• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal Structures, Thermal Behaviors and Biological Activities of Acylhydrazone Compounds Containing Pyrazine Rings and Halogen Atoms①

    2018-03-12 05:00:39YANGJieLIUXiangRongYUEWuSiYANGZaiWenZHAOShunShengYANGZheng
    結(jié)構(gòu)化學 2018年2期
    關(guān)鍵詞:契機數(shù)學教師習題

    YANG Jie LIU Xiang-Rong YUE Wu-Si YANG Zai-Wen ZHAO Shun-Sheng YANG Zheng

    ?

    Crystal Structures, Thermal Behaviors and Biological Activities of Acylhydrazone Compounds Containing Pyrazine Rings and Halogen Atoms①

    YANG Jie LIU Xiang-Rong②YUE Wu-Si YANG Zai-Wen ZHAO Shun-Sheng YANG Zheng

    (710054)

    acylhydrazone, crystal structure, CT-DNA/BSA,antibacterial activities, anticancer;

    1 INTRODUCTION

    Acylhydrazones are special Schiff base including -CONHN=CH- and have been widely used in medi- cine and pesticide fields[1-3]. The nitrogen and oxygen donor atoms in acylhydrazone make it easily form hydrogen bonds resulting in the inhibi- tion of many physiological chemical processes in organism[4-6]. Moreover, acylhydrazones often serve as ligand to create novel metal organic complexes which possess more attractive structures and outstanding bioactivity[7, 8].

    The synthesis of acylhydrazones is usually through the condensation reaction of hydrazine with aldehyde or ketone, so it is more flexible and has imaginary space to construct required acylhydra- zone molecules by not only selecting different hydrazine and aldehyde or ketone, but also depen-ding on the superposition effects of the two above groups.

    We intend to design a new kind of acylhydrazone compounds possessing higher bioactivities by combining the pyrazine rings and halogen atoms, because pyrazine has excellent antitumor, antibac- terial and antituberculous activities[9-12]. Further- more, the halogen atoms in molecules can enhance the bioactivities obviously[13-15].

    In this work, three acylhydrazone compounds were synthesized and their single crystals were all obtained. Among them, 1 and 3 arenovel com- pounds, while 2 was synthesized by Barbar Mil- czarska[16]but its single crystal structure has not been reported. The single-crystal structures of the three hydrazones were characterized by elemental analyses and single-crystal X-ray diffraction (XRD), and their thermal stabilities were studied by thermogravimetry.

    The interactions of the three compounds with calf thymus DNA (CT-DNA) were investigated by several methods like UV-Vis spectrum, fluores- cence spectrum and viscosity measurement.The interactions of three compounds and bovine serum albumin (BSA) were explored by fluorescence spectra. The antibacterial activities were tested against,and. And anticancer activities were also evaluated against human lung cancer cells A549 by MTT experiment. Synthetic routes of the three compounds are shown in Scheme 1.

    Scheme 1. Synthetic routes of the three compounds

    2 EXPERIMENTAL

    2. 1 Materials and instruments

    Hydrazine hydrate (80%), acetic acid, ethanol, 4-fluorobenzaldehyde, 4-chlorobenzaldehyde, 4- bromobenzaldehyde, methylene blue,thiazole blue and 2-amino-3-pyrazine-carboxylate were all of analytical grade and used without further purify- cation. CT-DNA was biological reagent and pur- chased from American Sigma Company. BSA was purchased from J&K Scientific LTD.,andwere obtained from China General Microbiological Cul- ture Collection Center.

    The melting points were measured on XT4-100B melting point apparatus (China). Elemental analyses (C, H, and N) were performed on a PE 2400-II elemental analyzer (America). Infrared spectra were recorded on a Bruker Tensor-II Fourier infrared spectrometer (Germany). Crystal structures were determined on a Bruker Apex-Ⅱ CCD diffract- tometer (Germany).1H NMR spectra were obtained on a Bruker Avance-400 MHz NMR spectrometer (Switzerland). UV-Vis absorption spectra were recorded on a TU-1900 ultraviolet visible spectro- photometer (China). Thermal decomposition pro- cesses were measured on a Mettler Toledo TG- DSC1 HT thermogravimetric analyzer (Swiss). Fluorescence spectra were recorded on a Perkin Elmer LS55 spectrofluorometer. Optical densities were measured using BAJIU SAF-680T microplate reader (China).

    2. 2 Syntheses of 1~3

    2. 2. 1 Synthesis of 2-amino-3-pyrazine-carbohydrazide(C5H7N5O)

    A solution of methyl 2-amino-3-pyrazine-car- boxylate (2 mmol, 0.3063 g) in ethanol (15 mL) was added to 80% hydrazine hydrate (5 mL). The mixture was placed in a thermostat water bath and heated at 80 ℃to reflux under stirring for 4~5 h,then slowly cooled to room temperature over 48 h. Yellow needle crystals were obtained,then filtered, washed with cold ethanol and dried.

    2. 2. 2 Syntheses of compounds 1~3

    Synthesis of 4-fluorobenzaldehyde-2-amino-3- pyrazine hydrazone (1): 2-amino-3-pyrazine- carbo- hydrazide (0.3 mmol, 0.0459 g) and 4-fluorobenzal- dehyde (0.3 mmol, 32 μL) were dissolved in ethanol. The mixture was placed in a thermostat water bath and heated at 80 ℃ to reflux under stirring for 4 h. Then the resultant solution of 4-fluorobenzalde- hyde-2-amino-3-pyrazine hydrazone (1) was fil- tered and the product recrystallized from etha- nol/acetic acid (v(ethanol):v(acetic) = 4:1, 20.0 mL). After 3 days, bright yellow flaky crystals suitable for X-ray crystallographic analysis were obtained. 4-chlorobenzaldehyde-2-amino-3-pyrazine hydra- zone (2) and 4-bromobenzaldehyde-2-amino-3-py- razine hydrazone (3) were synthesized as the same method.

    Compound 1: Yield: 70.38%. m.p. 198.48~198.68 ℃.Anal. Calcd. for C12H10FN5O·H2O (1, %): C, 55.55; H, 3.857; N, 27.00. Found (%): C, 52.98; H, 4.076; N, 24.00.IR (KBr, cm-1): 3260 (N–H), 3150 (N–H), 1680 (C=O), 1500 (C=N), 835 (C–F).1H NMR (400 MHz, DMSO-6): 12.09 (s, 1H, NH), 8.61 (s, 1H, CH), 8.30 (d,= 2.3 Hz, 1H, pyrazine-H), 7.91 (d,= 2.3 Hz, 1H, pyrazine-H), 7.82~7.72 (m, 2H, Ar–H), 7.64 (s, 2H, NH2), 7.37~7.26 (m, 2H, Ar–H).

