周明星,代子俊,樊軍,2,付威,郝明德,2
免耕結(jié)合覆蓋措施對(duì)渭北旱塬黑壚土結(jié)構(gòu)與團(tuán)聚體有機(jī)碳含量的影響
周明星1,代子俊1,樊軍1,2,付威1,郝明德1,2
1西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100;2中國科學(xué)院水利部水土保持研究所,陜西楊凌 712100
【目的】闡明長期免耕及覆蓋措施對(duì)渭北旱塬農(nóng)田土壤團(tuán)聚體結(jié)構(gòu)和有機(jī)碳含量的影響,探索改善區(qū)域土壤的適宜耕作措施?!痉椒ā吭谶B續(xù)16年的黑壚土田間定位試驗(yàn)中選擇傳統(tǒng)耕作(CT)、免耕無覆蓋(NT)、免耕+秸稈覆蓋(NS)、免耕+地膜覆蓋(NP)、免耕+秸稈覆蓋+地膜覆蓋(NSP)等共5種田間管理措施,于2019年10月春玉米收獲期采集0—40 cm土層土樣,測(cè)定容重、團(tuán)聚體粒級(jí)分布及有機(jī)碳含量?!窘Y(jié)果】(1)免耕及覆蓋措施(NT、NP、NS和NSP)影響了黑壚土容重和團(tuán)聚體粒級(jí)分布。免耕及覆蓋措施均提高了耕層(0—20 cm)土壤容重,其中0—10 cm土層容重提高7.1%—17.8%,犁底層容重和孔隙度變化與耕層相反。耕層大團(tuán)聚體比例顯著提高、微團(tuán)聚體比例顯著降低,促進(jìn)耕層微團(tuán)聚體向大團(tuán)聚體的轉(zhuǎn)化。各粒級(jí)團(tuán)聚體重量百分比在耕層(0—20 cm)分布為:較大團(tuán)聚體(0.25—2 mm)>大團(tuán)聚體(>2 mm)>微團(tuán)聚體(0.053—0.25 mm)>粉黏粒組分(<0.053 mm),在犁底層(20—40 cm)為較大團(tuán)聚體和粉黏粒組分顯著高于大團(tuán)聚體和微團(tuán)聚體。(2)免耕及覆蓋措施下有機(jī)碳含量隨團(tuán)聚體粒級(jí)增大而增加。在0—40 cm土層,NT處理各粒級(jí)團(tuán)聚體有機(jī)碳含量均顯著低于CT處理,而NS、NSP處理均顯著高于CT處理。(3)耕層總有機(jī)碳累積以>0.25 mm團(tuán)聚體有機(jī)碳為主,犁底層以粉黏粒組分和較大團(tuán)聚體有機(jī)碳為主。【結(jié)論】長期免耕及覆蓋措施促進(jìn)耕層微團(tuán)聚體向大團(tuán)聚體轉(zhuǎn)化。與傳統(tǒng)耕作相比,免耕和地膜覆蓋均降低了耕層各粒級(jí)團(tuán)聚體有機(jī)碳含量。而免耕覆蓋(NS、NP和NSP)比免耕無覆蓋(NT)均增加了各粒級(jí)團(tuán)聚體有機(jī)碳含量。免耕結(jié)合秸稈覆蓋(NS)顯著改善土壤容重且對(duì)各粒級(jí)團(tuán)聚體有機(jī)碳含量提升幅度最大,是最佳處理。
免耕;覆膜;秸稈覆蓋;有機(jī)碳;團(tuán)聚體;黑壚土;渭北旱塬
【研究意義】渭北旱塬是黃土高原典型的旱作雨養(yǎng)農(nóng)業(yè)區(qū),該區(qū)域地力貧瘠、降雨時(shí)空分布不均等制約著主要糧食作物春玉米產(chǎn)量[1-2]。因此,通過不同耕作與覆蓋措施改善土壤結(jié)構(gòu),提升土壤團(tuán)聚體結(jié)構(gòu)穩(wěn)定性,增強(qiáng)土壤保肥性能是提高和穩(wěn)定渭北旱塬地區(qū)春玉米產(chǎn)量的有效措施[3]?!厩叭搜芯窟M(jìn)展】前人研究表明,以免耕、秸稈覆蓋為代表的保護(hù)性耕作措施有蓄水保墑、培肥地力等重要功能。