–1are similar to that of the 5.00 ℃·min–1. FromFig. 5, the thermal decom- position temperature of maximum weight loss for 1 is 282 °C at theheating rate of 5.00 °C·min–1. And the decomposition temperature of compounds 2 and 3 is alsomore than 280 ℃, showing that the three compounds possess good thermal stabilities. The thermal decomposition of 1can be divided into two stages and the weight loss percentage of the first stage is 5.01%, which might be the loss of water molecules. The mass loss of the second stage is 60.89%, which is assigned to the bond breaking of C(4)–C(5) (calcd. 63.71%). Compound 2 undergoes just one stage of decomposition and the temperature ofendothermic peak is 283 ℃. The weight loss at this stage is 69.47%, corresponding to the bond breaking of C(1)–N(3) and C(4)–C(5) (calcd. 71.64%). The decomposition process of compound 3 is also one stage with mass loss of 43.09% which is attributed to the bond breaking of N(4)–N(5) and C(10)–Br(calcd. 67.75%).

    小學數(shù)學教師應當意識到學習評價的重要性,通過對評價環(huán)節(jié)的科學設置,將讓學生獲得數(shù)學思維發(fā)展的契機,同時亦可以讓數(shù)學教師獲取學生的學習情況反饋。具體而言,小學數(shù)學教師應當利用多媒體技術(shù)將班級學生所完成的計算習題進行課上展示,并組織班級學生共同進行查錯和改正,如此便達成了帶領(lǐng)學生共同進行學習評價的目的,這樣將讓整體的數(shù)學課堂教學效果更為理想。

    Fig. 5. TG-DTG curves of compound1

    The kinetic parameters of decomposition pro- cesses for three compounds are calculated by Kis- singer (3) and Ozawa (4) equations[27]:

    wherepis the maximum temperature of endo- thermic peak,the pre-exponential factor,athe apparent activation energy,the gas constant,the heating rate, and() the integral mechanism function.The calculation results are shown in Table 5.

    Table 5. Kinetic Parameters of Thermal Decomposition for Three Compounds

    3. 3 Interactions of compounds with CT-DNA

    3. 3. 1 UV–Vis absorption spectra

    UV-Vis absorption spectra are often used to study the interactions of compounds with CT-DNA.Fig.6 shows the absorption spectra of compound1 interaction with CT-DNA. With increasing the concentration of CT-DNA, the absorbance of 1 decreases. The absorption band of 1 exhibits hypochromism at 294 and 365 nm. For 2 and 3, the hypochromisms are observed at 299, 367 nm and 301, 366 nm.It can be inferred that all the com- pounds could bind with CT-DNA through intercala- tion. Generally, hypochromic effect is the spectral feature of intercalative binding mode. Because the* orbital of the intercalated compound could couplewith theorbital of CT-DNA base pairs after the compound inserts into CT-DNA, the coupling* orbital ispartially filled by electrons, which makes the transitionpossibilities decrease[28, 29].

    The binding constants (b) of three compounds with CT-DNA are calculated by using the following function equation (5)[30]:

    whereDNAis the concentration of CT-DNA,a,bandfthe molar extinction coefficient of compound that is apparent, free and fully bonding with CT– DNA.

    The plots ofDNA/(a–f) versusDNAare pre- sented as inset in Fig. 6 and theb-of three com- pounds are determined by the ratio of slope to intercept.b-is shown in Table 6 and follows the order of 2 >1 >3. Thebvalues of three compounds are larger than that of classical DNA intercalator such as ethidium bromide (b-= 3.3 × 105L·mol–1)[31]. Therefore, three compounds have strong binding abilities to the CT-DNA and 2 binds more effectively to CT-DNA than 1 and 3.

    Table 6. Parameters of Interaction with CT-DNA Obtained from UV-Vis Spectra for 1~3 with CT-DNA

    Fig. 6. UV-Vis spectra of the interaction of 1 with CT-DNA (Inset:the plot ofDNA/(a-f) againstDNA)

    3. 3. 2 Fluorescence spectra

    The interaction between small molecules and CT-DNA is often studied by fluorescence probe[32]. In this paper, the competitive binding experiment has been carried out using methylene-blue (MB) as a probe. MB has strong intrinsic fluorescence and could insert into the base pair of CT-DNA by hydrophobic interactions and-interactions when the concentration ratio of CT-DNA to MB is more than 6[33]. The interaction of MB with CT-DNA results in a decrease in the fluorescence intensity. After adding compounds into the solution, the compound could displace the MB from CT-DNA causing the fluorescence intensity increase.

    Fig. 7 shows the fluorescence spectra of the CT-DNA-MB system of 1. The emission intensities of the CT-DNA-MB system increase as the concentration of the three compounds increase, which indicates that three compounds react with CT-DNA by intercalation effect[20].