    Compound 2: Yield: 74.24%. m.p. 261.78~262.08 ℃. Anal. Calcd. for C12H10ClN5O·2CH3COOH (2, %): C, 52.23; H, 3.627; N, 21.86. Found (%): C, 52.53; H, 3.564; N, 23.47. IR (KBr, cm-1): 3256 (N–H), 3146 (N–H), 1674 (C=O), 1514 (C=N), 556 (C–Cl);1H NMR (400 MHz, DMSO-d6): 12.14 (s, 1H, NH), 8.60 (s, 1H, CH), 8.29 (d,= 2.3 Hz, 1H, pyrazine-H), 7.90 (d,= 2.3 Hz, 1H, pyrazine-H), 7.77~7.68 (m, 2H, Ar-H), 7.63 (s, 2H, NH2), 7.57~7.49 (m, 2H, Ar-H).

    Compound 3: Yield: 76.56%. m.p. 272.14~272.44 ℃. Anal. Calcd. for C12H10BrN5O (3, %): C, 44.98; H, 3.123; N, 21.86. Found (%): C, 45.27; H, 3.088; N, 20.62. IR (KBr, cm–1): 3256 (N–H), 3148 (N–H), 1673 (C=O), 1511 (C=N), 573 (C–Br).1H NMR (400 MHz, DMSO-d6): 12.15 (s, 1H, NH), 8.58 (s, 1H, CH), 8.29 (d,= 2.3 Hz, 1H, pyrazine-H), 7.90 (d,= 2.3 Hz, 1H, pyrazine-H), 7.71~7.61 (m, 6H, 4×Ar–H, 2×NH2).

    2. 3 Crystal structure determination

    Three kinds of single crystals with dimensions of 0.35 × 0.28 × 0.23 mm3(1), 0.37 × 0.28 × 0.14 mm3(2) and 0.31 × 0.23 × 0.15 mm3(3) were put on a Bruker ApexⅡCCD diffractometer with a graphite- monochromatic Moradiation (= 0.71073 ?) at room temperature by using anscan mode. Absorption corrections were applied with the program SADABS[17]. The crystal structure was solved by direct methods using SHELXS-97 pro- gram[18]. Non-hydrogen atoms were refined by full-matrix least-squares using SHELXL-97 and the hydrogen atoms were placed in the calculated positions.

    2. 4 Thermogravimetric experiments

    5~10 mg compound was placed in the N2atmos- phere and the thermogravimetric experiment was carried out for each compound from room tempera- ture to 800 ℃ at heating rates of 5, 10 and 15.00 ℃·min-1, respectively.

    2. 5 Interactions of compounds with CT-DNA

    2. 5. 1 UV-Vis absorption spectra[19]

    The compounds were dissolved in tris-HCl (0.01 mol·L-1pH = 7.90) buffer solution with con- centration of 1 × 10-5mol·L-1. 3.0 mLcompound solution was added into a cuvette and tris-HCl buffer solution was the reference solution. And 50 μL CT-DNA solution (100.0 mg·L-1) was then gradually added into the compound solution 5 times at 1 minute intervals by using micro inject- tor. The UV absorption spectrum was determined in the wavelength range of 250~500 nm.

    2. 5. 2 Fluorescence spectra[20]

    CT-DNA solution (100.0 mg·L-1) was mixed with methylene-blue liquid (1 × 103mol·L-1) and the concentration ratio of CT-DNA solution to methylene blue liquor was 10:1. Then 3.0 mL mixture was added into a cuvette. 50 μL compounds solution (1 × 10-5mol·L-1) were added into the cuvette 5 times at 1 minute interval by using micro injector. The fluorescence spectra were recorded at an excitation wavelength of 630 nm and cover a wavelength range of 650~900 nm. The widths of entrance and exit slits were 5 nm.

    2. 5. 3 Viscosity measurements[21]

    The viscosity measurements were carried out on an Ubbelodhe viscometer immersed in a thermostat water bath at 25 ℃. 10 mL Tris-HCl (0.01 mol·L-1pH = 7.90) buffer solution was added into the Ubbelodhe viscometer. The flow time0was measured by a digital stopwatch. Then CT-DNA concentration remained unchanged (10 mL 1.88 × 10-4mol·L-1) and the compound solutions (1.88 × 10-3mol·L-1) were gradually and continuously added into the CT-DNA for 6 times with an interval to be 30 min. Each sample was measured three times, and the average flow time was calculated. Relative viscosities were calculated from the following formula:

    where0is the viscosity of CT-DNA alone andis the viscosity of mixed solution of compounds and CT-DNA. Data are presented as (/0)1/3versus(compound)/(CT-DNA).

    2. 6 Interactions of compounds with BSA[22]

    BSA was dissolved in Tris-NaCl (0.01 mol·L-1, pH = 7.20) buffer solution with concentration of 110-7mol·L-1. Then 3.0 mL solution was added into a cuvette. 30 μL compound solution (1 × 10-5mol·L-1) was added into the cuvette 6 times at 1 minute interval by using microinjector. The fluorescence spectra were recorded at an excitation wavelength of 280 nm over a wavelength range of 300~540 nm.The widths of entrance and exit slits were 5 nm.

    2. 7 Antibacterial activity

    Antibacterial activities of compounds were tested by microplate reader method[23]. Three strains were inoculated into 5 mL of Luria-Bertani (LB) medium at 37 ℃ for 3.5 h. Compound solutions were prepared with LB medium and diluted into various concentrations. Then 5 μL bacterial suspen- sions with concentration of 105colony forming units per mL were added into 5 mL compound solution. 250 μL mixture was put into a sterile 96-well plate. After 6 h incubation, optical densities (OD) were measured by microplate reader at 630 nm and inhibition rates were calculated as:

    Inhibition rate = (1–ODsample/ODcontrol) × 100% (2)

    And IC50was calculated by PASW Statistics software.

    2. 8 Cytotoxic activity[24]

    Cytotoxicities of compounds 1~3 against human lung cancer cells (A549) were determined by using the MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphe- nyl-tetrazolium bromide) assay. The logarithmic growth phase cells were plated in 96-well plate and incubated at 37 ℃ for 24 h to allow cell attachment. Then the A549 cells were treated with three compounds separately at the concentration of 0, 10, 20, 30, 40, 50 and 100 uM for 24 h, and then 90 uL of culture medium and 10 uL of MTT solution (5 mg/mL in PBS) were added to each well. After 4 h incubation, the medium was discarded and 100 uL of DMSO was added to each well for dissolving the formazan crystals. OD was also measured by a microplate reader at 570 nm and inhibition rates were calculated by formula (2).