免耕能降低土壤容重,為土壤提供適宜氣液比例[4],促進(jìn)作物生長發(fā)育。此外不同覆蓋措施對(duì)改善土壤水肥狀況和團(tuán)聚體結(jié)構(gòu),提升地力等方面有顯著作用[5]。聚乙烯薄膜覆蓋保墑抑蒸效果較好,減少無效蒸發(fā),還可以協(xié)同增強(qiáng)玉米“源-庫”生產(chǎn)能力,增加籽粒產(chǎn)量[6-7]。秸稈覆蓋具有調(diào)節(jié)土壤溫度、疏松土壤、增加外源有機(jī)碳輸入作用[5],同時(shí)能夠顯著影響相對(duì)氣體擴(kuò)散率和飽和導(dǎo)水率等水氣傳輸特性[8],是旱作農(nóng)田提高水肥利用效率的有效措施[9]。土壤容重和孔隙大小可以反映土壤松緊程度和肥力等狀況[4],土壤結(jié)構(gòu)相關(guān)指標(biāo)與有機(jī)碳含量密切相關(guān)[10]。團(tuán)聚體作為土壤結(jié)構(gòu)基本單元,其數(shù)量、分布和穩(wěn)定性受耕作與覆蓋措施影響顯著[11],同時(shí)作為礦質(zhì)營養(yǎng)轉(zhuǎn)化及微生物生存的場(chǎng)所,對(duì)土壤有機(jī)碳固存起物理保護(hù)作用。而有機(jī)碳作為重要的膠結(jié)物質(zhì),對(duì)團(tuán)聚體的形成過程具有重要意義[12]。土壤質(zhì)地、耕作方式、施肥方式等都會(huì)影響不同粒級(jí)團(tuán)聚體含量,進(jìn)而改變團(tuán)聚體中有機(jī)碳含量,并影響其礦化速度[13]。國內(nèi)外大量研究表明,大團(tuán)聚體(>2 mm)和粉黏粒(<0.053 mm)中儲(chǔ)存了大量的有機(jī)碳[14],且秸稈還田能顯著推動(dòng)微團(tuán)聚體向大團(tuán)聚體轉(zhuǎn)化[15]。李娟等[16]針對(duì)喀斯特山區(qū)石灰土研究發(fā)現(xiàn),>0.5 mm粒級(jí)團(tuán)聚體有機(jī)碳貢獻(xiàn)率最高,且1—5 mm粒級(jí)團(tuán)聚體更有利于有機(jī)碳積累。MODAK等[17]對(duì)砂質(zhì)壤土研究發(fā)現(xiàn),傳統(tǒng)耕作比免耕處理的大團(tuán)聚體有機(jī)碳含量在0—5和5—15 cm土層分別低約30%和25%。【本研究切入點(diǎn)】目前,渭北旱塬農(nóng)業(yè)區(qū)保護(hù)性耕作研究多集中于對(duì)根外土壤短期理化性質(zhì)或單一養(yǎng)分轉(zhuǎn)化循環(huán)[2-3,5,8-9],而長期保護(hù)性耕作下土壤各粒級(jí)團(tuán)聚體有機(jī)碳分布特征以及與土壤結(jié)構(gòu)之間聯(lián)系的研究相對(duì)缺乏,同時(shí)哪一種覆蓋方式對(duì)團(tuán)聚體有機(jī)碳提升作用最優(yōu)尚不明確?!緮M解決的關(guān)鍵問題】本研究通過探究長期免耕及覆蓋措施對(duì)不同粒級(jí)團(tuán)聚體有機(jī)碳分布和土壤結(jié)構(gòu)的影響,探尋適合渭北旱塬區(qū)保持良好土壤結(jié)構(gòu)和肥力的耕作措施,為旱地農(nóng)業(yè)生產(chǎn)的可持續(xù)發(fā)展提供參考。
長期定位試驗(yàn)位于陜西省長武縣西北農(nóng)林科技大學(xué)長武農(nóng)業(yè)生態(tài)試驗(yàn)站(35°14′ N、107°40′ E),屬于典型旱作雨養(yǎng)農(nóng)業(yè)區(qū),為暖溫帶半濕潤大陸性季風(fēng)氣候,年平均降雨量584 mm,降水年際變化較大且時(shí)空分布不均,大多集中在7—9月,平均海拔高度約1 200 m,平均日照時(shí)數(shù)2 226 h[1-3]。試驗(yàn)區(qū)多年平均氣溫為9.1 ℃,1月份平均氣溫-4.7 ℃,7月平均氣溫22.1 ℃。土壤類型為黑壚土,母質(zhì)類型為馬蘭黃土,土層深厚,孔隙度50%左右[8]。