    Fig. 7. Fluorescence spectra of the interaction of 1 with CT-DNA-MB

    3. 3. 3 Viscosity measurements

    Viscositymeasurement is usually considered as one of the most accurate and effective methods to study the interaction between small molecule compounds and DNA[34]. In classical intercalation,the viscosity of CT-DNA solution increases because DNA base pairs were separated to accommodate the bound ligand, which results in DNA helix leng- thens. Instead, partial non-classical intercalation of compounds could bend or kink the DNA helix, resulting in the decrease of DNA length as well as the viscosity. And in groove binding or electrostatic mode, the viscosity of the DNA solution does not change significantly[35, 36].

    According to our experiment, as illustrated in Fig. 8, the relative viscosities of CT-DNA increase continuously with the addition of compounds. The results show that three compounds interact with CT-DNA by intercalation and2 exhibits the strongest biological activity, which is consistent with UV-Vis absorption spectra.

    Fig. 8. Plots of (/0)1/3versus(compound)/(CT-DNA)

    Fig. 9. Fluorescence spectra of the interaction of 1 with BSA (Inset: Stern-Volmer plot: F/)1~7,VOL= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6M

    3. 4 The interactions of compounds with BSA

    Bovine serum proteins (BSA) emit strong endo- genous fluorescence due to the tyrosine, tryptophan and phenylalanine[37]. The effect of 1 on BSA is shown in Fig. 9, which is the same with 2 and 3. Along with the addition of three compounds, the endogenous fluorescence of BSA is quenched regularly, suggesting that 1~3 caninteract with BSA.

    Fluorescence quenching is divided into two types: dynamic quenching and static quenching[38]. Assuming three compounds quenched the fluore- scence of BSA through a dynamic process. Fluore- scence quenching is described by Stern-Volmer formular[39]:

    where0andare the fluorescence intensities of BSA in the absence and presence of the compounds,qthe quenching rate constant and 2.0 × 1010the highest limit for dynamic quenching[40],0the average life of BSA without the quencher, at approximately 10–8s–1. [] is the concentration of compound andsvthe Stern-Volmer dynamic quenching constant,svandqwere obtained from the plots of/0versus [] (as insets in Fig. 9) and presented in Table 7.

    Table 7. Parameters of Interaction with BSA Obtained from Fluorescence Spectra for 1~3 with BSA

    As seen from Table 7, all the threeqvalues are more than the maximum dynamic fluorescence quenching rate constant (2.0 × 1010)[40]. Therefore, the assumption of dynamic quenching is not true. The quenching mechanisms of 1~3 with BSA are static quenching process with non fluorescence complex formed between compounds and BSA.

    For the static quenching process, the binding constants and the number of binding sites can be calculated from formula 7[41]:

    where0andare the fluorescence intensities of BSA in the absence and presence of the compounds,Athe binding constant,the number of binding site and [] the concentration of three compounds.Aandwere obtained from the plots of lg[(0–)/] versus lg[] (Fig. 10) and presented in Table 8.

    Table 8. Parameters of Interaction with BSA Obtained from Fluorescence Spectra for 1~3 with BSA

    Fig. 10. Plots of lg[(F–)/] versus lg[]

    The results show that the number of binding sites is less than one, so three kinds of compounds are partially bound to BSA. The binding constants are all in 104~105L·mol–1and decreased in the order of 2>3>1, revealing strong interaction between BSA and the three compounds[42]. Compound 2 exhibits superior binding ability. As shown above, compound 2 possesses better coplanarity than 1 and3,which makes it easily insert into the DNA base pairs or BSA[43].

    3. 5 Antimicrobial activity

    The antimicrobial activities of three compounds were determined against,and. The results are shown in Table 9, indicating that all the three compounds show an appreciable activity against. Compound 2 with IC50values of 7.75 μmol·L–1exhibited the highest activity among the three compounds. It is also noted that compound 2 is more effective against. Compounds 1~3 show less activity against. Generally, 1 exhibits better activities against bacteria than 2 and 3, which is the same order with the interaction of compounds with DNA and BSA.

    Table 9. IC50 of Compounds 1~3 against the Tested Bacteria

    3. 6 Cytotoxic activity

    Compounds were screened against human lung cancer cells A549 by using MTT assay. As shown in Fig. 11, compound 1 displays better inhibitory activities against the human cancer cell lines with IC50values of 72.16 μmol·L–1in comparison to other tested compounds. The IC50values of 2 and 3 against cells A549 were 428.03 and 424.33 μmol·L–1, respectively. It has been reported in other literatures that the introduction of fluorine atom in phenyl ring could result in a higher anticancer activity. The fluorine atom as substituent can enhance the liposolubility of the compound, which is beneficial for compound molecules to go through the biomembranes[44]. The IC50value of 1 againstA549 iscomparable to that of the standard drug Etoposide (33.13 μmol·L–1)[45].

    Fig. 11. Inhibition effects of three compounds on cell A549

    4 CONCLUSION

    (1) Lu, W. G.; Liu, H. W. Synthesis and crystal structure of a copper(II) complex with 2,4-dihydroxybenzylidene benzoylhydrazone ligand.2005, 24, 1078–1082.

    (2) Ni, Z. J.; Xue, S. J.; Wang, J.; Meng, W.Synthesis and anti-leukemia activity of 1-substituted piperidin-4-one arylformylhydrazones.2011, 31, 222–226.