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure

    Fig. 1. Crystal structure of 1(Probability of ellipsoid is 30%)

    Fig. 2. Crystal packing structure of 1

    Fig. 3. Crystal packing structure of 2

    Fig. 4. Crystal packing structure of 3

    Table 1. Crystallographic Data for 1~3

    Table 2. Selected Bond Distances (?) and Bond Angles (o) for 1~3

    Table 3. Hydrogen Bond Distances (?) and Bond Angles (°) for 1~3

    Symmetry codes: for 1 (a)1,,; (b)1,,;(c)–+2, –+1, –+1; for 2 (a),– 1,

    ; (b),+ 1,; (c) –+ 1, –+ 1, –+ 1; (d)– 1,,; for 3 (a) –, –+ 1, –+ 2

    Table 4. Selected π-π Stacking Interactions of Compounds 2 and 3

    As seen in Fig. 1 and Table 2,the dihedral angle of pyrazine and benzene rings in compound 1 is 8.18°, which indicates the two rings are not in the same plane. The torsion angles of C(8)–C(7)– C(6)–N(5) and C(12)–C(7)–C(6)–N(5) are 57.9(4)° and –174.3(2)°, also illustrating that C(6)–N(5) is obviously deviated from the benzene ring. The bond length of C(6)–N(5) (1.227(2) ?) is shorter than N(4)–C(5) (1.347(2) ?), attributed to a C=N double bond existing between C(6)–N(5)[25]. The C(5)– O(1) bond distance is 1.227(2) ?, which is the typical C=O double bond[26]. As shown in Fig. 2, there are three kinds of hydrogen bonds in 1: N–H···N, O–H···O and N–H···O.Through the hydrogen bonds between intermolecules, the 1D chains are further linked into a 2D network which stabilizes the structure.Hydrogen bond distances and anglesare given inTable 3.

    The dihedral angles of pyrazine and benzene rings in compounds 2 and 3 are 1.47° and 4.69°. Thus compound 2 shows better coplanarity among 1~3.Moreover, interchain-stacking interac- tions are founded between the pyrazine and benzene rings in the crystals of 2 and 3. The parameters of-stacking interactions are shown in Table 4.-stacking interactions and hydrogen bonds extend the structure of compounds 2 and 3 into 1D double-chain structures. All the three compounds exist in a keto form.

    3. 2 Thermal stabilities

    The TG-DTG curve of compound 1is shown in Fig. 5. The TG curves at the heating rates of 10.00 and 15.00 ℃·min–1are similar to that of the 5.00 ℃·min–1. FromFig. 5, the thermal decom- position temperature of maximum weight loss for 1 is 282 °C at theheating rate of 5.00 °C·min–1. And the decomposition temperature of compounds 2 and 3 is alsomore than 280 ℃, showing that the three compounds possess good thermal stabilities. The thermal decomposition of 1can be divided into two stages and the weight loss percentage of the first stage is 5.01%, which might be the loss of water molecules. The mass loss of the second stage is 60.89%, which is assigned to the bond breaking of C(4)–C(5) (calcd. 63.71%). Compound 2 undergoes just one stage of decomposition and the temperature ofendothermic peak is 283 ℃. The weight loss at this stage is 69.47%, corresponding to the bond breaking of C(1)–N(3) and C(4)–C(5) (calcd. 71.64%). The decomposition process of compound 3 is also one stage with mass loss of 43.09% which is attributed to the bond breaking of N(4)–N(5) and C(10)–Br(calcd. 67.75%).

    小學數(shù)學教師應當意識到學習評價的重要性,通過對評價環(huán)節(jié)的科學設置,將讓學生獲得數(shù)學思維發(fā)展的契機,同時亦可以讓數(shù)學教師獲取學生的學習情況反饋。具體而言,小學數(shù)學教師應當利用多媒體技術(shù)將班級學生所完成的計算習題進行課上展示,并組織班級學生共同進行查錯和改正,如此便達成了帶領(lǐng)學生共同進行學習評價的目的,這樣將讓整體的數(shù)學課堂教學效果更為理想。

    Fig. 5. TG-DTG curves of compound1

    The kinetic parameters of decomposition pro- cesses for three compounds are calculated by Kis- singer (3) and Ozawa (4) equations[27]:

    wherepis the maximum temperature of endo- thermic peak,the pre-exponential factor,athe apparent activation energy,the gas constant,the heating rate, and() the integral mechanism function.The calculation results are shown in Table 5.

    Table 5. Kinetic Parameters of Thermal Decomposition for Three Compounds

    3. 3 Interactions of compounds with CT-DNA

    3. 3. 1 UV–Vis absorption spectra

    UV-Vis absorption spectra are often used to study the interactions of compounds with CT-DNA.Fig.6 shows the absorption spectra of compound1 interaction with CT-DNA. With increasing the concentration of CT-DNA, the absorbance of 1 decreases. The absorption band of 1 exhibits hypochromism at 294 and 365 nm. For 2 and 3, the hypochromisms are observed at 299, 367 nm and 301, 366 nm.It can be inferred that all the com- pounds could bind with CT-DNA through intercala- tion. Generally, hypochromic effect is the spectral feature of intercalative binding mode. Because the* orbital of the intercalated compound could couplewith theorbital of CT-DNA base pairs after the compound inserts into CT-DNA, the coupling* orbital ispartially filled by electrons, which makes the transitionpossibilities decrease[28, 29].

    The binding constants (b) of three compounds with CT-DNA are calculated by using the following function equation (5)[30]:

    whereDNAis the concentration of CT-DNA,a,bandfthe molar extinction coefficient of compound that is apparent, free and fully bonding with CT– DNA.

    The plots ofDNA/(a–f) versusDNAare pre- sented as inset in Fig. 6 and theb-of three com- pounds are determined by the ratio of slope to intercept.b-is shown in Table 6 and follows the order of 2 >1 >3. Thebvalues of three compounds are larger than that of classical DNA intercalator such as ethidium bromide (b-= 3.3 × 105L·mol–1)[31]. Therefore, three compounds have strong binding abilities to the CT-DNA and 2 binds more effectively to CT-DNA than 1 and 3.

    Table 6. Parameters of Interaction with CT-DNA Obtained from UV-Vis Spectra for 1~3 with CT-DNA

    Fig. 6. UV-Vis spectra of the interaction of 1 with CT-DNA (Inset:the plot ofDNA/(a-f) againstDNA)

    3. 3. 2 Fluorescence spectra

    The interaction between small molecules and CT-DNA is often studied by fluorescence probe[32]. In this paper, the competitive binding experiment has been carried out using methylene-blue (MB) as a probe. MB has strong intrinsic fluorescence and could insert into the base pair of CT-DNA by hydrophobic interactions and-interactions when the concentration ratio of CT-DNA to MB is more than 6[33]. The interaction of MB with CT-DNA results in a decrease in the fluorescence intensity. After adding compounds into the solution, the compound could displace the MB from CT-DNA causing the fluorescence intensity increase.

    Fig. 7 shows the fluorescence spectra of the CT-DNA-MB system of 1. The emission intensities of the CT-DNA-MB system increase as the concentration of the three compounds increase, which indicates that three compounds react with CT-DNA by intercalation effect[20].

    Fig. 7. Fluorescence spectra of the interaction of 1 with CT-DNA-MB

    3. 3. 3 Viscosity measurements

    Viscositymeasurement is usually considered as one of the most accurate and effective methods to study the interaction between small molecule compounds and DNA[34]. In classical intercalation,the viscosity of CT-DNA solution increases because DNA base pairs were separated to accommodate the bound ligand, which results in DNA helix leng- thens. Instead, partial non-classical intercalation of compounds could bend or kink the DNA helix, resulting in the decrease of DNA length as well as the viscosity. And in groove binding or electrostatic mode, the viscosity of the DNA solution does not change significantly[35, 36].