試驗(yàn)始于2004年,共設(shè)置12個(gè)處理,總面積為1 260 m2,小區(qū)采用隨機(jī)區(qū)組設(shè)計(jì),每個(gè)小區(qū)面積為35 m2(5 m×7 m),選擇一年一熟的春玉米先玉335作為供試作物,采用寬窄行種植方式,寬行為60 cm,窄行為30 cm。本季春玉米于2019年5月10日播種,2019年10月1日收獲。本研究選取了傳統(tǒng)耕作(CT)、免耕無覆蓋(NT)、免耕+秸稈覆蓋(NS)、免耕+地膜覆蓋(NP)、免耕+秸稈覆蓋+地膜覆蓋(NSP)共5個(gè)處理進(jìn)行研究,處理具體信息見表1。每個(gè)處理均設(shè)3次重復(fù),試驗(yàn)所用地膜為70 cm寬、0.015 mm厚的聚乙烯薄膜,每個(gè)小區(qū)均施氮肥(含N 46%)和磷肥(含P2O516%)作為基肥,氮肥施用量為150 kg N·hm-2,磷肥施用量為75 kg P2O5·hm-2,玉米生長期間不追肥[1]。
表1 試驗(yàn)處理詳情
1.3.1 土壤團(tuán)聚體分布與各粒級(jí)團(tuán)聚體有機(jī)碳 在2019年10月春玉米收獲期間,于試驗(yàn)小區(qū)挖階梯狀剖面用鋁盒分別采集0—10、10—20、20—30和30—40 cm土層土壤樣品,將0—10和10—20 cm土層歸為耕層,20—30和30—40 cm土層歸為犁底層。濕篩法中土樣預(yù)濕方式和濕篩方式是影響水穩(wěn)性團(tuán)聚體粒級(jí)分布的重要因素,不同的方法所得結(jié)果差異很大[18],同時(shí)預(yù)濕過程不能保證每次土樣的濕潤速度相同,不能反映土壤的真實(shí)狀況,因此本試驗(yàn)采用干篩+濕篩結(jié)合的方法[19],篩分成7級(jí)顆粒組分,盡量減少預(yù)濕和濕篩過程中人為因素所造成的誤差對(duì)試驗(yàn)結(jié)果的影響。具體步驟為待土樣自然風(fēng)干后,去除掉小石塊和植物殘根,過8 mm篩,然后稱量200 g風(fēng)干土樣,干篩分成<0.053、0.053—0.25、0.25—0.5、0.5—1、1—2、2—5、5—8 mm不同粒級(jí)團(tuán)聚體,稱重并計(jì)算其各組分質(zhì)量比例,按照比例配50 g土樣用于濕篩測(cè)定[19]。通過濕篩法分離、取得7級(jí)顆粒組分,將5—8、2—5 mm粒級(jí)團(tuán)聚體的百分比相加歸為大團(tuán)聚體(>2 mm),1—2、0.5—1和0.25—0.5 mm粒級(jí)團(tuán)聚體的百分比相加歸為較大團(tuán)聚體(0.25—2 mm),其余粒級(jí)保持不變,分別是微團(tuán)聚體(0.25—0.053 mm)和粉黏粒組分(<0.053 mm)[14,19]。利用重鉻酸鉀-外加熱法測(cè)定各粒級(jí)水穩(wěn)性團(tuán)聚體有機(jī)碳含量。
團(tuán)聚體有機(jī)碳貢獻(xiàn)率(%)=[團(tuán)聚體有機(jī)碳含量(g·kg-1)×團(tuán)聚體含量(%)/土壤有機(jī)碳含量]×100。
1.3.2 土壤容重與總有機(jī)碳 在階梯狀剖面每個(gè)土層的中部取環(huán)刀樣2個(gè),用于測(cè)定土壤容重。每個(gè)小區(qū)采用5點(diǎn)取樣法,通過4分法處理土樣,利用重鉻酸鉀-外加熱法測(cè)定全土總有機(jī)碳含量。