    (3) Xiong, Q. Z.; Liu, J. H.; Lin, X. F.; Bao, X. P.Synthesis and bioactivities of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives containing 1,2,4-triazole-5-thione Schiff base unit.2012, 32, 1951–1957.

    (4) Bao, X. P.; Xiong, Q. Z.; Zou, L. B.; Zang, F.; Liu, Y.; Jian, J. Y. Synthesis and fungicidal activities of 2-benzyithio-5-methyl-1,2,4-triazolo [1,5-a]pyrimidine-7-oxoacetohydrazone derivatives.. 2013, 01, 53–57.

    (5) Shang, H. J.; Gao, L. Z.; Xie, Y. S.; Yan, Q.; Wu, S. M.; Ni, L. L.; Huang, W. L.; Xie, S. Q.; Hu, G. Q.Synthesis and antitumor activity of N-methyl ciprofloxacin acylhydrazone..2015, 05, 597–601.

    (6) Nath, M.; Saini, P. K. Chemistry and applications of organotin(IV) complexes of Schiff bases.. 2011, 40, 7077–7121.

    (7) Wang, D. B.; Chen, B. H.; Ma, Y. X.Aroyl hydrazones containing triazole and their divalent nickel complexes.1997, 27, 479–486.

    (8) Li, K.; Li, S. J.; Yao, X. J.; Niu, J. J.; Qiu, X. Y. Synthesis, crystal structures and antimicrobial activity of vanadium(V) complexes with similar tridentate hydrazone ligands.2015, 34, 885–893.

    (9) Wei, S. P.; Zhang, H.; Xu, X. B.; Yang, Y. Y.Natural existed pyrazine derivants and their application to flavors.. 2000,6, 25–31.

    (10) Li, Y. F.; Jin, L. Q.; Liu, Z. Q.; Zheng, Y. G.The research progress on pyrazinamide.. 2010, 04, 307–312.

    (11) Zhu, H. L.; Wang, X. L.; Tang, J. F.; Hu, Y.; Yang, Y. S.; Zhang, Y. B.; Zhang, F.103373992A 2013–10–30.

    (12) Zhu, H. L.; Wang, X. L.; Zhang, F.; Zhang, Y. B.; Yang, Y. S.; Tang, J. F..103373988A, 2013–10–30.

    (13) Xu, Z. P.; Shao, X. S.The unique position of halogen substituents in modern pesticide design.2011, 01, 12–19+38.

    (14) Zhang, M.Synthesis and antibacterial activities research of C–N bridged-hydroxy diphenyl compounds.2008.

    (15) Wang, Y. Studies on the synthesis, crystal structure biological activity of first-row transition metal complexes with 3,5-dichlorosalicylaldehyde.2009.

    (16) Milczarska, B.; Gobis, K.; Foks, H.; Golunski, L.; Sowinski, P.The Synthesis of 3-amino-pyrazine-2-carbohydrazide and 3-amino-N′-methylpyrazine-2-carbohydrazide derivatives.2012, 49, 845–850.

    (17) Sheldrick, G. M.. University of G?ttingen, Germany 1996.

    (18) Sheldrick, G. M.University of G?ttingen, Germany 1997.

    (19) Liu, X. R.; Sun, X. C.; Yang, Z. W.; Zhao, S. S.; Yang, S. L.; Yan, S.2-furancarbaldehyde-4-hydroxy-benzoylhydrazone and its Cu(Ⅱ) complex: crystal structures and binding ability with CT-DNA.2016, 02, 250–258.

    (20) Zhang, H. Y. The spectroscopy study on the interaction of the three drugs and BSA/ct–DNA.2014.

    (21) Guo, Q.; Li, L. Z.; Dong, J. F.; Liu, H. Y.; Xue, Z. C.; Xu, T.Synthesis, crystal structure and interactions with DNA and BSA of an oxovanadium(IV) complex [VO(-Van-Asn)(Phen)]·1.5CH3OH.2012, 15, 1617–1624.

    (22) Sathyadevi, P.; Krishnamoorthy, P.; Bhuvanesh, N. S. P.Organometallic ruthenium(II) complexes: synthesis, structure and influence of substitution at azomethine carbon towards DNA/BSA binding, radical scavenging and cytotoxicity.2012, 55, 420–431.

    (23) Zhou, Z. X.; Huang, Q. H.; Zhu, S.; Zhou, L. Establishment of rapid determining method for antibacterial activity by microplate reader.2014, 3, 29–35.

    (24) Zhang, Q.; Wang, Q.; Chen, Z. S. In vitro antibacterium and antitumor activities of sesquiterpenes compound from cremanthodium discoideum Msxim.2002, 18, 597–598.

    (25) Yai, Z. W.; Ding, Z. C.; Liu, X. R.; Zhao, S. S.; Zhang, R. L.; Yang, S. L.Crystal structures and thermochemical properties of phenyl-acetic acid furan-2-ylmethylene-hydrazide and its Ni(Ⅱ) complex.2015, 08, 1520–1528.

