• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    激光雷達(dá)技術(shù)在葉面積指數(shù)提取中的研究進(jìn)展

    2023-07-31 16:08:14丁銘銘包廣道劉婷禹東彬林燦姜雪菲翟暢
    安徽農(nóng)業(yè)科學(xué) 2023年13期
    關(guān)鍵詞:冠層激光雷達(dá)葉面積

    丁銘銘 包廣道 劉婷 禹東彬 林燦 姜雪菲 翟暢

    摘要 葉面積指數(shù)(LAI)是觀測植被生態(tài)的重要參數(shù)之一,快速、精準(zhǔn)獲取大尺度的LAI對發(fā)展精準(zhǔn)林業(yè)至關(guān)重要。激光雷達(dá)技術(shù)(LiDAR)能夠準(zhǔn)確探測植被空間和地形的三維結(jié)構(gòu),特別是對植被垂直信息分布的獲取,具有傳統(tǒng)光學(xué)遙感技術(shù)無法比擬的優(yōu)勢,在森林參數(shù)的測量與反演上已經(jīng)取得了成功的應(yīng)用。介紹了激光雷達(dá)技術(shù)原理、傳統(tǒng)測量LAI的技術(shù)方法及LiDAR反演LAI的優(yōu)勢,重點(diǎn)分析了LiDAR反演LAI的關(guān)鍵技術(shù)研究和LiDAR在反演LAI應(yīng)用中的研究進(jìn)展,并對LiDAR存在的問題和未來的發(fā)展趨勢進(jìn)行了分析總結(jié)。

    關(guān)鍵詞 葉面積指數(shù);星載激光雷達(dá);機(jī)載激光雷達(dá);地基激光雷達(dá);激光雷達(dá)處理技術(shù)

    中圖分類號 S771.8? 文獻(xiàn)標(biāo)識碼 A? 文章編號 0517-6611(2023)13-0001-07

    doi:10.3969/j.issn.0517-6611.2023.13.001

    Research Progress of Lidar Technology in Leaf Area Index Extraction

    DING Ming-ming1,2,BAO Guang-dao2,LIU Ting2 et al

    (1.Changchun University,Changchun,Jilin 130022;2.Jilin Academy of Forestry Science,Changchun,Jilin 130031)

    Abstract Leaf area index (LAI) is one of the important parameters for observing vegetation ecology,how to quickly and accurately obtain large-scale LAI is crucial to the development of precision forestry. Light Detection And Ranging (LiDAR) can accurately detect the three-dimensional structure of vegetation space and terrain,especially the acquisition of vertical information distribution of vegetation, has incomparable advantages over traditional optical remote sensing technology,it has been successfully applied in the measurement and inversion of forest parameters.This paper introduces the principle of lidar technology, traditional measurement LAI techniques and advantages of LiDAR LAI inversion,the key techniques of LiDAR LAI inversion and research progress of LiDAR in LAI inversion were analyzed.Finally, the existing problems and future development trends of LiDAR are analyzed and summarized.

    Key words Leaf area index;Terrestrial laser scanning;Airborne laser scanning;Spaceborne laser scanning;Lidar technology

    基金項(xiàng)目 吉林省自然科學(xué)基金項(xiàng)目(YDZJ202201ZYTS446);吉林省發(fā)改委創(chuàng)新能力建設(shè)項(xiàng)目(2021C044-9);吉林省科技發(fā)展計劃項(xiàng)目(YDZJ202102CXJD046);吉林省自然科學(xué)基金項(xiàng)目(202201-01315JC);吉林省科技廳重點(diǎn)研發(fā)項(xiàng)目(20230202098NC);吉林省科技發(fā)展計劃項(xiàng)目(20200602006ZP)。

    作者簡介 丁銘銘(1998—),男,吉林四平人,碩士研究生,研究方向:森林生態(tài)。

    通信作者,講師,從事森林生態(tài)研究。

    收稿日期 2022-12-30;修回日期 2023-02-21

    葉面積指數(shù)(leaf area index,LAI)是定量表征植物冠層結(jié)構(gòu)的重要參數(shù),在衡量宏觀森林健康狀態(tài)、估算森林生態(tài)參量等方面具有關(guān)鍵作用[1]。研究表明,LAI對植被的光合、呼吸以及碳循環(huán)等生物物理過程存在決定影響[2],通過LAI的異質(zhì)性差異及變化規(guī)律,能夠反映森林的生態(tài)條件,植物的生長趨勢、狀態(tài),并以此評價森林光照、水分、土壤、植物之間能量的平衡狀況。因此,準(zhǔn)確、快速、宏觀地獲取森林LAI空間分布格局及其周期性變化態(tài)勢,對準(zhǔn)確還原森林碳水循環(huán)過程、探測擾動因子位置及程度、評估森林生態(tài)服務(wù)功能具有重大意義。

    葉面積指數(shù)這一概念最早由英國作物學(xué)家Watson在20世紀(jì)40年代提出[3],當(dāng)時被定義為“單位面積土地上單面植被光合作用的綜合”[4]。但由于只考慮了葉片平整的情況,對葉片特性描述欠缺合理性,難以體現(xiàn)葉片的結(jié)構(gòu)作用,局限性較大[5]。在此之后的近80年里,很多學(xué)者提出了新的定義,大致可以分為4種:①地表單位面積上冠層葉片垂直投影到水平面上的面積總和[6]。但這一定義忽略了植被冠層葉傾角不同的問題。②地表單位面積上冠層葉片垂直投影到水面上的最大投影面積[7]。該定義會因消光系數(shù)而使結(jié)果受影響。③單位地面面積總截面積的一半[8]。該定義只適合非平面的葉子。④地表單位面積上總?cè)~片表面積的一半[9]。該定義考慮了多個方面,可以用于各種樹種,包括針葉的不規(guī)則形狀,是目前接受度最高、應(yīng)用最廣泛的定義。值得注意的是,以上不同的定義都有其本身意義,所以使用不同的定義去計算LAI會導(dǎo)致計算結(jié)果存在著較大差異[2],應(yīng)用者需依據(jù)研究目的選擇合適的定義。

    目前,針對葉面積指數(shù)的測定方法很多[10-11],但均受不同條件的限制。仍然沒有一項(xiàng)技術(shù)可以在無損的情況下實(shí)現(xiàn)對LAI的精準(zhǔn)測量,而激光雷達(dá)作為一種新型的主動遙感技術(shù),不僅能夠直接、快速、精準(zhǔn)地獲取研究對象的三維結(jié)構(gòu)坐標(biāo)信息,還具備對植被的空間結(jié)構(gòu)和地形的偵測功能,尤其是對森林高度和垂直結(jié)構(gòu)的檢測能力,是傳統(tǒng)光學(xué)遙感無法比擬的[12]。因此,通過激光雷達(dá)獲取森林結(jié)構(gòu)的精確三維點(diǎn)云信息,再對點(diǎn)云數(shù)據(jù)進(jìn)行處理、分析,可以有效地估測森林的垂直結(jié)構(gòu)信息以及植被的冠層信息等,既提高了葉面積指數(shù)估算的準(zhǔn)確性,也避免了葉面積指數(shù)估測中存在的飽和效應(yīng)。

    該研究通過整理國內(nèi)外激光雷達(dá)技術(shù)的發(fā)展及分類、LAI的測量方法、激光雷達(dá)數(shù)據(jù)的處理方法,梳理了激光雷達(dá)技術(shù)在葉面積指數(shù)反演研究中的發(fā)展脈絡(luò),包括現(xiàn)有的點(diǎn)云的去噪、分類技術(shù)等,并在此基礎(chǔ)上,歸納了當(dāng)前仍存在的技術(shù)問題,對未來激光雷達(dá)技術(shù)在LAI測量方面的應(yīng)用提出了展望,旨在對未來開展高精度LAI測定研究以及區(qū)域高分辨率葉面積指數(shù)產(chǎn)品生產(chǎn)提供參考。

    1 激光雷達(dá)技術(shù)

    激光雷達(dá)技術(shù)(light detection and ranging,LiDAR)是一種新型主動探測與測距技術(shù)。相比于傳統(tǒng)雷達(dá),它結(jié)合了激光技術(shù)和雷達(dá)技術(shù),具有分辨率高、易攜帶、探測能力強(qiáng)等優(yōu)點(diǎn)。而且不受地面回波的影響,具有微小物體探測能力[13]。自20世紀(jì)60年代問世以來,已經(jīng)被諸多領(lǐng)域廣泛應(yīng)用[5]。直到20世紀(jì)80年代,有研究人員嘗試將LiDAR用于獲取三維點(diǎn)云數(shù)據(jù)上,結(jié)果達(dá)到了傳統(tǒng)技術(shù)難以達(dá)到的高度,尤其是對目標(biāo)細(xì)節(jié)的獲取更是傳統(tǒng)技術(shù)無法比擬的[10]。此后,LiDAR也成為諸多行業(yè)的熱門研究。