通過Excel 2010整理和統(tǒng)計(jì)的基礎(chǔ)試驗(yàn)數(shù)據(jù)進(jìn)行分析,在不同處理和不同粒級(jí)之間通過SPSS 20對(duì)數(shù)據(jù)進(jìn)行單因素方差分析(one-way ANOVA)和Duncan法進(jìn)行多重比較,對(duì)全土總有機(jī)碳和各粒級(jí)團(tuán)聚體有機(jī)碳進(jìn)行Pearson數(shù)據(jù)分析,并通過Origin 2018繪圖。
2.1.1 團(tuán)聚體分布特征 免耕及結(jié)合覆蓋措施顯著影響了黑壚土團(tuán)聚體粒級(jí)分布(<0.05),團(tuán)聚體粒級(jí)分布在耕層呈現(xiàn):較大團(tuán)聚體>大團(tuán)聚體>微團(tuán)聚體>粉黏粒組分;在犁底層呈現(xiàn)較大團(tuán)聚體和粉黏粒組分?jǐn)?shù)量顯著高于大團(tuán)聚體和微團(tuán)聚體。在耕層(圖1-a、1-b),與CT相比,其余處理均顯著提高大團(tuán)聚體比例,NSP處理在0—10和10—20 cm土層分別達(dá)到最大值(35.3%、28.6%),顯著提高了17.7%和9.2%。但犁底層NS處理在20—30 cm土層大團(tuán)聚體數(shù)量達(dá)到最大(19.9%)(圖1-c),免耕及覆蓋措施對(duì)30—40 cm土層大團(tuán)聚體的影響未達(dá)顯著水平(圖1-d)。
方柱上不同字母表示相同粒級(jí)不同處理在0.05水平差異顯著
免耕及結(jié)合覆蓋措施下微團(tuán)聚體所占比例在耕層均呈顯著降低趨勢(shì),其中NT處理微團(tuán)聚體數(shù)量在0—10、10—20 cm土層分別達(dá)到最小值(7.8%、6.2%),較CT處理分別顯著降低了12.9%、14.6%,在犁底層NT、NP處理顯著降低了微團(tuán)聚體比例,但NS處理能提高微團(tuán)聚體所占比例,且在30—40 cm土層差異顯著。免耕及不同覆蓋措施下粉黏粒組分逐漸向下層積累,各處理耕層粉黏粒所占比例均低于犁底層,特別在0—10 cm表層土壤差異顯著,其中NS處理0—10 cm土層粉黏粒比CT處理顯著降低了4.5%。
2.1.2 容重和總孔隙度 耕層容重均小于犁底層,整體呈隨深度增加而增加(表2)。0—10 cm土層,與CT處理相比,免耕及結(jié)合覆蓋措施均提高了耕層土壤容重,增幅顯著達(dá)7.1%—17.8%;在20—30 cm土層則相反,降幅顯著,達(dá)6.3%—10.5%。與NT處理相比,結(jié)合覆蓋措施均提高了犁底層土壤容重,且NS和NSP處理在30—40 cm土層差異顯著;NS處理0—10 cm土層的土壤容重顯著降低了6.4%,NP和NSP在耕層則差異不顯著。NP和NSP相比NS處理均提高了耕層土壤容重,且NP處理0—10 cm土層差異顯著(表2)。總孔隙度與土壤容重在耕層和犁底層所呈現(xiàn)的規(guī)律相反。
表2 不同耕作覆蓋措施下0—40 cm土層的容重
同列數(shù)據(jù)后不同小寫字母表示同一土層不同處理間差異顯著,同行數(shù)據(jù)后不同大寫字母表示同一處理在不同土層間差異顯著(<0.05)
Different lowercase letters after the data in the same column indicate significant differences between treatments in the same soil layer, and different capital letters after the data in the same column indicate significant differences between treatments in the same soil layer (<0.05)