    (26) Wei, Z. B.; Wang, J. C.; Jiang, X.; Li, Y. Q.; Chen, G. H.; Xie, Q. F.Experimental and DFT studies of pyridine-4-carboxylic acid (2,4-dihydroxy-phenylethylidene)-hydrazide Schiff base: synthesis, crystal structure, properties and quantum chemistry calculation.2015,09, 1014–1021.

    (27) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.. Beijing 2008, 79–120.

    (28) Jian, Y.; Li, G.; Yang, P.; Deng, T.; Zhou, X.; Xu, H. Y.Syntheses, spectral properties of novel carbazole derivatives and evaluations of its Ct–DNA interaction.2014, 34, 809–816.

    (29) Wei, Q.; Dong, J. F.; Li, W. B.; Zhao, P. R.; Ding, F. F.; Li, L. Z.Syntheses, crystal structures, DNA interactions and SOD activities of two nickel(H) complexes with L-histidine Schiff Base.2016, 05, 789–798.

    (30) Yan, H.; Yang, L.; Chang, G. L.; Li, X.; Niu, M. J. DNA interaction and cytotoxic activity of a chiral amino-alcohol Schiff base derived Cu(Ⅱ) complex.2016, 35, 465–471.

    (31) Stothkamp, R. E. J. Fluorescence measurements of ethidium binding to DNA.1993,71, 77–79.

    (32) Luan, J. M.; Zhang, X. D. Advances of fluorimetric determination of DNA.2007, 43, 241–245.

    (33) Hu, Z.Analysis of DNA by the fluorescence probe of methylene blue and its application in the study of the interactions between heavy metals and paraquat with DNA2006.

    (34) Kashanian, S.; Dolatabadi, J. E. N.In vitro studies on calf thymus DNA interaction and 2-tert-butyl-4-methylphenol food additive.2010, 230, 821–825.

    (35) Kumar, A. K.; Reddy, K. L.; Satyanarayana, S.Study of the interaction between ruthenium(II) complexes and CT-DNA: synthesis, characterisation, photocleavage and antimicrobial activity studies.. 2010, 22, 629–643.

    (36) Chen, J. X.; Tian, Y.; Xiang, Q. X.; Zhang, L. Q.; Xiong, J. R.Spectroscopy studies of interactions between DNA and N3O2-donor macrocycle bearing naphathalic sulfonic group.2010, 30, 66–71.

    (37) Yan, C. N.; Shang, G. Y. F.; Tong, J. Q.; Liu, Y.; Pang, D. W.; Pan, Z. T.; Qu, S. S.Study on thermodynamics of binding reaction of dipyridamole with bovine serum albumin.2003, 23, 543–546.

    (38) Tian, Z. Y.; Su, L. P.; Xie, S. Q.; Zhao, J.; Wang, C. J.Synthesis, biological activity and fluorescence spectroscopy of naphthalimide-polyamine conjugates.2013, 33, 1514–1521.

    (39) Akbay, N.; Seferoglu, Z.; G?k, E.Fluorescence interaction and determination of calf thymus DNA with two ethidium derivatives.2009, 19, 1045–1051.

    (40) Wang, J.; Liu, L. J.; Liu, B.; Guo, Y.; Zhang, Y. Y.; Xu, R.; Wang, S. X.; Zhang, X. D.Spectroscopic study on interaction of bovine serum albumin with sodium magnesium chlorophyllin and its sonodynamic damage under ultrasonic irradiation.2010, 75, 366–374.

    (41) Zhang, G. W.; Zhao, N.; Hu, X.; Tian, J.Interaction of alpinetin with bovine serum albumin: probing of the mechanism and binding site by spectroscopic methods.2010, 76, 410–417.

    (42) Chen, Z. F.; Luo, Y. D.; Hua, L. G.; Zhang, J.Reactivities towards DNA and protein and cytotoxic activities of benzimidazole derived mononuclear cobalt(Ⅱ) and nickel(Ⅱ) complexes.2014, 07, 1525–1534.

    (43) Yang, L. N.; Yao, L.; Yu, L. L.; Yang, L. Y.; Yu, J. Study on synthesis of nitroderivatives of 2,2?--biimidazoleand their interaction with DNA.2012, 07, 56–59.

    (44) Zhong, G. X. The research progress of fluorine-bearing antitumor drugs.2005, 1, 46–48.

    (45) Reddy, O. S.; Suryanarayana, C. V.; Sharmila, N.; Ramana, G. V.;Anuradha, V.;Babu, B. H. Synthesis and cytotoxic evaluation for some new dihydropyrimidinone derivatives for anticancer activity.2013, 10, 699–705.