    According to our experiment, as illustrated in Fig. 8, the relative viscosities of CT-DNA increase continuously with the addition of compounds. The results show that three compounds interact with CT-DNA by intercalation and2 exhibits the strongest biological activity, which is consistent with UV-Vis absorption spectra.

    Fig. 8. Plots of (/0)1/3versus(compound)/(CT-DNA)

    Fig. 9. Fluorescence spectra of the interaction of 1 with BSA (Inset: Stern-Volmer plot: F/)1~7,VOL= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6M

    3. 4 The interactions of compounds with BSA

    Bovine serum proteins (BSA) emit strong endo- genous fluorescence due to the tyrosine, tryptophan and phenylalanine[37]. The effect of 1 on BSA is shown in Fig. 9, which is the same with 2 and 3. Along with the addition of three compounds, the endogenous fluorescence of BSA is quenched regularly, suggesting that 1~3 caninteract with BSA.

    Fluorescence quenching is divided into two types: dynamic quenching and static quenching[38]. Assuming three compounds quenched the fluore- scence of BSA through a dynamic process. Fluore- scence quenching is described by Stern-Volmer formular[39]:

    where0andare the fluorescence intensities of BSA in the absence and presence of the compounds,qthe quenching rate constant and 2.0 × 1010the highest limit for dynamic quenching[40],0the average life of BSA without the quencher, at approximately 10–8s–1. [] is the concentration of compound andsvthe Stern-Volmer dynamic quenching constant,svandqwere obtained from the plots of/0versus [] (as insets in Fig. 9) and presented in Table 7.

    Table 7. Parameters of Interaction with BSA Obtained from Fluorescence Spectra for 1~3 with BSA

    As seen from Table 7, all the threeqvalues are more than the maximum dynamic fluorescence quenching rate constant (2.0 × 1010)[40]. Therefore, the assumption of dynamic quenching is not true. The quenching mechanisms of 1~3 with BSA are static quenching process with non fluorescence complex formed between compounds and BSA.

    For the static quenching process, the binding constants and the number of binding sites can be calculated from formula 7[41]:

    where0andare the fluorescence intensities of BSA in the absence and presence of the compounds,Athe binding constant,the number of binding site and [] the concentration of three compounds.Aandwere obtained from the plots of lg[(0–)/] versus lg[] (Fig. 10) and presented in Table 8.

    Table 8. Parameters of Interaction with BSA Obtained from Fluorescence Spectra for 1~3 with BSA

    Fig. 10. Plots of lg[(F–)/] versus lg[]

    The results show that the number of binding sites is less than one, so three kinds of compounds are partially bound to BSA. The binding constants are all in 104~105L·mol–1and decreased in the order of 2>3>1, revealing strong interaction between BSA and the three compounds[42]. Compound 2 exhibits superior binding ability. As shown above, compound 2 possesses better coplanarity than 1 and3,which makes it easily insert into the DNA base pairs or BSA[43].

    3. 5 Antimicrobial activity

    The antimicrobial activities of three compounds were determined against,and. The results are shown in Table 9, indicating that all the three compounds show an appreciable activity against. Compound 2 with IC50values of 7.75 μmol·L–1exhibited the highest activity among the three compounds. It is also noted that compound 2 is more effective against. Compounds 1~3 show less activity against. Generally, 1 exhibits better activities against bacteria than 2 and 3, which is the same order with the interaction of compounds with DNA and BSA.

    Table 9. IC50 of Compounds 1~3 against the Tested Bacteria

    3. 6 Cytotoxic activity

    Compounds were screened against human lung cancer cells A549 by using MTT assay. As shown in Fig. 11, compound 1 displays better inhibitory activities against the human cancer cell lines with IC50values of 72.16 μmol·L–1in comparison to other tested compounds. The IC50values of 2 and 3 against cells A549 were 428.03 and 424.33 μmol·L–1, respectively. It has been reported in other literatures that the introduction of fluorine atom in phenyl ring could result in a higher anticancer activity. The fluorine atom as substituent can enhance the liposolubility of the compound, which is beneficial for compound molecules to go through the biomembranes[44]. The IC50value of 1 againstA549 iscomparable to that of the standard drug Etoposide (33.13 μmol·L–1)[45].

    Fig. 11. Inhibition effects of three compounds on cell A549

    4 CONCLUSION

    (1) Lu, W. G.; Liu, H. W. Synthesis and crystal structure of a copper(II) complex with 2,4-dihydroxybenzylidene benzoylhydrazone ligand.2005, 24, 1078–1082.

    (2) Ni, Z. J.; Xue, S. J.; Wang, J.; Meng, W.Synthesis and anti-leukemia activity of 1-substituted piperidin-4-one arylformylhydrazones.2011, 31, 222–226.

    (3) Xiong, Q. Z.; Liu, J. H.; Lin, X. F.; Bao, X. P.Synthesis and bioactivities of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives containing 1,2,4-triazole-5-thione Schiff base unit.2012, 32, 1951–1957.

    (4) Bao, X. P.; Xiong, Q. Z.; Zou, L. B.; Zang, F.; Liu, Y.; Jian, J. Y. Synthesis and fungicidal activities of 2-benzyithio-5-methyl-1,2,4-triazolo [1,5-a]pyrimidine-7-oxoacetohydrazone derivatives.. 2013, 01, 53–57.

    (5) Shang, H. J.; Gao, L. Z.; Xie, Y. S.; Yan, Q.; Wu, S. M.; Ni, L. L.; Huang, W. L.; Xie, S. Q.; Hu, G. Q.Synthesis and antitumor activity of N-methyl ciprofloxacin acylhydrazone..2015, 05, 597–601.

    (6) Nath, M.; Saini, P. K. Chemistry and applications of organotin(IV) complexes of Schiff bases.. 2011, 40, 7077–7121.

    (7) Wang, D. B.; Chen, B. H.; Ma, Y. X.Aroyl hydrazones containing triazole and their divalent nickel complexes.1997, 27, 479–486.

    (8) Li, K.; Li, S. J.; Yao, X. J.; Niu, J. J.; Qiu, X. Y. Synthesis, crystal structures and antimicrobial activity of vanadium(V) complexes with similar tridentate hydrazone ligands.2015, 34, 885–893.

    (9) Wei, S. P.; Zhang, H.; Xu, X. B.; Yang, Y. Y.Natural existed pyrazine derivants and their application to flavors.. 2000,6, 25–31.

    (10) Li, Y. F.; Jin, L. Q.; Liu, Z. Q.; Zheng, Y. G.The research progress on pyrazinamide.. 2010, 04, 307–312.

    (11) Zhu, H. L.; Wang, X. L.; Tang, J. F.; Hu, Y.; Yang, Y. S.; Zhang, Y. B.; Zhang, F.103373992A 2013–10–30.