免耕及結(jié)合覆蓋措施對(duì)黑壚土剖面土壤有機(jī)碳含量有一定影響(表3),各處理有機(jī)碳含量呈現(xiàn)隨土層由淺向深遞減。與CT相比,NT處理在0—40 cm土層有機(jī)碳含量降低了1.6%—12.5%,NS和NSP處理均提高了各土層有機(jī)碳含量,其中NS處理各土層有機(jī)碳含量顯著提高了17.1%—24.9%,但NP處理提高了犁底層、降低了耕層有機(jī)碳含量。
相同粒級(jí)團(tuán)聚體有機(jī)碳分布在免耕及結(jié)合覆蓋措施下差異顯著(<0.05)(圖2)。不同處理同粒級(jí)團(tuán)聚體有機(jī)碳含量在耕層(0—20 cm)呈現(xiàn):NS>NSP>CT>NP>NT。與CT處理相比,NS(17.5%—41.3%)和NSP(2.8%—11.87%)處理各粒級(jí)團(tuán)聚體有機(jī)碳含量在耕層均顯著提高,NT、NP處理均顯著降低。與NS處理相比,NP(14.4%—31.0%)和NSP(7.7%—21.0%)處理使耕層各粒級(jí)團(tuán)聚體有機(jī)碳含量顯著下降。在犁底層(20—40 cm)中(圖2-c、2-d),NS、NSP處理的各粒級(jí)團(tuán)聚體有機(jī)碳含量均顯著高于CT處理。與NT處理相比,結(jié)合覆蓋措施(NS、NP和NSP)均增加了0—40 cm土層各粒級(jí)團(tuán)聚體有機(jī)碳含量,其中NS和NSP處理差異顯著。在0—40 cm土層同處理不同粒級(jí)團(tuán)聚體下有機(jī)碳含量均隨著團(tuán)聚體粒級(jí)增大而增加,且各處理中大團(tuán)聚體有機(jī)碳含量與微團(tuán)聚體和粉黏粒有機(jī)碳含量差異顯著(圖2)。
表3 不同耕作覆蓋措施下0—40 cm土層總有機(jī)碳含量分布
同列數(shù)據(jù)后不同小寫字母表示相同土層不同處理間總有機(jī)碳含量在0.05水平下差異顯著
Different lowercase letters after the data in the same column indicate significant differences in total organic carbon content between different treatments in the same soil layer at the 0.05 level
方柱上不同大寫字母表示不同處理下相同粒級(jí)團(tuán)聚體有機(jī)碳含量在0.05水平上差異顯著,不同小寫字母表示相同處理下不同粒級(jí)團(tuán)聚體有機(jī)碳含量在0.05水平上差異顯著
土壤總有機(jī)碳與各粒級(jí)團(tuán)聚體有機(jī)碳含量表現(xiàn)出正相關(guān)關(guān)系(圖3)。耕層(0—20 cm)大團(tuán)聚體、較大團(tuán)聚體有機(jī)碳與總有機(jī)碳含量呈極顯著正相關(guān)(<0.01),微團(tuán)聚體有機(jī)碳含量與總有機(jī)碳含量呈顯著正相關(guān)(<0.05),2值分別為0.954、0.989和0.904。在犁底層,土壤總有機(jī)碳含量與各粒級(jí)團(tuán)聚體有機(jī)碳含量表現(xiàn)出正相關(guān)關(guān)系,其中較大團(tuán)聚體和粉黏粒有機(jī)碳含量與總有機(jī)碳含量呈極顯著正相關(guān)(<0.01),2值分別為0.984和0.996。大團(tuán)聚體和微團(tuán)聚體有機(jī)碳含量與總有機(jī)碳含量呈顯著正相關(guān)(<0.05),2值分別為0.868和0.809。