    7 August 2017;

    10.14102/j.cnki.0254-5861.2011-1799

    27 November 2017 (CCDC 1473040 for 1, 1477347 for 2 and 1474331 for 3)

    ① Project supported by the National Natural Science Foundation of China (Nos. 21073139, 21103135 and 21301139)

    ②. E-mail: liuxiangrongxk@163.com

    猜你喜歡
    契機數(shù)學教師習題
    從一道課本習題說開去
    一道課本習題及其拓展的應用
    抓住習題深探索
    小學數(shù)學教師資格證面試研究
    將疫情當作樹立正確人生觀的契機
    甘肅教育(2020年4期)2020-09-11 07:41:06
    淺析如何提高小學數(shù)學教師素養(yǎng)
    活力(2019年17期)2019-11-26 00:42:48
    精心設計習題 構(gòu)建高效課堂
    小學數(shù)學教師如何才能提高課堂的趣味性
    以上率下 強化擔當 以文明創(chuàng)建為契機 助力鹽改取得新成效
    抓住契機全面推進醫(yī)改
    六月丁香七月| 亚洲国产精品合色在线| 日产精品乱码卡一卡2卡三| 亚洲av.av天堂| 一级毛片久久久久久久久女| 在线看三级毛片| 亚洲在线自拍视频| 欧美日韩一区二区视频在线观看视频在线 | 啦啦啦啦在线视频资源| av在线老鸭窝| 99视频精品全部免费 在线| 97人妻精品一区二区三区麻豆| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 精品人妻一区二区三区麻豆 | 婷婷六月久久综合丁香| 99九九线精品视频在线观看视频| 能在线免费观看的黄片| 青春草视频在线免费观看| 亚洲中文字幕日韩| 久久亚洲精品不卡| 一夜夜www| 最近2019中文字幕mv第一页| 国产精品电影一区二区三区| 麻豆久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| 一个人免费在线观看电影| 亚洲成人久久爱视频| 十八禁国产超污无遮挡网站| 亚洲电影在线观看av| 亚洲欧美成人综合另类久久久 | 女生性感内裤真人,穿戴方法视频| 最后的刺客免费高清国语| 欧美极品一区二区三区四区| 国产精品一区二区三区四区免费观看 | 18禁裸乳无遮挡免费网站照片| 亚洲av不卡在线观看| 国产精品不卡视频一区二区| 村上凉子中文字幕在线| 嫩草影院新地址| 韩国av在线不卡| 免费人成在线观看视频色| 中文亚洲av片在线观看爽| 午夜a级毛片| 一区二区三区四区激情视频 | 日韩精品中文字幕看吧| 91av网一区二区| 中文字幕熟女人妻在线| 欧美3d第一页| 伊人久久精品亚洲午夜| 日韩中字成人| 日韩欧美免费精品| 性欧美人与动物交配| 91狼人影院| 波多野结衣高清无吗| 九色成人免费人妻av| 国产精华一区二区三区| 国内精品久久久久精免费| 久久精品91蜜桃| 久久久久久久久大av| 亚洲婷婷狠狠爱综合网| 亚洲av成人精品一区久久| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 69人妻影院| 欧美中文日本在线观看视频| 欧美不卡视频在线免费观看| 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 中文在线观看免费www的网站| 老熟妇乱子伦视频在线观看| 日韩精品有码人妻一区| 一区二区三区四区激情视频 | 欧美不卡视频在线免费观看| 精品国产三级普通话版| 日本免费a在线| 麻豆国产av国片精品| 精品无人区乱码1区二区| 精品一区二区三区av网在线观看| 特级一级黄色大片| 国产 一区精品| 搡老妇女老女人老熟妇| 亚洲人成网站在线播| 伊人久久精品亚洲午夜| av国产免费在线观看| 两个人视频免费观看高清| 老司机福利观看| 天天一区二区日本电影三级| 久久精品国产亚洲av香蕉五月| 日韩av在线大香蕉| 日韩欧美国产在线观看| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 午夜激情欧美在线| 18+在线观看网站| 国产男靠女视频免费网站| 中国国产av一级| 麻豆av噜噜一区二区三区| 91在线观看av| 美女免费视频网站| 久久久久国内视频| 观看免费一级毛片| 悠悠久久av| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色| 91狼人影院| 成人三级黄色视频| 久久午夜福利片| 老女人水多毛片| 成人特级黄色片久久久久久久| 97超视频在线观看视频| 亚洲国产色片| 成人永久免费在线观看视频| 久久这里只有精品中国| 给我免费播放毛片高清在线观看| 免费一级毛片在线播放高清视频| 