    (12) Zhu, H. L.; Wang, X. L.; Zhang, F.; Zhang, Y. B.; Yang, Y. S.; Tang, J. F..103373988A, 2013–10–30.

    (13) Xu, Z. P.; Shao, X. S.The unique position of halogen substituents in modern pesticide design.2011, 01, 12–19+38.

    (14) Zhang, M.Synthesis and antibacterial activities research of C–N bridged-hydroxy diphenyl compounds.2008.

    (15) Wang, Y. Studies on the synthesis, crystal structure biological activity of first-row transition metal complexes with 3,5-dichlorosalicylaldehyde.2009.

    (16) Milczarska, B.; Gobis, K.; Foks, H.; Golunski, L.; Sowinski, P.The Synthesis of 3-amino-pyrazine-2-carbohydrazide and 3-amino-N′-methylpyrazine-2-carbohydrazide derivatives.2012, 49, 845–850.

    (17) Sheldrick, G. M.. University of G?ttingen, Germany 1996.

    (18) Sheldrick, G. M.University of G?ttingen, Germany 1997.

    (19) Liu, X. R.; Sun, X. C.; Yang, Z. W.; Zhao, S. S.; Yang, S. L.; Yan, S.2-furancarbaldehyde-4-hydroxy-benzoylhydrazone and its Cu(Ⅱ) complex: crystal structures and binding ability with CT-DNA.2016, 02, 250–258.

    (20) Zhang, H. Y. The spectroscopy study on the interaction of the three drugs and BSA/ct–DNA.2014.

    (21) Guo, Q.; Li, L. Z.; Dong, J. F.; Liu, H. Y.; Xue, Z. C.; Xu, T.Synthesis, crystal structure and interactions with DNA and BSA of an oxovanadium(IV) complex [VO(-Van-Asn)(Phen)]·1.5CH3OH.2012, 15, 1617–1624.

    (22) Sathyadevi, P.; Krishnamoorthy, P.; Bhuvanesh, N. S. P.Organometallic ruthenium(II) complexes: synthesis, structure and influence of substitution at azomethine carbon towards DNA/BSA binding, radical scavenging and cytotoxicity.2012, 55, 420–431.

    (23) Zhou, Z. X.; Huang, Q. H.; Zhu, S.; Zhou, L. Establishment of rapid determining method for antibacterial activity by microplate reader.2014, 3, 29–35.

    (24) Zhang, Q.; Wang, Q.; Chen, Z. S. In vitro antibacterium and antitumor activities of sesquiterpenes compound from cremanthodium discoideum Msxim.2002, 18, 597–598.

    (25) Yai, Z. W.; Ding, Z. C.; Liu, X. R.; Zhao, S. S.; Zhang, R. L.; Yang, S. L.Crystal structures and thermochemical properties of phenyl-acetic acid furan-2-ylmethylene-hydrazide and its Ni(Ⅱ) complex.2015, 08, 1520–1528.

    (26) Wei, Z. B.; Wang, J. C.; Jiang, X.; Li, Y. Q.; Chen, G. H.; Xie, Q. F.Experimental and DFT studies of pyridine-4-carboxylic acid (2,4-dihydroxy-phenylethylidene)-hydrazide Schiff base: synthesis, crystal structure, properties and quantum chemistry calculation.2015,09, 1014–1021.

    (27) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.. Beijing 2008, 79–120.

    (28) Jian, Y.; Li, G.; Yang, P.; Deng, T.; Zhou, X.; Xu, H. Y.Syntheses, spectral properties of novel carbazole derivatives and evaluations of its Ct–DNA interaction.2014, 34, 809–816.

    (29) Wei, Q.; Dong, J. F.; Li, W. B.; Zhao, P. R.; Ding, F. F.; Li, L. Z.Syntheses, crystal structures, DNA interactions and SOD activities of two nickel(H) complexes with L-histidine Schiff Base.2016, 05, 789–798.

    (30) Yan, H.; Yang, L.; Chang, G. L.; Li, X.; Niu, M. J. DNA interaction and cytotoxic activity of a chiral amino-alcohol Schiff base derived Cu(Ⅱ) complex.2016, 35, 465–471.

    (31) Stothkamp, R. E. J. Fluorescence measurements of ethidium binding to DNA.1993,71, 77–79.

    (32) Luan, J. M.; Zhang, X. D. Advances of fluorimetric determination of DNA.2007, 43, 241–245.

    (33) Hu, Z.Analysis of DNA by the fluorescence probe of methylene blue and its application in the study of the interactions between heavy metals and paraquat with DNA2006.

    (34) Kashanian, S.; Dolatabadi, J. E. N.In vitro studies on calf thymus DNA interaction and 2-tert-butyl-4-methylphenol food additive.2010, 230, 821–825.

    (35) Kumar, A. K.; Reddy, K. L.; Satyanarayana, S.Study of the interaction between ruthenium(II) complexes and CT-DNA: synthesis, characterisation, photocleavage and antimicrobial activity studies.. 2010, 22, 629–643.

    (36) Chen, J. X.; Tian, Y.; Xiang, Q. X.; Zhang, L. Q.; Xiong, J. R.Spectroscopy studies of interactions between DNA and N3O2-donor macrocycle bearing naphathalic sulfonic group.2010, 30, 66–71.

    (37) Yan, C. N.; Shang, G. Y. F.; Tong, J. Q.; Liu, Y.; Pang, D. W.; Pan, Z. T.; Qu, S. S.Study on thermodynamics of binding reaction of dipyridamole with bovine serum albumin.2003, 23, 543–546.

    (38) Tian, Z. Y.; Su, L. P.; Xie, S. Q.; Zhao, J.; Wang, C. J.Synthesis, biological activity and fluorescence spectroscopy of naphthalimide-polyamine conjugates.2013, 33, 1514–1521.

    (39) Akbay, N.; Seferoglu, Z.; G?k, E.Fluorescence interaction and determination of calf thymus DNA with two ethidium derivatives.2009, 19, 1045–1051.

    (40) Wang, J.; Liu, L. J.; Liu, B.; Guo, Y.; Zhang, Y. Y.; Xu, R.; Wang, S. X.; Zhang, X. D.Spectroscopic study on interaction of bovine serum albumin with sodium magnesium chlorophyllin and its sonodynamic damage under ultrasonic irradiation.2010, 75, 366–374.

    (41) Zhang, G. W.; Zhao, N.; Hu, X.; Tian, J.Interaction of alpinetin with bovine serum albumin: probing of the mechanism and binding site by spectroscopic methods.2010, 76, 410–417.

    (42) Chen, Z. F.; Luo, Y. D.; Hua, L. G.; Zhang, J.Reactivities towards DNA and protein and cytotoxic activities of benzimidazole derived mononuclear cobalt(Ⅱ) and nickel(Ⅱ) complexes.2014, 07, 1525–1534.

    (43) Yang, L. N.; Yao, L.; Yu, L. L.; Yang, L. Y.; Yu, J. Study on synthesis of nitroderivatives of 2,2?--biimidazoleand their interaction with DNA.2012, 07, 56–59.