免耕及結(jié)合覆蓋措施影響了各粒級(jí)團(tuán)聚體有機(jī)碳貢獻(xiàn)率(圖4),不同粒級(jí)團(tuán)聚體有機(jī)碳貢獻(xiàn)率與粒級(jí)分布規(guī)律相同。具體而言,免耕及結(jié)合覆蓋措施均增加了耕層大團(tuán)聚體有機(jī)碳貢獻(xiàn)率,但犁底層與耕層不同,30—40 cm土層差別不大,而20—30 cm土層大團(tuán)聚體有機(jī)碳貢獻(xiàn)率均增加,其中NS、NSP處理增加了12.9%、13.1%。免耕及免耕結(jié)合覆蓋措施均降低了耕層微團(tuán)聚體有機(jī)碳貢獻(xiàn)率,其中NT(12.5%—14.2%)和NS(5.2%—8.9%)處理降幅顯著。NT、NP處理微團(tuán)聚體有機(jī)碳貢獻(xiàn)率在20—30和30—40 cm土層則分別降低了5.3%、4.0%和13.7%、8.3%。
圖3 不同耕作覆蓋措施下土壤總有機(jī)碳含量與各粒級(jí)團(tuán)聚體中有機(jī)碳含量相關(guān)性
圖4 不同耕作覆蓋措施下0—40 cm土層各粒級(jí)團(tuán)聚體有機(jī)碳貢獻(xiàn)率
不同耕作與覆蓋措施下粉黏粒有機(jī)碳貢獻(xiàn)率呈現(xiàn)耕層小于犁底層(圖4),特別是0—10 cm土層顯著低于犁底層。與CT處理相比,NP(4.7%—7.8%)和NS(5.6%—6.5%)處理粉黏粒有機(jī)碳貢獻(xiàn)率在犁底層均提高,而NT處理降低了1.4%和4%,且NT處理耕層粉黏粒有機(jī)碳貢獻(xiàn)率與犁底層相反,在0—10、10—20 cm土層分別提高了1.5%和5.4%。
長期免耕及結(jié)合覆蓋措施(NT、NP、NS和NSP)對(duì)土壤容重和不同粒級(jí)團(tuán)聚體的分布有顯著影響,促進(jìn)耕層微團(tuán)聚體向大團(tuán)聚體轉(zhuǎn)化,其中以秸稈覆蓋效果最顯著,這與閆雷[11]、高洪軍等[15]研究結(jié)果一致??赡苡捎诿飧Y(jié)合覆蓋措施導(dǎo)致團(tuán)聚體內(nèi)部機(jī)械組成、菌絲膠結(jié)狀況發(fā)生改變[14,16]。覆蓋的秸稈能夠促進(jìn)蛋白質(zhì)、多糖等土壤黏合劑的產(chǎn)生[20],有助于腐殖質(zhì)和腐殖酸增加[21-23],更適于微生物生長,從而利于土壤微小顆粒包裹,促進(jìn)耕層微團(tuán)聚體向大團(tuán)聚體轉(zhuǎn)化。本研究結(jié)果顯示長期保護(hù)性耕作降低犁底層容重但提高耕層容重,這與KETEMA等[24]對(duì)深色淋溶土的研究結(jié)果一致。主要因?yàn)槊飧麑?dǎo)致凋落物分解率降低、土壤擾動(dòng)減少[25]。此外本研究顯示粉黏粒(<0.053 mm)在0—10 cm表層積聚較少,逐漸向下層積累。在干旱半干旱區(qū),土壤容重會(huì)影響水分自然耗散[26],團(tuán)聚體形成過程受容重、孔隙度和土壤水分等因素的影響,劉萌等[8]研究發(fā)現(xiàn),免耕覆蓋措施能顯著提高犁底層飽和導(dǎo)水率和導(dǎo)氣率,因此耕作與覆蓋措施對(duì)容重等土壤結(jié)構(gòu)的改變能顯著影響水氣傳輸特性,也是造成粉黏粒數(shù)量向下層累積、對(duì)30—40 cm土層大團(tuán)聚體比例提高效果不顯著的原因之一。土壤抗剪強(qiáng)度也會(huì)顯著影響團(tuán)聚體中黏粒含量動(dòng)態(tài)變化[27],相對(duì)下層土壤,表層(0—10 cm)土壤更易受人為擾動(dòng),也會(huì)造成粉黏粒向下層累積。