    1.1 激光雷達(dá)技術(shù)的原理

    由圖1可知,激光雷達(dá)由激光發(fā)射器、接收器、時間計數(shù)器等組成[12]。與傳統(tǒng)的雷達(dá)發(fā)射器不同,激光雷達(dá)主要是通過激光探頭發(fā)射激光光束到被測物體表面,然后由接收器接收被測物體的反射光束,再經(jīng)過時間計數(shù)器記錄發(fā)出與接受的時間,結(jié)合方位角與俯仰角即可算出被測目標(biāo)的三維空間[14]。

    激光雷達(dá)測距公式:

    S=12×c×Δt(1)

    式中,S為距離,c為速度,Δt為時間。

    1.2 激光雷達(dá)的分類

    根據(jù)激光雷達(dá)探測范圍及承載平臺的不同,可以將激光雷達(dá)分為3類:地基激光雷達(dá)(terrestrial laser scanning,TLS)、機(jī)載激光雷達(dá)(airborne laser scanning,ALS)和星載激光雷達(dá)(spaceborne laser scanning,SLS)[15]。

    1.2.1 星載激光雷達(dá)。

    SLS是激光雷達(dá)技術(shù)與衛(wèi)星結(jié)合的產(chǎn)物,能夠大范圍的獲取地球表面上的信息。早在2003年,美國發(fā)射了攜帶GLAS星載激光雷達(dá)的ICESat衛(wèi)星[16]。該衛(wèi)星上的GLAS是一個能夠?qū)Φ厍虼竺娣e觀測的大光斑星載激光雷達(dá)系統(tǒng)。它最早被用于監(jiān)測冰川以及雪量的變化[17];隨后又被用于測量海面、海水、陸地表面的高程、冰塊和陸地表面的粗糙度以及云層和氣溶膠層的高度[15]。2005年,GLAS被發(fā)現(xiàn)可以應(yīng)用到林業(yè)的參數(shù)提取中,如測量植物冠層的高度[18]。Tang等[19]也提出了可以從GLAS中導(dǎo)出葉面積指數(shù)的想法,隨后有學(xué)者提出GLAS能夠利用激光脈沖的穿透性來獲取全波形數(shù)據(jù),在對全波形數(shù)據(jù)進(jìn)行分析處理后,可以進(jìn)一步得到大面積的森林冠層高度、森林郁密度等信息,這使GLAS在林業(yè)上的應(yīng)用逐漸開闊。

    1.2.2 機(jī)載激光雷達(dá)。

    ALS是目前主流的一種主動遙感技術(shù),它是由激光、全球定位系統(tǒng)(GPS)以及慣性導(dǎo)航系統(tǒng)(INS)組成的[20]。它不僅能夠快速、精準(zhǔn)地獲取地面上的三維信息,并且還具有穿透性,可以穿透林分冠層并獲得高精度的森林冠層以及林分內(nèi)部結(jié)構(gòu)信息。與傳統(tǒng)攝影相比,ALS不受日光條件的限制,即使在夜晚也能不停作業(yè),因此,在20世紀(jì)末迅速發(fā)展起來,并已經(jīng)被應(yīng)用到地形考察、林業(yè)調(diào)查、道路規(guī)劃等各個領(lǐng)域[21],進(jìn)入21世紀(jì),在林業(yè)上的應(yīng)用也逐漸變得成熟、完整,龐勇等[22]利用機(jī)載激光雷達(dá)提取出林分的平均樹高;付甜等[23]利用機(jī)載激光雷達(dá)估測出森林生物量等。

    1.2.3 地基激光雷達(dá)。

    TLS技術(shù)產(chǎn)生于20世紀(jì)90年代[2],是傳統(tǒng)雷達(dá)與現(xiàn)代激光技術(shù)結(jié)合的產(chǎn)物,通過位置、距離、角度等觀測數(shù)據(jù)直接獲取目標(biāo)表面點(diǎn)的三維坐標(biāo)[5],使其在高精度三維冠層信息的實(shí)時獲取方面有極大的優(yōu)勢,并且可以高效地建立起被測物的三維模型。TLS起初更多地被應(yīng)用于地形的勘測、文物保護(hù)、建筑物建模等方面[24],而在2002 年,Lefsky等[25]首次提出地基激光雷達(dá)可無破壞地獲取森林的三維結(jié)構(gòu),尤其是垂直結(jié)構(gòu)信息,TLS在林業(yè)內(nèi)得到飛速地發(fā)展。

    2 傳統(tǒng)的葉面積指數(shù)測定

    近年來,隨著國際社會對全球變暖的關(guān)注度不斷提升,針對植被碳水循環(huán)模型的研究逐漸深入,作為定量刻畫植被冠層特征的關(guān)鍵指數(shù)之一,準(zhǔn)確獲取不同尺度LAI具有重要意義,使得針對LAI測定的研究逐漸增加,推進(jìn)了LAI測定的發(fā)展。由于LAI的重要性及準(zhǔn)確獲取的困難性,使如何高精準(zhǔn)地測定LAI成為研究的熱門。傳統(tǒng)的葉面積指數(shù)的測量方法大致可分為直接法與間接法[2]。

    2.1 直接測量法

    直接測量法是一種經(jīng)典成熟的測量LAI的方法,主要是指通過測量儀器與手動測量目標(biāo)對象部分葉片的表面積,在根據(jù)公式計算出葉面積指數(shù)。直接測量法具體分為:

    ①直接收獲法,該方法是直接收獲植物的葉片,并將其烘干稱重,在通過測量出葉片的表面積,最后計算得出LAI[6]。

    ②異速生長方程法,該方法是2003年Bréda[26]提出的,主要通過建立 LAI 與樹高、胸徑的關(guān)系,再根據(jù)葉的比葉面積來估算 LAI。

    ③凋落物法,在針闊混交林樣地中放收集網(wǎng)收集落葉,并稱其葉片的干重,再通過測量其表面積,計算得出LAI[27]。

    ④破壞性采樣法,此方法是典型的破壞性收集葉片的方法,它通過選取目標(biāo)樣地中有代表性的樹木,對其葉片進(jìn)行分層采樣、計算LAI,以代表整個樣地[20]。

    直接測量的各個方法雖然有所差異,但本質(zhì)上都是完全的人工測量,過程煩瑣而且復(fù)雜,所以只適合用在單株或樣地水平上的測量。而且在測量的過程中不僅需要耗費(fèi)大量的人力物力,對植物更具有一定的破壞性,所以直接測量法更多是被用于間接方法的驗(yàn)證[28]。

    2.2 間接測量法

    間接測量法指的是無破壞地收集目標(biāo)數(shù)據(jù),再根據(jù)收集到的數(shù)據(jù)進(jìn)行分析、計算,進(jìn)而推出葉面積指數(shù)的一種方法。該方法不僅可以高效、無破壞地獲取LAI,而且還能夠用于檢測不同類型森林的LAI的季節(jié)動態(tài)變化[8]。光學(xué)儀器法是目前使用最廣泛的間接測量LAI的方法,主要分為:

    ①半球攝影法,半球攝影法是通過數(shù)碼相機(jī)從底向上拍攝植被,對得到的圖像進(jìn)行處理、計算,得到冠層的間隙率,進(jìn)而計算LAI的一種方法。該方法的關(guān)鍵在于提取的間隙率精度,精度越高,LAI越準(zhǔn)確[28]。

    ②LAI-2200c植物冠層分析法,LAI-2200c通過測量冠層上下方的太陽輻射強(qiáng)度可以直接獲取冠層的間隙率信息,這種方法相比于半球攝影速度更快,但受天氣的影響較大[27]。

    ③TRAC冠層輻射分析儀,它通過記錄太陽光線穿過植被冠層的過程,得出冠層孔隙率以及分布,進(jìn)而計算出LAI[1]。

    ④HemiView 冠層分析儀,該方法與半球攝影法的原理相似,不同的是該方法可以收集彩色圖像進(jìn)行數(shù)據(jù)處理,進(jìn)而得到LAI[29]。

    然而,間接測量法雖然可以快速獲取LAI,但是由于天頂角、木質(zhì)部、聚集指數(shù)等因素的影響[30],導(dǎo)致測量結(jié)果會產(chǎn)生一定的誤差,如羅光浪等[20]采用半球攝影與LAI-2200c對不同林齡的馬尾松人工林估測LAI,結(jié)果顯示半球攝影法測定的LAI平均低估50%,LAI-2200測定值低估41%,所以間接測量結(jié)果不能被定義為實(shí)際值,而是有效值[31]。

    傳統(tǒng)測量方法固然有很多,但卻始終無法滿足LAI測定的需求,而激光雷達(dá)的出現(xiàn)使LAI的測量有了新的方向。激光雷達(dá)技術(shù)作為一種主動的遙感技術(shù),也屬于間接測量法中的一種,它通過獲取植被的精準(zhǔn)三維信息,可以有效地評估樹冠特征、植被的垂直結(jié)構(gòu)信息,不僅提高了葉面積指數(shù)估算的準(zhǔn)確性,也避免了葉面積指數(shù)較高樹冠的飽和效應(yīng)。

    3 激光雷達(dá)反演葉面積指數(shù)的關(guān)鍵技術(shù)