    (44) Zhong, G. X. The research progress of fluorine-bearing antitumor drugs.2005, 1, 46–48.

    (45) Reddy, O. S.; Suryanarayana, C. V.; Sharmila, N.; Ramana, G. V.;Anuradha, V.;Babu, B. H. Synthesis and cytotoxic evaluation for some new dihydropyrimidinone derivatives for anticancer activity.2013, 10, 699–705.

    7 August 2017;

    10.14102/j.cnki.0254-5861.2011-1799

    27 November 2017 (CCDC 1473040 for 1, 1477347 for 2 and 1474331 for 3)

    ① Project supported by the National Natural Science Foundation of China (Nos. 21073139, 21103135 and 21301139)

    ②. E-mail: liuxiangrongxk@163.com

    猜你喜歡
    契機數(shù)學教師習題
    從一道課本習題說開去
    一道課本習題及其拓展的應用
    抓住習題深探索
    小學數(shù)學教師資格證面試研究
    將疫情當作樹立正確人生觀的契機
    甘肅教育(2020年4期)2020-09-11 07:41:06
    淺析如何提高小學數(shù)學教師素養(yǎng)
    活力(2019年17期)2019-11-26 00:42:48
    精心設計習題 構(gòu)建高效課堂
    小學數(shù)學教師如何才能提高課堂的趣味性
    以上率下 強化擔當 以文明創(chuàng)建為契機 助力鹽改取得新成效
    抓住契機全面推進醫(yī)改
    久久久久久久国产电影| 欧美av亚洲av综合av国产av| 91字幕亚洲| 国产精品久久久av美女十八| 国产淫语在线视频| 99re6热这里在线精品视频| 一a级毛片在线观看| 18禁观看日本| 欧美日韩黄片免| videos熟女内射| 99re6热这里在线精品视频| 色在线成人网| 精品一区二区三卡| 午夜免费成人在线视频| 嫩草影视91久久| 日本wwww免费看| 妹子高潮喷水视频| 真人做人爱边吃奶动态| 窝窝影院91人妻| 亚洲欧美日韩高清在线视频| 免费不卡黄色视频| 国产成人一区二区三区免费视频网站| 一进一出抽搐动态| 午夜老司机福利片| 国产精品久久视频播放| 性少妇av在线| 十八禁人妻一区二区| 男女下面插进去视频免费观看| 久久精品成人免费网站| 亚洲av欧美aⅴ国产| 中文字幕人妻丝袜制服| av网站免费在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 一夜夜www| 免费女性裸体啪啪无遮挡网站| 国产精品久久久久久人妻精品电影| 亚洲精华国产精华精| 精品一区二区三区四区五区乱码| 午夜成年电影在线免费观看| 少妇猛男粗大的猛烈进出视频| 欧美激情久久久久久爽电影 | 黄频高清免费视频| 高清毛片免费观看视频网站 | 黄色视频不卡| 亚洲国产毛片av蜜桃av| 国产精品久久久av美女十八| 亚洲第一av免费看| 欧美+亚洲+日韩+国产| 丝瓜视频免费看黄片| 婷婷成人精品国产| 黑人巨大精品欧美一区二区蜜桃| 91字幕亚洲| 涩涩av久久男人的天堂| 日韩 欧美 亚洲 中文字幕| 另类亚洲欧美激情| 国产精品免费一区二区三区在线 | 中出人妻视频一区二区| 欧美不卡视频在线免费观看 | 精品福利永久在线观看| 成人影院久久| 精品电影一区二区在线| 免费观看人在逋| 日本vs欧美在线观看视频| 亚洲国产欧美网| 国产在线一区二区三区精| 国产精品一区二区在线观看99| 热99re8久久精品国产| 午夜日韩欧美国产| 久久狼人影院| 国产精华一区二区三区| 国产在线精品亚洲第一网站| 老司机靠b影院| 亚洲精品美女久久av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国av一区二区三区四区| 国产男靠女视频免费网站| 叶爱在线成人免费视频播放| 欧美中文综合在线视频| 久久国产精品影院| 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 午夜91福利影院| 91成人精品电影| 黄频高清免费视频| 9色porny在线观看| 国产男靠女视频免费网站| 国产亚洲精品久久久久5区| 中出人妻视频一区二区| 女同久久另类99精品国产91| 国产欧美亚洲国产| 欧美一级毛片孕妇| 欧美成人午夜精品| 大香蕉久久网| 亚洲精品乱久久久久久| 麻豆成人av在线观看| 老熟女久久久| av视频免费观看在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲欧美激情综合另类| 亚洲av成人一区二区三| 久久久久久人人人人人| 好男人电影高清在线观看| 亚洲精品美女久久av网站| 国产av又大| 亚洲情色 制服丝袜| 国产精品一区二区精品视频观看| 精品一区二区三卡| 51午夜福利影视在线观看| 精品国产一区二区久久| 日日爽夜夜爽网站| 天堂俺去俺来也www色官网| 久久国产精品男人的天堂亚洲| 久久久水蜜桃国产精品网| 人人妻人人澡人人爽人人夜夜| 国产免费现黄频在线看| 欧美日韩乱码在线| 欧美激情高清一区二区三区| 一区二区三区精品91| 日韩一卡2卡3卡4卡2021年| 老司机午夜福利在线观看视频| 啦啦啦视频在线资源免费观看| 一本综合久久免费| 在线观看www视频免费| 女人高潮潮喷娇喘18禁视频| 18禁国产床啪视频网站| 免费观看人在逋| 97人妻天天添夜夜摸| 麻豆成人av在线观看| 亚洲成人免费电影在线观看| 变态另类成人亚洲欧美熟女 | 国产成人精品无人区| 久9热在线精品视频| 老司机午夜福利在线观看视频| 国产激情久久老熟女| 亚洲欧洲精品一区二区精品久久久| 日韩免费高清中文字幕av| 国产亚洲一区二区精品| 波多野结衣av一区二区av| 国产不卡av网站在线观看| 国产av精品麻豆| 精品人妻熟女毛片av久久网站| 一夜夜www| 国产一区二区三区在线臀色熟女 | 精品国内亚洲2022精品成人 | 免费在线观看黄色视频的| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 在线观看午夜福利视频| 国产99久久九九免费精品| 亚洲 国产 在线| 男女之事视频高清在线观看| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 国产精品偷伦视频观看了| 日日夜夜操网爽| 中文字幕制服av| 欧美激情高清一区二区三区| 黄色a级毛片大全视频| 精品电影一区二区在线| 99国产精品免费福利视频| 