亚洲成人精品中文字幕电影| 日韩高清综合在线| 国产高清三级在线| av中文乱码字幕在线| 18禁在线播放成人免费| 亚洲美女搞黄在线观看 | 最近在线观看免费完整版| 成人美女网站在线观看视频| 亚洲精品亚洲一区二区| 国产高清有码在线观看视频| 99热这里只有是精品50| av在线蜜桃| 亚洲熟妇中文字幕五十中出| 最近2019中文字幕mv第一页| 免费无遮挡裸体视频| 久久99热这里只有精品18| 亚洲va在线va天堂va国产| 国产又黄又爽又无遮挡在线| 亚洲图色成人| 夜夜看夜夜爽夜夜摸| 亚洲熟妇熟女久久| 国产麻豆成人av免费视频| 免费av观看视频| 精品人妻视频免费看| 成人午夜高清在线视频| 中文字幕久久专区| 亚洲成人精品中文字幕电影| 禁无遮挡网站| 欧美日本视频| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 国产在线精品亚洲第一网站| 国产av在哪里看| 在线观看美女被高潮喷水网站| 校园春色视频在线观看| av在线蜜桃| 丰满乱子伦码专区| 欧洲精品卡2卡3卡4卡5卡区| 在线观看免费视频日本深夜| 久久久精品94久久精品| 欧洲精品卡2卡3卡4卡5卡区| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费| 老女人水多毛片| 久久热精品热| 久久6这里有精品| 高清毛片免费看| 免费在线观看影片大全网站| 免费看美女性在线毛片视频| 中文字幕人妻熟人妻熟丝袜美| 免费观看在线日韩| 精品免费久久久久久久清纯| 亚洲人成网站高清观看| 18禁黄网站禁片免费观看直播| 国模一区二区三区四区视频| a级一级毛片免费在线观看| 人人妻,人人澡人人爽秒播| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久| 精品熟女少妇av免费看| 免费大片18禁| 国产 一区 欧美 日韩| 99久久久亚洲精品蜜臀av| 噜噜噜噜噜久久久久久91| 国产v大片淫在线免费观看| .国产精品久久| 国国产精品蜜臀av免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品日韩在线中文字幕 | 欧美成人免费av一区二区三区| .国产精品久久| 亚洲内射少妇av| 成人二区视频| 两个人的视频大全免费| 少妇猛男粗大的猛烈进出视频 | 精品一区二区三区视频在线观看免费| 日本免费a在线| 日韩欧美国产在线观看| 无遮挡黄片免费观看| 最后的刺客免费高清国语| 真人做人爱边吃奶动态| 久久精品久久久久久噜噜老黄 | 丝袜美腿在线中文| 亚洲中文日韩欧美视频| 久久久成人免费电影| 午夜激情欧美在线| 国产亚洲精品久久久久久毛片| 精品久久久久久久久av| 亚洲av不卡在线观看| 精品一区二区三区人妻视频| 99国产精品一区二区蜜桃av| 午夜精品一区二区三区免费看| 国产三级在线视频| 欧美日韩乱码在线| 国产欧美日韩精品一区二区| 久久这里只有精品中国| 国产亚洲欧美98| 精品不卡国产一区二区三区| 欧美一区二区亚洲| 淫妇啪啪啪对白视频| 男女啪啪激烈高潮av片| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 热99在线观看视频| 久久精品夜色国产| 成人特级黄色片久久久久久久| 在线观看美女被高潮喷水网站| 国产综合懂色| 色在线成人网| 男插女下体视频免费在线播放| 国产亚洲精品综合一区在线观看| 国产精品免费一区二区三区在线| 欧美中文日本在线观看视频| 国产视频一区二区在线看| 色综合亚洲欧美另类图片| 国产精品美女特级片免费视频播放器| 九九在线视频观看精品| 国产黄色小视频在线观看| 最近最新中文字幕大全电影3| 亚洲精品一区av在线观看| 一级毛片我不卡| 欧美潮喷喷水| 久久精品夜夜夜夜夜久久蜜豆| 麻豆国产av国片精品| 精品福利观看| 国产黄色小视频在线观看| 精品久久久噜噜| www日本黄色视频网| 欧美色视频一区免费| 人妻制服诱惑在线中文字幕| 成人特级av手机在线观看| 亚洲美女搞黄在线观看 | 欧美成人精品欧美一级黄| 免费观看在线日韩| 亚洲高清免费不卡视频| 国产精品亚洲美女久久久| 深夜精品福利| 亚洲第一电影网av| 国产一区二区在线观看日韩| 非洲黑人性xxxx精品又粗又长| 欧美不卡视频在线免费观看| а√天堂www在线а√下载| 成人一区二区视频在线观看| 日日撸夜夜添| 色av中文字幕| 国产午夜精品久久久久久一区二区三区 | 国产精品永久免费网站| 国产极品精品免费视频能看的| 国产精品,欧美在线| 久久久久久久久久成人| 中文字幕av成人在线电影| 免费av毛片视频| 插阴视频在线观看视频| 国产高清三级在线| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 秋霞在线观看毛片| 国产午夜精品论理片| 成人国产麻豆网| 国产成人影院久久av| 成人一区二区视频在线观看| 亚洲精品一区av在线观看| av在线播放精品| 亚洲第一电影网av| 欧美三级亚洲精品| 