    在使用激光雷達(dá)收集數(shù)據(jù)時,特別是在野外的天然林,森林中有很多的昆蟲、鳥類和其他非目標(biāo)物也會被收集,同時林中的地形不一也會影響最終結(jié)果。因此,有必要對采集的點(diǎn)云數(shù)據(jù)進(jìn)行預(yù)處理,以獲得高精度的模型。在激光雷達(dá)的發(fā)展進(jìn)程中,點(diǎn)云數(shù)據(jù)的處理方法不斷更新和改進(jìn),旨在更快、更準(zhǔn)確地提取森林參數(shù)。其中最為關(guān)鍵的就是點(diǎn)云的配準(zhǔn)、去噪以及分類技術(shù)。

    3.1 點(diǎn)云的配準(zhǔn)

    在激光雷達(dá)掃描樣地的過程中,由于植被之間相互遮擋以及掃描儀器掃描范圍的限制,會造成掃描信息的缺失。因此,為了獲得完整的目標(biāo)樣地,需要從不同的角度對樣地進(jìn)行多次掃描,然后將多次掃描的數(shù)據(jù)進(jìn)行組合,形成完整的目標(biāo)樣地,該過程就被稱作配準(zhǔn)(圖2)。點(diǎn)云的配準(zhǔn)尤為關(guān)鍵,匹配不準(zhǔn)確會直接影響最終的結(jié)果。Besl等[32]在1992年首次提出了一種高層次的基于自由形態(tài)曲面的配準(zhǔn)方法,即迭代最近點(diǎn)法(iterativeclosestpoint,ICP),它是一種精確配準(zhǔn)算法。該算法的配準(zhǔn)精度和運(yùn)行速度取決于點(diǎn)云的初始位姿和數(shù)量大小,在初始位姿相近且點(diǎn)數(shù)數(shù)量少時,ICP的算法就越精準(zhǔn)和快速,反之,則計算時間較長。隨后又有一些學(xué)者在此基礎(chǔ)上相繼提出了EM-ICP算法[33]、基于特征點(diǎn)的ICP算法[34]、基于主成分分析法的ICP算法等[35],使ICP算法不斷發(fā)展與優(yōu)化,但配準(zhǔn)速率與精度仍有不足。直到2020年,楊玉澤等[36]提出了基于特征直方圖的初始配準(zhǔn)與正態(tài)分布變換(normal distributions transform,NDT)精確配準(zhǔn)相結(jié)合的配準(zhǔn)方法,并與ICP、NDT、FPFH-ICP做比較,結(jié)果顯示FPFH-ICP精確度最高,NDT算法運(yùn)行速度最快,F(xiàn)PFH-NDT綜合情況最優(yōu)。

    3.2 點(diǎn)云的去噪

    在使用激光雷達(dá)對目標(biāo)數(shù)據(jù)進(jìn)行采集的過程中,由于環(huán)境和自身的影響,如激光雷達(dá)掃描儀的聲音、天空中突然飛過來的鳥、森林中昆蟲的叫聲等因素,都會成為掃描過程中不可控的噪聲點(diǎn),噪聲點(diǎn)一般為孤立點(diǎn),通常會明顯高于地面或者物體。這些噪聲點(diǎn)的存在會極大地影響試驗(yàn)的結(jié)果,因此為了保證后續(xù)三維點(diǎn)云的建模,需要對這些不應(yīng)該存在的噪聲點(diǎn)進(jìn)行處理。這個過程也稱為點(diǎn)云去噪或點(diǎn)云濾波(圖3)。

    學(xué)者提出了不同的點(diǎn)云去噪方法,以便能夠更好地處理點(diǎn)云數(shù)據(jù)。有研究者提出了中值濾波的去噪算法,該方法是通過影像的處理技術(shù)來實(shí)現(xiàn)點(diǎn)云的去噪,但只適用于有序點(diǎn)云的去噪,并且在去噪的同時,對點(diǎn)云的有用信息也會造成丟失。此后,越來越多的學(xué)者進(jìn)行了試驗(yàn),但點(diǎn)云噪聲點(diǎn)的自動識別和完全去除還沒有取得很大的進(jìn)展,肖國新等[37]提出了一種自適應(yīng)雙邊濾波點(diǎn)云去噪算法,該方法不僅能保留更多的細(xì)節(jié)特征,處理噪聲點(diǎn)也更加精準(zhǔn),此后,去噪技術(shù)迅速發(fā)展。2012年,駱社周[38]提出數(shù)學(xué)形態(tài)濾波算法;2018年,Han等[39]提出了導(dǎo)向?yàn)V波算法;2019年,李宏宇[40]又提出了二次導(dǎo)向?yàn)V波算法。點(diǎn)云的去噪方法已經(jīng)逐漸發(fā)展成熟,無論是去噪的精度還是速率都得到了質(zhì)的飛躍。

    3.3 點(diǎn)云的分類技術(shù)

    為了在復(fù)雜點(diǎn)云中提取目標(biāo)物體,實(shí)現(xiàn)對樹木不同器官的區(qū)分,點(diǎn)云分類是點(diǎn)云數(shù)據(jù)處理中必不可少的環(huán)節(jié),也是點(diǎn)云后期建模、提取等的重要階段。點(diǎn)云處理技術(shù)發(fā)展至今,分類的方法有很多,基本可分為兩大類,機(jī)器學(xué)習(xí)法和深度學(xué)習(xí)法。

    3.3.1 機(jī)器學(xué)習(xí)法。

    機(jī)器學(xué)習(xí)法分為非監(jiān)督分類法和監(jiān)督分類法。其中非監(jiān)督分類法不需要訓(xùn)練樣本,計算速度快、精度低,而監(jiān)督分類法可通過反復(fù)的檢驗(yàn)訓(xùn)練樣本,避免一定程度上的錯誤,從而提高精度,被廣泛應(yīng)用。李海亭等[41]采用支持向量機(jī)和人工神經(jīng)網(wǎng)絡(luò)2種方法對行道樹點(diǎn)云數(shù)據(jù)進(jìn)行提取,點(diǎn)云分類結(jié)果顯示行道樹提取精度達(dá)到99.75%和99.25%。2020年,胡海瑛等[42]針對點(diǎn)云分類法在復(fù)雜場景下分類精度低的問題,提出了多基元特征向量融合的點(diǎn)云分類方法,并與支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)進(jìn)行對比,結(jié)果顯示該方法獲取的分類效果精度高于另外兩種。

    3.3.2 深度學(xué)習(xí)法。

    深度學(xué)習(xí)法對大數(shù)據(jù)的處理上具有高效、精準(zhǔn)的優(yōu)勢,已經(jīng)成為點(diǎn)云數(shù)據(jù)分類研究的主導(dǎo)方法。2015年,Su等[43]首次提出了多視圖卷積神經(jīng)網(wǎng)絡(luò)(MVCNN)的分類方法,F(xiàn)eng等[44]在此基礎(chǔ)上提出了組視圖卷積神經(jīng)網(wǎng)絡(luò)(GVCNN),該方法可以在分層的視圖中發(fā)現(xiàn)更重要的信息,使分類效果顯著增強(qiáng)。2019年,趙傳等[45]針對現(xiàn)有點(diǎn)云分類方法的缺點(diǎn)提出了遷移學(xué)習(xí)法。該方法實(shí)施起來簡單、快捷,且在分類精度提高的同時,降低了訓(xùn)練時間,使分類技術(shù)再次得到了提升。

    4 激光雷達(dá)技術(shù)在葉面積指數(shù)上的應(yīng)用

    LAI在森林生態(tài)中發(fā)揮著至關(guān)重要的作用,但這一數(shù)據(jù)卻始終難以獲取。原因是森林中各種植被、動物、昆蟲等聚集在一起,植物葉片有卷曲不平、相互遮蓋的現(xiàn)象,導(dǎo)致LAI的測量極其困難。傳統(tǒng)的測量方法不僅測定周期長、測量數(shù)值不夠精準(zhǔn),而且測量范圍極其有限,只能在單株或者區(qū)域水平上進(jìn)行。而激光雷達(dá)的出現(xiàn)使這一難題得到了解決,激光雷達(dá)憑借自身具有穿透性以及能夠精準(zhǔn)地探測出被測物的三維結(jié)構(gòu)信息而在這一領(lǐng)域迅速出圈,得到了快速地發(fā)展。目前,利用不同的激光雷達(dá)儀器來獲取不同尺度上的LAI已經(jīng)取得了一定的進(jìn)展。

    4.1 星載激光雷達(dá)(SLS)

    SLS又叫大光斑激光雷達(dá),能夠大面積獲取被測物的信息數(shù)據(jù)。目前,LAI的估算由于技術(shù)的缺乏以及設(shè)備的限制,導(dǎo)致測量范圍受到很大限制,僅能夠在單株或林分水平上進(jìn)行LAI的測量,而星載激光雷達(dá)的出現(xiàn),恰好滿足了大尺度LAI的反演要求。其原理是根據(jù)衛(wèi)星原始波形確定信號的起止點(diǎn),利用坡度自適應(yīng)法模擬地面回波,再基于高度閾值將地面回波與冠層回波分離,最后通過計算冠層的間隙分?jǐn)?shù)來推出LAI[2],如式(2)所示:

    LAI=-1kln(I/I0)(2)

    式中,I為冠層下邊的光強(qiáng),I0為冠層上邊的光強(qiáng),k為消光系數(shù),I/I0為冠層間隙率。

    2014年,Tang等[19]開發(fā)了一種基于物理的方法來探測LAI,此次研究證明了星載GLAS可以大范圍地提取LAI,還發(fā)現(xiàn)了在提取LAI過程中容易出現(xiàn)飽和效應(yīng)以及影響葉面積指數(shù)的其他因素,為后續(xù)大范圍估算LAI提供了基礎(chǔ)。2015年,駱社周等[46]總結(jié)了大量研究者的經(jīng)驗(yàn),首次提出利用星載GLAS聯(lián)合光學(xué)遙感反演LAI。他利用星載激光雷達(dá)能夠高精度地獲取植物的三維結(jié)構(gòu)信息以及光學(xué)遙感高精確的LAI反演優(yōu)點(diǎn),探索出了高精度大尺度反演LAI的新思路以及新方法?;诖罅繉W(xué)者的研究,星載GLAS數(shù)據(jù)已經(jīng)被作為估算LAI的有效數(shù)據(jù)源,但是估算受地形的影響卻一直存在。2020年,汪垚等[16]針對這一影響提出了坡度自適應(yīng)方法,以此減少地形對SLS估算LAI的影響。此研究證明了該方法可以有效提高LAI的精度,但仍受地形坡度的限制,并且使用SLS測定LAI的數(shù)據(jù)離散、值高飽和,缺乏時空連續(xù)LAI產(chǎn)品。但SLS仍是目前能夠大范圍精確測量LAI的有效工具,所以未來需對使用SLS測量LAI的算法加以研究改進(jìn),以提高LAI的準(zhǔn)確性。

    4.2 機(jī)載激光雷達(dá)(ALS)

    ALS是目前被應(yīng)用到葉面積指數(shù)反演最多的一項(xiàng)主動技術(shù)。機(jī)載激光雷達(dá)又稱小光斑激光雷達(dá),與星載激光雷達(dá)不同的是,它能夠忽視地形,更加準(zhǔn)確地收集目標(biāo)數(shù)據(jù),并且能夠穿過冠層,獲得更精準(zhǔn)地目標(biāo)三維結(jié)構(gòu),雖然范圍相比有所限制,但是能夠更加準(zhǔn)確地反演出LAI(圖4)。機(jī)載激光雷達(dá)通過發(fā)射激光掃描植被信息,在穿過冠層時,一部分激光能量反射回來,另一部分激光能量會通過冠層間隙直至地面,進(jìn)而計算出間隙率[47],從而推算出LAI。其中間隙率是由比爾朗伯定律表示的:

    P(θ)=e-G(θ)·LAI/cosθ(3)

    式中,P(θ)為天頂角θ的冠層間隙率,G(θ)為單位植物面積投影到垂直于角度θ方向。

    2016年,劉婷等[48]嘗試機(jī)載激光雷達(dá)應(yīng)用于農(nóng)業(yè)上的LAI測定,以玉米為研究對象,成功研究出了適用于中等高度的農(nóng)作物的LAI反演的方法,并將結(jié)果與實(shí)際值做對比,誤差均小于10%。2021年,Song等[49]使用機(jī)載激光雷達(dá)成功精準(zhǔn)地測定出溫帶混交林的LAI,并且精度達(dá)到了傳統(tǒng)間接法難以達(dá)到的高度。機(jī)載激光雷達(dá)發(fā)展至今,大量的研究都表明了它在LAI反演中的實(shí)用性與準(zhǔn)確性,不過目前的反演方法與技術(shù)還存在諸多的爭議,例如,很多研究者發(fā)現(xiàn)在使用機(jī)載激光雷達(dá)反演LAI時,冠層以下的結(jié)構(gòu)信息會獲取不全,并且結(jié)果的精度也會受飛行的高度、掃描的范圍、角度的影響[47]。而且不同的林分、農(nóng)作物等LAI的反演方法也有所不同,目前機(jī)載激光雷達(dá)反演葉面積指數(shù)的方法包括2種,一種是經(jīng)驗(yàn)?zāi)P头囱莘?,一種方法是基于比爾朗博定律物理模型法[30],后者是在經(jīng)驗(yàn)?zāi)P头囱莸幕A(chǔ)上實(shí)現(xiàn)的,它不僅彌補(bǔ)了經(jīng)驗(yàn)?zāi)P头ǖ谋锥耍€被挖掘出了巨大的潛力,所以該方法也被廣泛應(yīng)用,但需要注意的是,不同的林分仍然不可以通用該方法[23]。

    4.3 地基激光雷達(dá)(TLS)

    TLS近年才開始應(yīng)用到LAI的反演當(dāng)中,相比星載激光雷達(dá)、機(jī)載激光雷達(dá),地基激光雷達(dá)最適用于LAI的反演,原因在于它能夠準(zhǔn)確探測林分的三維結(jié)構(gòu)以及垂直結(jié)構(gòu),尤其是在森林的垂直結(jié)構(gòu)的探測上具有巨大的優(yōu)勢[25],機(jī)載雖然也能穿過樹冠探測到垂直結(jié)構(gòu),但遇到樹干、聚集葉片等遮擋,垂直結(jié)構(gòu)仍有缺失,地基激光雷達(dá)則在很大程度上避免了該問題(圖5)。TLS中最常用是手持激光雷達(dá)和背包激光雷達(dá),兩者不同于其他TLS,如在采20 m×20 m的數(shù)據(jù)時,單人5~10 min就能夠完成,并且無須后續(xù)拼接就能形成完整的地塊[50],是其他TLS無可比擬的。利用TLS提取LAI是根據(jù)計算激光束與植被冠層的接觸頻率,公式為:

    N(s)=n1(s)/na(s)(4)

    式中,N(s)為第s層激光的接觸頻率,n1為第s層的激光點(diǎn)的網(wǎng)格數(shù)量,na為第s層的三維網(wǎng)格數(shù)量。然后再根據(jù)第s層的接觸頻率計算該層的LAI:

    L(s)=α(θ)×N(s)(5)

    式中,α(θ)為葉片傾斜度校正因子,一般為1.1。最后將所有層的LAI進(jìn)行累加,即得到區(qū)域內(nèi)的LAI:

    LAI=ss=1L(s)=1.1×ss=1n1(s)na(s)(6)

    自2002年Lefsky等[25]首次發(fā)現(xiàn)了地基激光雷達(dá)在LAI反演中具有巨大優(yōu)勢以來,大量的學(xué)者也投入到了地基激光雷達(dá)反演LAI的研究當(dāng)中,截至目前,地基激光雷達(dá)在LAI的測定中也有了一定的研究成果,同時在研究過程中也發(fā)現(xiàn)了諸多問題。巴比爾江·迪力夏提等[9]使用地基激光雷達(dá)測定胡楊的LAI,研究證明地基激光雷達(dá)能夠?qū)崿F(xiàn)快速獲取植被的三維以及垂直結(jié)構(gòu)信息,但由于葉片間的相互遮擋,獲取的點(diǎn)云信息仍會出現(xiàn)缺失;2021年,黃蘭鷹等[5]利用地基激光雷達(dá)對毛竹林LAI進(jìn)行提取,并且評估了噪音與體元大小對LAI的影響,試驗(yàn)最終表明,有效的去噪以及合適的體素大小會提高LAI的精度;楊玉澤[36]利用地基激光雷達(dá)對常綠樹種的LAI進(jìn)行反演,并使用不同的算法來計算LAI,結(jié)果發(fā)現(xiàn)不同的算法得到LAI不盡相同,因此,不同樹種選擇合適的算法來計算LAI更加準(zhǔn)確。地基激光雷達(dá)在LAI的反演中雖然存在很多問題,但對目標(biāo)物的數(shù)據(jù)采集卻是現(xiàn)代技術(shù)的前沿,隨著研究的推進(jìn),后期點(diǎn)云數(shù)據(jù)的一些處理問題將得以有效解決,未來TLS將會被更加廣泛地應(yīng)用于LAI的反演。

    5 存在問題

    激光雷達(dá)技術(shù)已經(jīng)越來越成熟,尤其是在LAI反演的應(yīng)用上,學(xué)者們早以不再局限于傳統(tǒng)的方法,而是進(jìn)入了三維時代,激光雷達(dá)技術(shù)不僅能夠滿足LAI指數(shù)提取的需要,而且相比于傳統(tǒng)測量,完全不需要特定的時間以及特定的天氣就能夠收集大量精準(zhǔn)的森林三維數(shù)據(jù)。但在激光雷達(dá)技術(shù)的處理上,目前仍存在很多難點(diǎn)。例如,大量的研究[9,23-24,38]發(fā)現(xiàn),現(xiàn)在的技術(shù)仍不能滿足激光雷達(dá)收集的點(diǎn)云數(shù)據(jù)后期的處理,并且,在LAI反演中的葉傾角、聚集指數(shù)以及體素大小等影響因素也難以徹底解決,雖然激光雷達(dá)技術(shù)是目前最先進(jìn)的探測技術(shù),但在LAI的反演中受木質(zhì)部及葉片間相互遮擋的影響仍會出點(diǎn)云丟失的現(xiàn)象。