香蕉丝袜av| 国产精品一区二区精品视频观看| 亚洲三区欧美一区| 亚洲 国产 在线| 国产一区二区三区视频了| 亚洲成人免费av在线播放| 国产精品香港三级国产av潘金莲| 国产精品免费一区二区三区在线 | 这个男人来自地球电影免费观看| 无人区码免费观看不卡| 亚洲精品av麻豆狂野| 亚洲一区中文字幕在线| 老熟女久久久| 国产精品久久久久成人av| 午夜福利影视在线免费观看| 免费黄频网站在线观看国产| 亚洲男人天堂网一区| 香蕉国产在线看| 国产成人av激情在线播放| 老司机在亚洲福利影院| 国产野战对白在线观看| 露出奶头的视频| 国产成人精品久久二区二区91| 99久久综合精品五月天人人| 97人妻天天添夜夜摸| 搡老岳熟女国产| 男女床上黄色一级片免费看| 美女高潮喷水抽搐中文字幕| 久久天躁狠狠躁夜夜2o2o| 欧美丝袜亚洲另类 | 久久久久国内视频| 搡老乐熟女国产| 欧美日韩av久久| 丁香欧美五月| 午夜亚洲福利在线播放| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| 国产在视频线精品| 亚洲中文字幕日韩| 在线观看一区二区三区激情| 午夜影院日韩av| 91av网站免费观看| 香蕉国产在线看| 久久这里只有精品19| 欧美一级毛片孕妇| 午夜成年电影在线免费观看| 亚洲av片天天在线观看| 免费观看精品视频网站| 久久精品国产综合久久久| 午夜激情av网站| 久久久久久久国产电影| 久久久精品免费免费高清| 国产精品自产拍在线观看55亚洲 | 国产97色在线日韩免费| 老司机福利观看| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| 老熟妇仑乱视频hdxx| 99热只有精品国产| 亚洲一码二码三码区别大吗| 日本vs欧美在线观看视频| 黑人操中国人逼视频| 久久精品熟女亚洲av麻豆精品| 最近最新免费中文字幕在线| 麻豆国产av国片精品| 18禁裸乳无遮挡动漫免费视频| 中文字幕高清在线视频| 欧美精品高潮呻吟av久久| 老司机影院毛片| 欧美亚洲 丝袜 人妻 在线| 国产精品秋霞免费鲁丝片| 国精品久久久久久国模美| 天天躁日日躁夜夜躁夜夜| 97人妻天天添夜夜摸| 热99久久久久精品小说推荐| 村上凉子中文字幕在线| 日韩精品免费视频一区二区三区| 日韩三级视频一区二区三区| 国产精品成人在线| 国产人伦9x9x在线观看| 色婷婷久久久亚洲欧美| 精品久久久久久,| 亚洲av电影在线进入| 免费在线观看黄色视频的| 亚洲情色 制服丝袜| 热99国产精品久久久久久7| 国产精品一区二区精品视频观看| 亚洲 国产 在线| 99re6热这里在线精品视频| 99热网站在线观看| 丝袜美足系列| 久久久精品区二区三区| 精品人妻在线不人妻| 免费高清在线观看日韩| 男人操女人黄网站| 国产精品一区二区免费欧美| 一级a爱视频在线免费观看| 日韩中文字幕欧美一区二区| 在线免费观看的www视频| 很黄的视频免费| 欧美国产精品va在线观看不卡| videos熟女内射| 天堂√8在线中文| 成年女人毛片免费观看观看9 | av线在线观看网站| 国产精品av久久久久免费| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 精品久久久久久,| 母亲3免费完整高清在线观看| 婷婷丁香在线五月| 建设人人有责人人尽责人人享有的| 黄片小视频在线播放| 人成视频在线观看免费观看| 国产97色在线日韩免费| 国产精品免费视频内射| 精品国产美女av久久久久小说| 欧美日韩中文字幕国产精品一区二区三区 | 91麻豆精品激情在线观看国产 | 桃红色精品国产亚洲av| 国产在线精品亚洲第一网站| 国产无遮挡羞羞视频在线观看| 欧美激情极品国产一区二区三区| 久久久国产成人免费| 91精品国产国语对白视频| 99国产极品粉嫩在线观看| 女性生殖器流出的白浆| 精品国产一区二区久久| 好看av亚洲va欧美ⅴa在| 国产av一区二区精品久久| 啪啪无遮挡十八禁网站| 99久久国产精品久久久| 日日摸夜夜添夜夜添小说| av在线播放免费不卡| 满18在线观看网站| 中出人妻视频一区二区| 午夜福利影视在线免费观看| 无遮挡黄片免费观看| 国产欧美亚洲国产| 一区二区三区精品91| www.精华液| 久久久精品区二区三区| 露出奶头的视频| 亚洲综合色网址| 国产精品一区二区精品视频观看| 日韩欧美一区二区三区在线观看 | 亚洲情色 制服丝袜| 亚洲第一av免费看| 18在线观看网站| 亚洲 欧美一区二区三区| 久热爱精品视频在线9| 欧美午夜高清在线| 日韩熟女老妇一区二区性免费视频| 老鸭窝网址在线观看| 看免费av毛片| 在线观看一区二区三区激情| 99国产综合亚洲精品| av片东京热男人的天堂| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 国产三级黄色录像| 国产精品秋霞免费鲁丝片| 黑人操中国人逼视频| 十八禁高潮呻吟视频| 美女高潮喷水抽搐中文字幕| 夜夜爽天天搞| 久久草成人影院| 成人永久免费在线观看视频| 在线观看免费视频日本深夜| 岛国毛片在线播放| 青草久久国产| 高潮久久久久久久久久久不卡| 久久人人97超碰香蕉20202| 亚洲欧美一区二区三区黑人| aaaaa片日本免费| 免费在线观看日本一区| 久久香蕉精品热| 欧美日本中文国产一区发布| 国产成人免费观看mmmm| 国产精品99久久99久久久不卡| 在线永久观看黄色视频| 成人黄色视频免费在线看| 真人做人爱边吃奶动态| 色在线成人网| 香蕉国产在线看| 丝袜美足系列| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 高清黄色对白视频在线免费看| 国内久久婷婷六月综合欲色啪| 婷婷成人精品国产| tocl精华| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 国产日韩欧美亚洲二区| 久久草成人影院| 在线观看一区二区三区激情| 校园春色视频在线观看| av欧美777| www.