床上黄色一级片| 久久精品人妻少妇| 国国产精品蜜臀av免费| 国产视频内射| 内射极品少妇av片p| 少妇丰满av| 性色avwww在线观看| 亚洲在线观看片| 日韩av不卡免费在线播放| 超碰av人人做人人爽久久| 少妇人妻精品综合一区二区 | 99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 亚洲精品一区av在线观看| 久久久久久大精品| 国产视频内射| 看十八女毛片水多多多| 国产高清视频在线观看网站| 午夜爱爱视频在线播放| 啦啦啦韩国在线观看视频| 精品不卡国产一区二区三区| 在线免费观看的www视频| 国产人妻一区二区三区在| 亚洲性久久影院| 久久婷婷人人爽人人干人人爱| 午夜精品在线福利| 18+在线观看网站| 看非洲黑人一级黄片| videossex国产| 青春草视频在线免费观看| 99国产极品粉嫩在线观看| а√天堂www在线а√下载| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 一个人看的www免费观看视频| av免费在线看不卡| 亚洲最大成人手机在线| 亚洲精华国产精华液的使用体验 | 亚洲欧美成人综合另类久久久 | 最新中文字幕久久久久| 嫩草影院入口| 天堂网av新在线| 神马国产精品三级电影在线观看| 听说在线观看完整版免费高清| 成年av动漫网址| 精品一区二区三区视频在线观看免费| 国产一区二区亚洲精品在线观看| 国产视频内射| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久| 在线免费观看不下载黄p国产| 成人永久免费在线观看视频| 精品一区二区免费观看| 日韩亚洲欧美综合| 日韩成人伦理影院| 精品国产三级普通话版| 久久午夜亚洲精品久久| 波多野结衣巨乳人妻| 村上凉子中文字幕在线| 亚洲av熟女| 日本三级黄在线观看| 国产极品精品免费视频能看的| 成年女人永久免费观看视频| 韩国av在线不卡| 婷婷亚洲欧美| 国产欧美日韩精品亚洲av| 韩国av在线不卡| 老熟妇乱子伦视频在线观看| 丰满人妻一区二区三区视频av| 国产成人aa在线观看| 久久精品国产亚洲av涩爱 | 日韩欧美三级三区| 日韩亚洲欧美综合| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 日韩精品青青久久久久久| 舔av片在线| 国产91av在线免费观看| 在线观看免费视频日本深夜| 91久久精品国产一区二区三区| 欧美另类亚洲清纯唯美| 国产精品亚洲一级av第二区| 免费高清视频大片| 免费看日本二区| 中文亚洲av片在线观看爽| 欧美一区二区国产精品久久精品| 成年av动漫网址| 悠悠久久av| 亚洲国产精品成人综合色| 一级毛片aaaaaa免费看小| 日韩中字成人| 久久久国产成人免费| 网址你懂的国产日韩在线| 精品久久久久久久久av| 亚洲欧美精品综合久久99| ponron亚洲| 欧美激情在线99| 成人一区二区视频在线观看| 久久国产乱子免费精品| 国产人妻一区二区三区在| 亚洲色图av天堂| 九九热线精品视视频播放| 国产av一区在线观看免费| 国产av在哪里看| 免费观看的影片在线观看| 看片在线看免费视频| 亚洲精品成人久久久久久| 插阴视频在线观看视频| 国产成人一区二区在线| 国产精品,欧美在线| 国产单亲对白刺激| 亚洲电影在线观看av| 国产高清有码在线观看视频| 日日摸夜夜添夜夜添小说| 精品一区二区免费观看| aaaaa片日本免费| 国产精品亚洲一级av第二区| 18禁在线播放成人免费| 一本精品99久久精品77| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久| 亚洲av中文字字幕乱码综合| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| 一个人看的www免费观看视频| 色哟哟·www| 精品无人区乱码1区二区| 亚洲av二区三区四区| 亚洲熟妇熟女久久| 欧美极品一区二区三区四区| 午夜福利在线观看免费完整高清在 | 免费av不卡在线播放| 免费高清视频大片| 如何舔出高潮| 身体一侧抽搐| av卡一久久| 成人欧美大片| 午夜a级毛片| 美女 人体艺术 gogo| 亚洲精华国产精华液的使用体验 | 日日撸夜夜添| 99热6这里只有精品| 在线观看66精品国产| 亚洲精品粉嫩美女一区| 成年av动漫网址| 国产爱豆传媒在线观看| 亚洲aⅴ乱码一区二区在线播放| 一级毛片aaaaaa免费看小| 久久亚洲精品不卡| 99热6这里只有精品| 变态另类成人亚洲欧美熟女| 床上黄色一级片| 亚洲美女搞黄在线观看 | 99在线视频只有这里精品首页| 国内精品一区二区在线观看| 精品午夜福利在线看| 欧美极品一区二区三区四区| 中文字幕av成人在线电影| 少妇猛男粗大的猛烈进出视频 | 成人鲁丝片一二三区免费| 在线观看av片永久免费下载| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 草草在线视频免费看| 