    5.1 點(diǎn)云的分類體系有待完善

    目前的點(diǎn)云分類技術(shù)有很多種方法,但大都是種類間的區(qū)分(表1),植物、街道、建筑物的區(qū)分,更細(xì)化也只能達(dá)到植物中低矮植物與高等植被的區(qū)分,而對于需要更加細(xì)化的分類卻難以達(dá)到,如木質(zhì)部與葉片的區(qū)分、不同樹種的區(qū)分等。

    5.2 點(diǎn)云的去噪精度有待提高

    點(diǎn)云的去噪方法在不斷更新、優(yōu)化,去噪的效果也更加精細(xì)化,但值得注意的是目前仍然沒有一個完整而統(tǒng)一的去噪體系可以應(yīng)用于各種林型。

    5.3 自動化木質(zhì)部的提取技術(shù)有待研發(fā)

    如今的木質(zhì)部的提取都建立在單木的基礎(chǔ)上,對于細(xì)枝的處理仍不完全,尤其是針葉樹種,更是無法準(zhǔn)確地提取出一棵樹的完整木質(zhì)部。而對于區(qū)域植被木質(zhì)部的提取更加不準(zhǔn)確,并且只能提取出有缺失的樹干。

    5.4 區(qū)域森林參數(shù)的提取精度有待提升

    在區(qū)域水平上,利用一些點(diǎn)云處理軟件在對點(diǎn)云進(jìn)行預(yù)處理以后,針對大范圍的樹木參數(shù)的提取結(jié)果誤差仍然與實(shí)際差值較大,不能夠應(yīng)用到實(shí)際。

    6 激光雷達(dá)技術(shù)在LAI測量中的展望

    6.1 促進(jìn)多平臺LiDAR數(shù)據(jù)整合優(yōu)化

    受不同LiDAR平臺獲取信息角度及激光傳統(tǒng)能力的限制,無論是使用SLS、ALS還是TLS,對目標(biāo)物的掃描信息都有丟失的現(xiàn)象發(fā)生。對此通過整合地基與機(jī)載激光雷達(dá)的點(diǎn)云數(shù)據(jù),并打通SLS與其他2種平臺的尺度壁壘,能夠使目標(biāo)的三維結(jié)構(gòu)信息得到有效互補(bǔ),取得針對森林冠層的多尺度、高精度空間細(xì)節(jié)特征,這種SLS、TLS、ALS的結(jié)合將會給未來森林LAI的獲取帶來新的思維模式。

    6.2 探索光譜特征與雷達(dá)點(diǎn)云數(shù)據(jù)融合

    與其他地物不同,植被的生長所依賴的光合作用導(dǎo)致植被葉片具有獨(dú)特的光譜特征,并且在光學(xué)遙感領(lǐng)域得到了深度的應(yīng)用,但目前針對LiDAR點(diǎn)云的研究多集中在三維空間內(nèi)的位置信息的整合與提取。隨著攜帶RGB相機(jī)的新型激光雷達(dá)出現(xiàn)[10],空間點(diǎn)云已經(jīng)能夠攜帶XYZ以外的少量光譜特征,研發(fā)融合空間和光譜特征的點(diǎn)云分類技術(shù),獲取更為精細(xì)的樹木各類型器官的空間信息,將對林學(xué)和生態(tài)方向的科學(xué)研究產(chǎn)生重要影響。

    6.3 建立LiDAR在林業(yè)領(lǐng)域標(biāo)準(zhǔn)化技術(shù)

    目前LiDAR技術(shù)在國內(nèi)尚處于新興階段,雖然已經(jīng)涌現(xiàn)了諸多應(yīng)用的成功案例[12],但距產(chǎn)生行業(yè)影響仍有巨大差距。其原因除LiDAR設(shè)備成本較高外,規(guī)范化的作業(yè)流程和完善的技術(shù)細(xì)節(jié)要求缺失均影響著LiDAR的大規(guī)模應(yīng)用,未來隨著LiDAR設(shè)備普及程度提高,林業(yè)工作中豐富的應(yīng)用場景和長周期標(biāo)準(zhǔn)化的數(shù)據(jù)需求,勢必會推動相關(guān)技術(shù)規(guī)范和行業(yè)標(biāo)準(zhǔn)的出臺,并繼續(xù)推動LiDAR技術(shù)在林業(yè)行業(yè)中的深入發(fā)展。

    參考文獻(xiàn)

    [1] 趙傳燕,沈衛(wèi)華,彭煥華.祁連山區(qū)青海云杉林冠層葉面積指數(shù)的反演方法[J].植物生態(tài)學(xué)報,2009,33(5):860-869.

    [2] FANG H L,BARET F,PLUMMER S,et al.An overview of global leaf area index(lai):Methods,products,validation,and applications[J].Reviews of geophysics,2019,57(3):739-799.

    [3] 蔣麗偉,張家琦,趙一臣,等.北京山區(qū)典型林分生長季葉面積指數(shù)動態(tài)變化[J].林業(yè)資源管理,2019(2):132-136.

    [4] WATSON D J.Comparative physiological studies on the growth of field crops:II.The effect of varying nutrient supply on net assimilation rate and leaf area[J].Annals of botany,1947,11(4):375-407.

    [5] 黃蘭鷹,鄭亞雄,張美曼,等.應(yīng)用地基激光雷達(dá)對毛竹林有效葉面積指數(shù)的提取及敏感性分析[J].東北林業(yè)大學(xué)學(xué)報,2021,49(9):67-71,118.

    [6] CHEN J M,RICH P M,GOWER S T,et al.Leaf area index of boreal forests:Theory,techniques,and measurements[J].Journal of geophysical research,1997,102(D24):29429-29443.

    [7] MYNENI R B,RAMAKRISHNA R,NEMANI R,et al.Estimation of global leaf area index and absorbed par using radiative transfer models[J].IEEE transactions on geoscience and remote sensing,1997,35(6):1380-1393.

    [8] 劉志理.東北典型森林葉面積指數(shù)的時空動態(tài)[D].哈爾濱:東北林業(yè)大學(xué),2015.

    [9] 巴比爾江·迪力夏提,玉米提·哈力克,艾薩迪拉·玉蘇甫,等.應(yīng)用地基激光雷達(dá)數(shù)據(jù)估算塔里木河下游胡楊葉面積指數(shù)[J].東北林業(yè)大學(xué)學(xué)報,2020,48(11):46-50.

    [10] 劉斌,張軍,魯敏,等.激光雷達(dá)應(yīng)用技術(shù)研究進(jìn)展[J].激光與紅外,2015,45(2):117-122.

    [11] 駱社周,王成,張貴賓,等.機(jī)載激光雷達(dá)森林葉面積指數(shù)反演研究[J].地球物理學(xué)報,2013,56(5):1467-1475.

    [12] 韓婷婷.激光雷達(dá)數(shù)據(jù)在森林垂直結(jié)構(gòu)參數(shù)反演中的應(yīng)用綜述[J].北京測繪,2020,34(8):1061-1065.

    [13] 李丹,岳彩榮.激光雷達(dá)在森林參數(shù)反演中的應(yīng)用[J].測繪與空間地理信息,2011,34(6):54-58.

    [14] WULDER M A,BATER C W,COOPS N C,et al.The role of LiDAR in sustainable forest management[J].Forestry chronicle,2008,84(6):807-826.

    [15] 岳春宇,鄭永超,邢艷秋,等.星載激光遙感林業(yè)應(yīng)用發(fā)展研究[J].紅外與激光工程,2020,49(11):105-114.

    [16] 汪垚,方紅亮,張英慧,等.基于機(jī)載LVIS和星載GLAS波形LiDAR數(shù)據(jù)反演森林LAI[J].遙感技術(shù)與應(yīng)用,2020,35(5):1004-1014.

    [17] DEEMS J S,PAINTER T H,F(xiàn)INNEGAN D C.Lidar measurement of snow depth:A review[J].Journal of glaciology,2013,59(215):467-479.

    [18] LEFSKY M A,HARDING D J,KELLER M,et al.Estimates of forest canopy height and aboveground biomass using ICESat[J].Geophysical research letters,2005,32(22):1-4.

    [19] TANG H,BROLLY M,ZHAO F,et al.Deriving and validating Leaf Area Index(LAI)at multiple spatial scales through lidar remote sensing:A case study in Sierra National Forest,CA[J].Remote sensing of environment,2014,143:131-141.

    [20] 羅光浪,何世強(qiáng),譚偉,等.不同林齡馬尾松人工林葉面積指數(shù)的測定[J].中南林業(yè)科技大學(xué)學(xué)報,2022,42(2):55-64.