精华液| 久久亚洲精品不卡| 黄色丝袜av网址大全| 男男h啪啪无遮挡| 免费在线观看完整版高清| 成人18禁高潮啪啪吃奶动态图| 国产高清激情床上av| 国产精品免费大片| 久久精品国产清高在天天线| 我的亚洲天堂| 成人免费观看视频高清| 亚洲午夜理论影院| 香蕉丝袜av| 高清欧美精品videossex| 国产亚洲精品久久久久5区| 国产精品久久久久成人av| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 18禁裸乳无遮挡免费网站照片 | 狠狠婷婷综合久久久久久88av| 国产成+人综合+亚洲专区| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕精品免费在线观看视频| 国产成人精品无人区| 欧美 亚洲 国产 日韩一| 黄色视频,在线免费观看| 91九色精品人成在线观看| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 精品福利永久在线观看| 久久香蕉精品热| 久久精品亚洲av国产电影网| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| 国产一区在线观看成人免费| 大片电影免费在线观看免费| 热99久久久久精品小说推荐| 人人妻人人添人人爽欧美一区卜| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 亚洲人成77777在线视频| 91在线观看av| 国产成人精品久久二区二区91| 下体分泌物呈黄色| 久久精品亚洲av国产电影网| 久久久久久久国产电影| 最新在线观看一区二区三区| 国产又爽黄色视频| 久久久久精品国产欧美久久久| 久久中文看片网| 91老司机精品| 午夜福利免费观看在线| 午夜91福利影院| 精品免费久久久久久久清纯 | 一区在线观看完整版| 飞空精品影院首页| av片东京热男人的天堂| 日韩精品免费视频一区二区三区| 最新美女视频免费是黄的| www.999成人在线观看| 黄色毛片三级朝国网站| 欧美日韩亚洲综合一区二区三区_| 欧美国产精品va在线观看不卡| 夜夜爽天天搞| 亚洲精品国产区一区二| 精品一区二区三区四区五区乱码| 亚洲第一av免费看| 制服人妻中文乱码| 国产午夜精品久久久久久| 男男h啪啪无遮挡| 久久人妻福利社区极品人妻图片| 曰老女人黄片| 91国产中文字幕| 午夜精品国产一区二区电影| 久久久国产成人精品二区 | 亚洲五月天丁香| 精品国产亚洲在线| 精品一区二区三区四区五区乱码| 久久国产精品男人的天堂亚洲| 天堂动漫精品| 日日夜夜操网爽| 亚洲性夜色夜夜综合| 欧美国产精品va在线观看不卡| 一级片免费观看大全| 动漫黄色视频在线观看| 亚洲人成伊人成综合网2020| 啦啦啦免费观看视频1| 高清在线国产一区| 亚洲精品粉嫩美女一区| 国产精品久久久久成人av| 亚洲国产欧美一区二区综合| 婷婷成人精品国产| e午夜精品久久久久久久| 日本五十路高清| 久久久国产一区二区| 热99久久久久精品小说推荐| 啦啦啦在线免费观看视频4| 精品国产一区二区三区久久久樱花| 99国产精品一区二区三区| 国产精品 国内视频| 久久久久久免费高清国产稀缺| 99久久国产精品久久久| 午夜福利欧美成人| 淫妇啪啪啪对白视频| 露出奶头的视频| 欧美日韩瑟瑟在线播放| 国产精品偷伦视频观看了| 伊人久久大香线蕉亚洲五| 老司机午夜福利在线观看视频| 国产精品国产av在线观看| 免费在线观看日本一区| 免费观看人在逋| 麻豆成人av在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲美女黄片视频| 国产片内射在线| 天堂√8在线中文| 一本综合久久免费| 这个男人来自地球电影免费观看| 91字幕亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 欧美老熟妇乱子伦牲交| 丝袜美足系列| 母亲3免费完整高清在线观看| 婷婷成人精品国产| 久久久久视频综合| 免费在线观看完整版高清| 午夜日韩欧美国产| 亚洲精华国产精华精| 国产高清视频在线播放一区| 亚洲第一欧美日韩一区二区三区| 欧美激情 高清一区二区三区| 中文字幕高清在线视频| 啪啪无遮挡十八禁网站| 老熟妇仑乱视频hdxx| 精品久久蜜臀av无| 男女床上黄色一级片免费看| 成人永久免费在线观看视频| 嫁个100分男人电影在线观看| 日韩欧美国产一区二区入口| 亚洲精品国产一区二区精华液| 亚洲男人天堂网一区| 欧美乱码精品一区二区三区| 久久精品91无色码中文字幕| 久久久久久人人人人人| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久视频播放| 大型黄色视频在线免费观看| www.精华液| 亚洲精品国产精品久久久不卡| 热99国产精品久久久久久7| 国产精品成人在线| 日韩成人在线观看一区二区三区| 搡老乐熟女国产| 午夜福利在线免费观看网站| 国产精品一区二区精品视频观看| bbb黄色大片| 久久精品熟女亚洲av麻豆精品| 脱女人内裤的视频| 国产成人精品无人区| 国产成人欧美| 一级片'在线观看视频| 日本黄色日本黄色录像| 欧美激情久久久久久爽电影 | 亚洲人成电影观看| 精品亚洲成a人片在线观看| 法律面前人人平等表现在哪些方面| 亚洲精品粉嫩美女一区| 下体分泌物呈黄色| 18禁黄网站禁片午夜丰满| 一区福利在线观看| 少妇猛男粗大的猛烈进出视频| av网站免费在线观看视频| 日韩免费av在线播放| 国产男女内射视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久性视频一级片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲在线自拍视频| 男女免费视频国产| 丝袜在线中文字幕| 久久久国产一区二区| 国产欧美亚洲国产| 水蜜桃什么品种好| 国产极品粉嫩免费观看在线| 午夜福利一区二区在线看| 黄色毛片三级朝国网站| 中亚洲国语对白在线视频| 国产深夜福利视频在线观看| 国产人伦9x9x在线观看| 成在线人永久免费视频| 动漫黄色视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩三级视频一区二区三区| 九色亚洲精品在线播放| 日本vs欧美在线观看视频| 宅男免费午夜| 免费在线观看视频国产中文字幕亚洲| 久久午夜亚洲精品久久| 国产在线观看jvid| 日日爽夜夜爽网站| 久久精品91无色码中文字幕| 男女午夜视频在线观看| 黄片播放在线免费| 99国产精品一区二区蜜桃av | 高清av免费在线| 国产在线一区二区三区精| 99久久精品国产亚洲精品| 日韩成人在线观看一区二区三区| 大片电影免费在线观看免费| 身体一侧抽搐| 国产高清激情床上av| 亚洲国产中文字幕在线视频| 久热这里只有精品99| 制服人妻中文乱码| 99精品欧美一区二区三区四区| 一级毛片女人18水好多| 一个人免费在线观看的高清视频| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 超碰97精品在线观看| 精品国产一区二区久久| 国产一区有黄有色的免费视频| 免费av中文字幕在线| 亚洲熟妇中文字幕五十中出 | 国产精品一区二区免费欧美| 国产三级黄色录像| 又黄又粗又硬又大视频| 午夜福利在线观看吧| 欧美 日韩 精品 国产| 99久久精品国产亚洲精品| 精品一品国产午夜福利视频| 精品久久久久久久久久免费视频 | 精品国产美女av久久久久小说| 久久精品国产99精品国产亚洲性色 | 久久热在线av| 精品久久久久久久毛片微露脸| 欧美日韩精品网址| 制服诱惑二区| 欧美精品高潮呻吟av久久| 亚洲情色 制服丝袜| 国产有黄有色有爽视频| 午夜两性在线视频| 国产麻豆69| av视频免费观看在线观看| 亚洲成人手机| 视频在线观看一区二区三区| 亚洲 国产 在线| 欧美另类亚洲清纯唯美| 亚洲熟妇中文字幕五十中出 | 天堂俺去俺来也www色官网| 国产极品粉嫩免费观看在线| 久久国产精品男人的天堂亚洲| 久久人人爽av亚洲精品天堂|