精品无人区乱码1区二区| 国产精品亚洲一级av第二区| 一级毛片久久久久久久久女| 精品久久久噜噜| 久久精品久久久久久噜噜老黄 | 国产单亲对白刺激| 99久久九九国产精品国产免费| 99久久中文字幕三级久久日本| 亚洲精品456在线播放app| 国产一级毛片七仙女欲春2| 成人午夜高清在线视频| 午夜视频国产福利| 在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲经典国产精华液单| a级毛片a级免费在线| 国产乱人偷精品视频| 国产男靠女视频免费网站| 好男人在线观看高清免费视频| 婷婷亚洲欧美| 丰满乱子伦码专区| 久久久久久久亚洲中文字幕| 黄片wwwwww| 乱系列少妇在线播放| 欧美区成人在线视频| 一夜夜www| 成人综合一区亚洲| 日本色播在线视频| 三级毛片av免费| 黄色日韩在线| 亚洲av一区综合| 成人一区二区视频在线观看| 一进一出好大好爽视频| 久久99热6这里只有精品| 老熟妇仑乱视频hdxx| 99riav亚洲国产免费| 久久久久国产网址| 最近视频中文字幕2019在线8| 日本一本二区三区精品| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 波多野结衣高清无吗| 午夜爱爱视频在线播放| 久久久久久久久中文| 日本精品一区二区三区蜜桃| 老司机福利观看| 欧美+亚洲+日韩+国产| 好男人在线观看高清免费视频| 欧美区成人在线视频| 日韩成人av中文字幕在线观看 | 亚洲av美国av| 99久久成人亚洲精品观看| 一级a爱片免费观看的视频| 久久精品国产亚洲网站| 日韩人妻高清精品专区| 国产片特级美女逼逼视频| 国产精品亚洲一级av第二区| 观看美女的网站| 日日摸夜夜添夜夜添av毛片| 成年女人永久免费观看视频| 精品一区二区三区av网在线观看| 色噜噜av男人的天堂激情| 国产单亲对白刺激| 国产午夜精品久久久久久一区二区三区 | 给我免费播放毛片高清在线观看| 亚洲成人av在线免费| 嫩草影院入口| 精品福利观看| 99国产精品一区二区蜜桃av| 成人美女网站在线观看视频| 欧美又色又爽又黄视频| 熟女人妻精品中文字幕| 欧美激情久久久久久爽电影| 久久久久久久久大av| 精品99又大又爽又粗少妇毛片| 亚洲精品成人久久久久久| 免费看av在线观看网站| 人人妻人人澡欧美一区二区| 久久久久性生活片| 婷婷精品国产亚洲av在线| 中文字幕精品亚洲无线码一区| 日韩一本色道免费dvd| 精品无人区乱码1区二区| 神马国产精品三级电影在线观看| 美女高潮的动态| 国产真实伦视频高清在线观看| 人妻少妇偷人精品九色| 全区人妻精品视频| 亚洲精品影视一区二区三区av| 欧美区成人在线视频| 国产精品久久久久久av不卡| 久久久久国产网址| 嫩草影院入口| 中文亚洲av片在线观看爽| 久久久色成人| 欧美+亚洲+日韩+国产| 桃色一区二区三区在线观看| 欧美日本亚洲视频在线播放| 一级av片app| 国产 一区精品| 特大巨黑吊av在线直播| 久久精品夜夜夜夜夜久久蜜豆| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 国产高清三级在线| 国产精品国产三级国产av玫瑰| 精品一区二区三区av网在线观看| 床上黄色一级片| 看黄色毛片网站| 久久久精品欧美日韩精品| 亚洲,欧美,日韩| 日本a在线网址| 亚洲av五月六月丁香网| 美女内射精品一级片tv| 亚洲人成网站在线播放欧美日韩| 一边摸一边抽搐一进一小说| 亚洲中文字幕一区二区三区有码在线看| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区 | h日本视频在线播放| 日本一二三区视频观看| 日本免费一区二区三区高清不卡| 精品无人区乱码1区二区| 国产午夜精品久久久久久一区二区三区 | 欧美丝袜亚洲另类| 久久欧美精品欧美久久欧美| 久99久视频精品免费| 国产免费一级a男人的天堂| 可以在线观看的亚洲视频| 免费看a级黄色片| 成年女人毛片免费观看观看9| 久久婷婷人人爽人人干人人爱| 国产成人a区在线观看| 成人特级av手机在线观看| 一个人看视频在线观看www免费| 日本a在线网址| 国产老妇女一区| 亚洲欧美中文字幕日韩二区| 99国产极品粉嫩在线观看| 久久草成人影院| 色综合亚洲欧美另类图片| 国内精品久久久久精免费| 欧美性猛交黑人性爽| 不卡视频在线观看欧美| videossex国产| 午夜福利在线观看免费完整高清在 | 国国产精品蜜臀av免费| 欧美高清成人免费视频www| 亚洲七黄色美女视频| 国产老妇女一区| 国产精品一区www在线观看| 中文字幕av成人在线电影| 欧美丝袜亚洲另类| 日韩精品有码人妻一区| 真实男女啪啪啪动态图| 久久精品综合一区二区三区| 日日摸夜夜添夜夜添av毛片| 日韩av在线大香蕉| 精品不卡国产一区二区三区| 久99久视频精品免费| 亚洲成人精品中文字幕电影| 亚洲精品乱码久久久v下载方式| 国产精品人妻久久久影院| 亚洲精华国产精华液的使用体验 | 在线观看美女被高潮喷水网站|