    [21] 劉魯霞,龐勇.機(jī)載激光雷達(dá)和地基激光雷達(dá)林業(yè)應(yīng)用現(xiàn)狀[J].世界林業(yè)研究,2014,27(1):49-56.

    [22] 龐勇,趙峰,李增元,等.機(jī)載激光雷達(dá)平均樹高提取研究[J].遙感學(xué)報,2008,21(1):152-158.

    [23] 付甜,黃慶豐.基于機(jī)載激光雷達(dá)數(shù)據(jù)的森林生物量估測研究進(jìn)展[J].林業(yè)勘查設(shè)計,2010(4):86-89.

    [24] 張穎,賈煒瑋.基于地基激光雷達(dá)的落葉松人工林 枝條因子提取和建模[J].應(yīng)用生態(tài)學(xué)報,2021,32(7):2505-2513.

    [25] LEFSKY M A,COHEN W B,PARKER G G,et al.Lidar remote sensing for ecosystem studies:Lidar,an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies,can accurately estimate vegetation structural attributes and should be of particular interest to forest,landscape,and global ecologists[J].BioScience,2002,52(1):19-30.

    [26] BRDA N J J.Ground-based measurements of leaf area index:A review of methods,instruments and current controversies[J].Journal of experimental botany,2003,54(392):2403-2417.

    [27] 王寶琦,劉志理,戚玉嬌,等.利用不同方法測定紅松人工林葉面積指數(shù)的季節(jié)動態(tài)[J].生態(tài)學(xué)報,2014,34(8):1956-1964.

    [28] 周星.基于半球冠層攝影法的葉面積指數(shù)測量算法研究[D].成都:電子科技大學(xué),2021.

    [29] 李慧,陳少雄.基于兩種冠層分析儀的桉樹葉面積指數(shù)測算[J].桉樹科技,2014,31(1):16-22.

    [30] GEORGE J P,YANG W,KOBAYASHI H,et al.Method comparison of indirect assessments of understory leaf area index(LAIu):A case study across the extended network of ICOS forest ecosystem sites in Europe[J/OL].Ecological indicators,2021,128[2022-09-21].https://doi.org/10.1016/j.ecolind.2021.107841.

    [31] 劉婷,陳晨,范文義,等.基于不同空間尺度遙感影像估算 森林葉面積指數(shù)的差異[J].應(yīng)用生態(tài)學(xué)報,2019,30(5):1687-1698.

    [32] BESL P J,MCKAY N D.Method for registration of 3-D shapes[C]//Proceedings of the sensor fusion IV:Control paradigms and data structures.Boston,MA,United States:SPIE,1992.

    [33] GRANGER S,PENNEC X.Multi-scale EM-ICP:A fast and robust approach for surface registration[C]//Proceedings of the 7th European conference on computer vision.Copenhagen,Denmark:Springer-Verlag,2002.

    [34] 戴靜蘭,陳志楊,葉修梓.ICP算法在點(diǎn)云配準(zhǔn)中的應(yīng)用[J].中國圖象圖形學(xué)報,2007,12(3):517-521.

    [35] 朱新宇,萬劍華,劉善偉,等.改進(jìn)的ICP點(diǎn)云配準(zhǔn)算法[J].海洋測繪,2015,35(2):77-79.

    [36] 楊玉澤.基于地基激光雷達(dá)的樹木點(diǎn)云數(shù)據(jù)處理及三維建模[D].哈爾濱:東北林業(yè)大學(xué),2020.

    [37] 肖國新,于輝,周曉輝.一種自適應(yīng)雙邊濾波點(diǎn)云去噪算法[J].信息技術(shù),2017,41(10):118-120.

    [38] 駱社周.激光雷達(dá)遙感森林葉面積指數(shù)提取方法研究與應(yīng)用[D].北京:中國地質(zhì)大學(xué)(北京),2012.

    [39] HAN X F,JIN J S,WANG M J,et al.Guided 3D point cloud filtering[J].Multimedia tools & applications,2018,77(13):17397-17411.

    [40] 李宏宇.激光雷達(dá)的點(diǎn)云數(shù)據(jù)處理研究[D].長春:長春理工大學(xué),2019.

    [41] 李海亭,肖建華,李艷紅,等.機(jī)器學(xué)習(xí)在車載激光點(diǎn)云分類中的應(yīng)用研究[J].華中師范大學(xué)學(xué)報(自然科學(xué)版),2015,49(3):460-464.

    [42] 胡海瑛,惠振陽,李娜.基于多基元特征向量融合的機(jī)載LiDAR點(diǎn)云分類[J].中國激光,2020,47(8):237-247.

    [43] SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3D shape recognition[C]//2015 Proceedings of the IEEE international conference on computer vision.Santiago,Chile:IEEE,2015.

    [44] FENG Y F,ZHANG Z Z,ZHAO X B,et al.GVCNN:Group-view convolutional neural networks for 3D shape recognition[C]//2018 IEEE/CVF conference on computer vision and pattern recognition.Salt Lake City,UT,USA:IEEE,2018.

    [45] 趙傳,張保明,余東行,等.利用遷移學(xué)習(xí)的機(jī)載激光雷達(dá)點(diǎn)云分類[J].光學(xué)精密工程,2019,27(7):1601-1612.

    [46] 駱社周,王成,習(xí)曉環(huán),等.星載激光雷達(dá)GLAS與TM光學(xué)遙感聯(lián)合反演森林葉面積指數(shù)[J].紅外與毫米波學(xué)報,2015,34(2):243-249.

    [47] TIAN L,QU Y H,QI J B.Estimation of forest LAI using discrete airborne LiDAR:A review[J].Remote sensing,2021,13(12):1-17.

    [48] 劉婷,蘇偉,王成,等.基于機(jī)載LiDAR數(shù)據(jù)的玉米葉面積指數(shù)反演[J].中國農(nóng)業(yè)大學(xué)學(xué)報,2016,21(3):104-111.

    [49] SONG J L,ZHU X A,QI J B,et al.A method for quantifying understory leaf area index in a temperate forest through combining small footprint full-waveform and point cloud LiDAR data[J].Remote sensing,2021,13(15):1-17.

    [50] ASCHOFF T,THIES M,SPIECKER H.Describing forest stands using terrestrial laser-scanning[J].Int Arch Photogramm Remote Sens Inf Sci,2004,35:237-241.

    猜你喜歡
    冠層激光雷達(dá)葉面積
    手持激光雷達(dá)應(yīng)用解決方案
    北京測繪(2022年5期)2022-11-22 06:57:43
    基于低空遙感的果樹冠層信息提取方法研究
    基于激光雷達(dá)的樹形靶標(biāo)冠層葉面積探測模型研究
    法雷奧第二代SCALA?激光雷達(dá)
    汽車觀察(2021年8期)2021-09-01 10:12:41
    作物葉面積測量的研究進(jìn)展
    安徽省淮南森林冠層輻射傳輸過程的特征
    馬奶子葡萄葉面積評估模型的建立
    基于激光雷達(dá)通信的地面特征識別技術(shù)
    基于激光雷達(dá)的多旋翼無人機(jī)室內(nèi)定位與避障研究
    電子制作(2018年16期)2018-09-26 03:27:00
    施氮水平對冬小麥冠層氨揮發(fā)的影響
    久久99热这里只有精品18| 亚洲 国产 在线| 亚洲av电影不卡..在线观看| 偷拍熟女少妇极品色| 美女免费视频网站| 无限看片的www在线观看| 给我免费播放毛片高清在线观看| 热99在线观看视频| 亚洲专区国产一区二区| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 亚洲国产精品合色在线| 免费看日本二区| 91久久精品国产一区二区成人 | 亚洲专区国产一区二区| 国内久久婷婷六月综合欲色啪| 精品国产乱码久久久久久男人| 日本 av在线| 欧美三级亚洲精品| 校园春色视频在线观看| 久久精品影院6| 999久久久精品免费观看国产| 久久精品国产99精品国产亚洲性色| 男女之事视频高清在线观看| 在线观看一区二区三区| 999精品在线视频| 亚洲最大成人中文| 男女那种视频在线观看| 日本撒尿小便嘘嘘汇集6| 久久精品91无色码中文字幕| 午夜福利免费观看在线| 久久精品国产亚洲av香蕉五月| 两性午夜刺激爽爽歪歪视频在线观看| 欧美丝袜亚洲另类 | 国产伦一二天堂av在线观看| 精品久久久久久成人av| 黄片大片在线免费观看| 51午夜福利影视在线观看| 久久久国产精品麻豆| 欧美性猛交╳xxx乱大交人| 老熟妇仑乱视频hdxx| 午夜日韩欧美国产| 国产v大片淫在线免费观看| 最新中文字幕久久久久 | 男人的好看免费观看在线视频| 成人特级黄色片久久久久久久| 国产亚洲av高清不卡| 中文字幕高清在线视频| 国产aⅴ精品一区二区三区波| 中出人妻视频一区二区| 日日干狠狠操夜夜爽| 久久久久久久久久黄片| 99国产极品粉嫩在线观看| 熟女电影av网| 国产精品98久久久久久宅男小说| 搡老熟女国产l中国老女人| 18禁黄网站禁片免费观看直播| 男插女下体视频免费在线播放| 无遮挡黄片免费观看| 不卡一级毛片| 国产v大片淫在线免费观看| 久9热在线精品视频| 免费大片18禁| 一个人免费在线观看电影 | 国产激情欧美一区二区| 伦理电影免费视频| 久久这里只有精品19| 日本 欧美在线| 国产精品香港三级国产av潘金莲| 一区二区三区高清视频在线| 国产伦一二天堂av在线观看| 美女被艹到高潮喷水动态| www.精华液| 在线免费观看不下载黄p国产 | 亚洲av成人av| 久久亚洲精品不卡| 国产不卡一卡二| 亚洲乱码一区二区免费版| 一级a爱片免费观看的视频| 免费大片18禁| 桃色一区二区三区在线观看| 国产精品一区二区免费欧美| 天堂网av新在线| 9191精品国产免费久久| 身体一侧抽搐| 国内毛片毛片毛片毛片毛片| 国产真实乱freesex| 色av中文字幕| 少妇的逼水好多| 国产视频一区二区在线看| 欧美一区二区精品小视频在线| 少妇人妻一区二区三区视频| 90打野战视频偷拍视频| 精品熟女少妇八av免费久了| 国产单亲对白刺激| 国产真实乱freesex| av天堂中文字幕网| 亚洲欧洲精品一区二区精品久久久| 熟女人妻精品中文字幕| 久久午夜亚洲精品久久| 中国美女看黄片| 九九热线精品视视频播放| 宅男免费午夜| 免费电影在线观看免费观看| 男女做爰动态图高潮gif福利片| 婷婷六月久久综合丁香| 国产主播在线观看一区二区| 免费看a级黄色片| 亚洲欧美日韩无卡精品| 亚洲激情在线av| 观看美女的网站| 国产淫片久久久久久久久 | 国产精品乱码一区二三区的特点| 欧美绝顶高潮抽搐喷水| av天堂在线播放| 久久久久久国产a免费观看| 在线观看午夜福利视频| 亚洲精品456在线播放app | 窝窝影院91人妻| 在线国产一区二区在线| 伊人久久大香线蕉亚洲五| 人人妻,人人澡人人爽秒播| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区三| 在线观看美女被高潮喷水网站 | 亚洲午夜精品一区,二区,三区| 51午夜福利影视在线观看| 91字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| 九九在线视频观看精品| 老司机在亚洲福利影院| 国产精品一区二区三区四区免费观看 | 亚洲无线在线观看| 天堂√8在线中文| 欧美成人性av电影在线观看| 日本a在线网址| 我要搜黄色片| 又爽又黄无遮挡网站| 久久草成人影院| 亚洲av成人精品一区久久| 国产精品99久久99久久久不卡| 在线视频色国产色| 噜噜噜噜噜久久久久久91| 国产真实乱freesex| 国产精品 欧美亚洲| 日日摸夜夜添夜夜添小说| 亚洲欧美精品综合一区二区三区| 成人三级黄色视频| 国产一区二区在线av高清观看| 99riav亚洲国产免费| 黄色丝袜av网址大全| 曰老女人黄片| 国产不卡一卡二| 嫩草影院精品99| 特大巨黑吊av在线直播| 一个人看的www免费观看视频| 18禁观看日本| 香蕉av资源在线| 欧美zozozo另类| av片东京热男人的天堂| 亚洲国产精品合色在线| 亚洲自拍偷在线| 一二三四社区在线视频社区8| 欧美成人一区二区免费高清观看 | 黑人欧美特级aaaaaa片| 亚洲专区字幕在线| 小说图片视频综合网站| 美女午夜性视频免费| 欧美性猛交╳xxx乱大交人| 老司机午夜十八禁免费视频| 一级毛片精品| 国产极品精品免费视频能看的| 久久精品国产亚洲av香蕉五月| 国产精品av久久久久免费| 国产淫片久久久久久久久 | 久久久国产欧美日韩av| 免费大片18禁| 国产日本99.免费观看| 亚洲av成人精品一区久久| 成人高潮视频无遮挡免费网站| 2021天堂中文幕一二区在线观| 色综合站精品国产| 久9热在线精品视频| 99热这里只有精品一区 | 少妇人妻一区二区三区视频| 麻豆国产97在线/欧美| 成年人黄色毛片网站| 99热这里只有精品一区 | 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久久毛片| 丝袜人妻中文字幕| 黄色视频,在线免费观看| 欧美午夜高清在线| 久久中文看片网| 亚洲,欧美精品.| 深夜精品福利| 88av欧美| 观看美女的网站| 国模一区二区三区四区视频 | 禁无遮挡网站| 99久久精品国产亚洲精品| 日韩欧美在线二视频| 少妇熟女aⅴ在线视频| 亚洲 国产 在线| www日本黄色视频网| 国产亚洲av嫩草精品影院| 啦啦啦观看免费观看视频高清| 午夜福利在线观看免费完整高清在 | 97超视频在线观看视频| 性色avwww在线观看| 黄色丝袜av网址大全| 国产视频一区二区在线看| 18禁国产床啪视频网站| 男人的好看免费观看在线视频| 国产麻豆成人av免费视频| 亚洲在线观看片| 国产99白浆流出| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 可以在线观看毛片的网站| 男人舔女人的私密视频| 一二三四社区在线视频社区8| 国产成人欧美在线观看| 老熟妇乱子伦视频在线观看| 色在线成人网| 一个人免费在线观看电影 | 亚洲无线观看免费| 天堂网av新在线| 国产成人精品久久二区二区91| 男女之事视频高清在线观看| 美女扒开内裤让男人捅视频| 熟妇人妻久久中文字幕3abv| 日韩精品中文字幕看吧| 男人舔女人下体高潮全视频| 99精品欧美一区二区三区四区| 午夜免费激情av| 99国产精品99久久久久| 亚洲精品在线观看二区| 免费大片18禁| 欧美极品一区二区三区四区| 一个人看的www免费观看视频| 黄色女人牲交| 久久久久久久精品吃奶| 国产97色在线日韩免费| 熟妇人妻久久中文字幕3abv| 色噜噜av男人的天堂激情| 啪啪无遮挡十八禁网站| 级片在线观看| 欧美日韩黄片免| 成在线人永久免费视频| 亚洲精品456在线播放app | 一级毛片高清免费大全| 亚洲 欧美一区二区三区| 狠狠狠狠99中文字幕| 18美女黄网站色大片免费观看| 毛片女人毛片| 亚洲成a人片在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦韩国在线观看视频| 亚洲国产日韩欧美精品在线观看 | 亚洲色图 男人天堂 中文字幕| 午夜激情欧美在线| 免费看十八禁软件| 三级毛片av免费| 国产69精品久久久久777片 | 免费在线观看视频国产中文字幕亚洲| 亚洲电影在线观看av| 国产高清激情床上av| or卡值多少钱| 少妇的丰满在线观看| 精品福利观看| 亚洲av免费在线观看| 精品一区二区三区视频在线 | 99精品在免费线老司机午夜| 国产精品影院久久| 最近视频中文字幕2019在线8| 99久久国产精品久久久| 色综合婷婷激情| 搡老岳熟女国产| 成人无遮挡网站| 久久久精品大字幕| 好男人电影高清在线观看| 免费观看人在逋| 最新在线观看一区二区三区| xxx96com| 婷婷精品国产亚洲av在线| 中亚洲国语对白在线视频| xxx96com| 97碰自拍视频| 欧美成人性av电影在线观看| 欧美另类亚洲清纯唯美| 中文字幕高清在线视频| 亚洲 国产 在线| 黄频高清免费视频| 色av中文字幕| 亚洲在线观看片| 亚洲乱码一区二区免费版| 亚洲国产欧美一区二区综合| 欧美丝袜亚洲另类 | 成人性生交大片免费视频hd| 亚洲av熟女| 国产麻豆成人av免费视频| 午夜久久久久精精品| 好看av亚洲va欧美ⅴa在| 午夜免费成人在线视频| 亚洲国产欧洲综合997久久,| av在线天堂中文字幕| 欧美成狂野欧美在线观看| 99久久综合精品五月天人人| 日本一本二区三区精品| 中文字幕av在线有码专区| 99久久精品一区二区三区| 日韩中文字幕欧美一区二区| 美女午夜性视频免费| 偷拍熟女少妇极品色| 欧美日韩福利视频一区二区| 九色国产91popny在线| 九九在线视频观看精品| 国产欧美日韩一区二区三| 人人妻人人看人人澡| 国产亚洲精品一区二区www| 一区二区三区高清视频在线| 十八禁网站免费在线| tocl精华| 中文字幕最新亚洲高清| 小说图片视频综合网站| 午夜免费成人在线视频| 天堂动漫精品| 母亲3免费完整高清在线观看| 99久久成人亚洲精品观看| 日韩免费av在线播放| 岛国在线免费视频观看| 国产精品一区二区免费欧美| 欧美日本亚洲视频在线播放| 国产午夜精品久久久久久| 国产欧美日韩一区二区三| 美女黄网站色视频| 亚洲国产色片| 最近最新中文字幕大全电影3| 亚洲av五月六月丁香网| 精品久久久久久,| 亚洲av日韩精品久久久久久密| 别揉我奶头~嗯~啊~动态视频| 丁香六月欧美| 18禁观看日本| 91麻豆精品激情在线观看国产| 久久精品国产清高在天天线| 一边摸一边抽搐一进一小说| 国产v大片淫在线免费观看| 看免费av毛片| 身体一侧抽搐| 久久精品人妻少妇| 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频 | 一区二区三区国产精品乱码| 精品国产超薄肉色丝袜足j| 国产高清激情床上av| 叶爱在线成人免费视频播放| 无人区码免费观看不卡| 亚洲中文字幕日韩| 搡老妇女老女人老熟妇| 丁香六月欧美| 黄色女人牲交| 女人被狂操c到高潮| 99久久久亚洲精品蜜臀av| 99精品欧美一区二区三区四区| 国产v大片淫在线免费观看| 久久久久久人人人人人| 日韩av在线大香蕉| 欧美日韩亚洲国产一区二区在线观看| 此物有八面人人有两片| 精品久久久久久久末码| 国产午夜精品论理片| 老汉色av国产亚洲站长工具| 婷婷丁香在线五月| 一区二区三区高清视频在线| 免费搜索国产男女视频| 亚洲av片天天在线观看| 亚洲av免费在线观看| 久久久国产成人精品二区| 亚洲熟女毛片儿| 国内毛片毛片毛片毛片毛片| 国产久久久一区二区三区| 国产99白浆流出| 老鸭窝网址在线观看| 亚洲一区二区三区不卡视频| 久久精品影院6| 在线播放国产精品三级| 国产三级在线视频| 操出白浆在线播放| 三级男女做爰猛烈吃奶摸视频| 九色成人免费人妻av| 好男人在线观看高清免费视频| 精品一区二区三区av网在线观看| 又紧又爽又黄一区二区| 丰满的人妻完整版| 色播亚洲综合网| 日本 欧美在线| 日本三级黄在线观看| 黄色成人免费大全| 少妇丰满av| 夜夜爽天天搞| 国产精品 欧美亚洲| 在线a可以看的网站| 美女黄网站色视频| 别揉我奶头~嗯~啊~动态视频| 国产av麻豆久久久久久久| 日本五十路高清| 免费大片18禁| 夜夜夜夜夜久久久久| 亚洲av中文字字幕乱码综合| 午夜影院日韩av| 亚洲精品中文字幕一二三四区| x7x7x7水蜜桃| 中文资源天堂在线| 国产一区二区在线观看日韩 | 欧美3d第一页| 亚洲av五月六月丁香网| 亚洲国产精品999在线| 免费看美女性在线毛片视频| 老司机福利观看| 一级黄色大片毛片| 日韩欧美三级三区| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区| 国产成+人综合+亚洲专区| 国产一区在线观看成人免费| 精品久久久久久久末码| 九色国产91popny在线| 国产极品精品免费视频能看的| 成人午夜高清在线视频| 国内久久婷婷六月综合欲色啪| 全区人妻精品视频| 亚洲国产欧洲综合997久久,| 国产精品美女特级片免费视频播放器 | 日韩大尺度精品在线看网址| 一区福利在线观看| 女人被狂操c到高潮| 亚洲专区中文字幕在线| 色播亚洲综合网| 全区人妻精品视频| 天天躁日日操中文字幕| 免费看光身美女| 噜噜噜噜噜久久久久久91| 黑人欧美特级aaaaaa片| 村上凉子中文字幕在线| 亚洲人成电影免费在线| 亚洲人成网站在线播放欧美日韩| 久久久久久久精品吃奶| 久久精品亚洲精品国产色婷小说| 欧美日韩中文字幕国产精品一区二区三区| 国产久久久一区二区三区| 色吧在线观看| 欧美中文综合在线视频| 村上凉子中文字幕在线| 99热6这里只有精品| avwww免费| 一进一出抽搐gif免费好疼| 18禁美女被吸乳视频| 久久久久久久久中文| 免费av毛片视频| 精品久久久久久成人av| 亚洲国产精品sss在线观看| 精品一区二区三区四区五区乱码| 国产精品一区二区三区四区免费观看 | 欧美日韩黄片免| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩东京热| 亚洲国产欧洲综合997久久,| 老司机福利观看| 色噜噜av男人的天堂激情| 日本 欧美在线| 窝窝影院91人妻| 日韩成人在线观看一区二区三区| 亚洲精华国产精华精| 欧美黄色淫秽网站| 巨乳人妻的诱惑在线观看| 久久中文字幕一级| 狂野欧美白嫩少妇大欣赏| 一级毛片女人18水好多| 久久久久久人人人人人| 精品免费久久久久久久清纯| 最近最新中文字幕大全电影3| 午夜视频精品福利| 制服丝袜大香蕉在线| 亚洲精品久久国产高清桃花| 亚洲av中文字字幕乱码综合| 女人高潮潮喷娇喘18禁视频| 国产高清视频在线观看网站| 午夜福利视频1000在线观看| 亚洲一区二区三区不卡视频| 99热精品在线国产| 99热这里只有是精品50| 免费av毛片视频| 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播| 中出人妻视频一区二区| 国内揄拍国产精品人妻在线| xxx96com| 欧美一区二区国产精品久久精品| 久久久久免费精品人妻一区二区| 国产伦人伦偷精品视频| 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 亚洲欧美精品综合久久99| 香蕉av资源在线| 国产激情欧美一区二区| 性色av乱码一区二区三区2| 麻豆成人av在线观看| 性色avwww在线观看| 亚洲 国产 在线| 又爽又黄无遮挡网站| 婷婷六月久久综合丁香| 99精品在免费线老司机午夜| а√天堂www在线а√下载| 九九在线视频观看精品| 精品熟女少妇八av免费久了| 欧美av亚洲av综合av国产av| 制服人妻中文乱码| 淫秽高清视频在线观看| 欧美日韩精品网址| 一级作爱视频免费观看| 在线视频色国产色| 九色国产91popny在线| or卡值多少钱| 亚洲精品一卡2卡三卡4卡5卡| 99精品久久久久人妻精品| 国产一区在线观看成人免费| 亚洲欧美日韩高清在线视频| 在线观看美女被高潮喷水网站 | 此物有八面人人有两片| 法律面前人人平等表现在哪些方面| 亚洲国产欧洲综合997久久,| 好看av亚洲va欧美ⅴa在| 国产精品久久视频播放| 男人舔女人的私密视频| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣高清作品| 搞女人的毛片| 最近在线观看免费完整版| 丁香欧美五月| 天堂网av新在线| 观看美女的网站| 欧美性猛交黑人性爽| 欧美绝顶高潮抽搐喷水| 男插女下体视频免费在线播放| 久久久久亚洲av毛片大全| 亚洲第一电影网av| 久久久精品欧美日韩精品| 白带黄色成豆腐渣| 一进一出抽搐动态| 18禁黄网站禁片免费观看直播| 中文字幕最新亚洲高清| 99国产综合亚洲精品| 黑人巨大精品欧美一区二区mp4| bbb黄色大片| 亚洲自拍偷在线| 男女那种视频在线观看| 听说在线观看完整版免费高清| 黄色成人免费大全| 美女 人体艺术 gogo| 国产伦精品一区二区三区视频9 | 国产伦一二天堂av在线观看| 禁无遮挡网站| 97人妻精品一区二区三区麻豆| 精品一区二区三区av网在线观看| 狠狠狠狠99中文字幕| av在线蜜桃| 人妻久久中文字幕网| 九色成人免费人妻av| 黑人操中国人逼视频| 丝袜人妻中文字幕| 村上凉子中文字幕在线| 亚洲人成网站高清观看| 亚洲av第一区精品v没综合| 三级国产精品欧美在线观看 | 99热只有精品国产| 熟妇人妻久久中文字幕3abv| 男人和女人高潮做爰伦理| 美女免费视频网站| 成人一区二区视频在线观看| 欧美黑人巨大hd| 波多野结衣高清无吗| 级片在线观看| 久久中文字幕一级| 国产极品精品免费视频能看的| 狂野欧美激情性xxxx| 国产欧美日韩精品亚洲av| 国产乱人伦免费视频| 日本撒尿小便嘘嘘汇集6| 久久中文看片网| 免费在线观看视频国产中文字幕亚洲| 香蕉国产在线看| 色噜噜av男人的天堂激情| 免费一级毛片在线播放高清视频| 嫩草影院入口| 精品人妻1区二区| 淫妇啪啪啪对白视频| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 久久国产精品人妻蜜桃| 一夜夜www| 久久久久久九九精品二区国产| 午夜成年电影在线免费观看| 听说在线观看完整版免费高清| 不卡一级毛片| 日韩欧美在线二视频| 天天添夜夜摸| 人妻夜夜爽99麻豆av| www.精华液| 最近视频中文字幕2019在线8| 亚洲国产高清在线一区二区三|