土壤質(zhì)地是影響水穩(wěn)性團(tuán)聚體分布的重要因素之一。前人針對(duì)亞熱帶地區(qū)黃壤土[28]、黃土高原東部丘陵區(qū)壤質(zhì)黃土[29]開展了長期試驗(yàn),結(jié)果一致表明不同施肥和保護(hù)性耕作下以>0.25 mm團(tuán)聚體為主,這與本研究結(jié)果相似。武均等[25]對(duì)黃土高原半干旱丘陵溝壑區(qū)黃綿土研究發(fā)現(xiàn)免耕各土層均以<0.25 mm團(tuán)聚體含量居多,≥5 mm團(tuán)聚體次之。MODAK[17]對(duì)砂壤土研究發(fā)現(xiàn)傳統(tǒng)耕作微團(tuán)聚體比例比免耕處理高約51%,均與本研究結(jié)果不同。
作為土壤有機(jī)物質(zhì)平衡狀態(tài)和轉(zhuǎn)化速率的微觀表征,各粒級(jí)團(tuán)聚體中有機(jī)碳含量對(duì)于調(diào)控土壤肥力和土壤碳匯具有重要意義[30]。本研究結(jié)果顯示NP、NS和NSP處理0—40 cm各土層有機(jī)碳含量均呈現(xiàn)大團(tuán)聚體顯著高于微團(tuán)聚體和粉黏粒組分,與MESSIGA等[31]研究結(jié)果一致。大團(tuán)聚體周轉(zhuǎn)速度較慢,以及秸稈和地膜對(duì)土壤的物理保護(hù)造成大團(tuán)聚體有機(jī)碳含量較高[25];另一方面有機(jī)物質(zhì)與土壤礦物結(jié)合[32],二者表面形成的強(qiáng)鍵降低了微生物對(duì)有機(jī)碳的可用性,顯著降低大團(tuán)聚體有機(jī)碳礦化率[27]。有機(jī)碳濃度與土壤容重、滲透阻力和團(tuán)聚體穩(wěn)定性等土壤結(jié)構(gòu)的變化密切相關(guān)且主要集中于0—10 cm表層土壤[10]。本研究發(fā)現(xiàn)秸稈覆蓋比無覆蓋能顯著降低 0—10 cm土層的土壤容重,并且該層土壤總有機(jī)碳含量和各粒級(jí)團(tuán)聚體有機(jī)碳含量提高效果最優(yōu),從而驗(yàn)證了土壤物理結(jié)構(gòu)的變化與有機(jī)碳含量密切相關(guān)這一觀點(diǎn)。
本研究對(duì)黑壚土長期(16年)定位研究發(fā)現(xiàn)免耕無覆蓋措施比傳統(tǒng)耕作顯著降低0—40 cm土層有機(jī)碳含量,但結(jié)合覆蓋措施均能增加0—40 cm土層各粒級(jí)團(tuán)聚體有機(jī)碳含量,且以秸稈覆蓋提升效果最優(yōu)。但有研究表明,與傳統(tǒng)耕作相比,免耕無覆蓋能夠顯著提高0—40 cm土層潴育型水稻壤土[33]和褐土[34]的各粒級(jí)團(tuán)聚體有機(jī)碳含量。李琳等[35]對(duì)河北地區(qū)潮褐土研究認(rèn)為免耕秸稈還田只提高0—10 cm土層有機(jī)碳含量,這均與本研究結(jié)果不同。在給定的氣候區(qū)域內(nèi),控制土壤有機(jī)碳水平的關(guān)鍵因素是土壤質(zhì)地[14],質(zhì)地決定了土壤通氣性,進(jìn)而影響微生物和酶活性,另外免耕能通過礦物的化學(xué)吸附與團(tuán)聚體的物理保護(hù)降低本底碳的激發(fā)效應(yīng)[29],從而導(dǎo)致了有機(jī)碳含量不同。地膜覆蓋導(dǎo)致耕層地表溫度顯著提高,使有機(jī)質(zhì)的分解速度加快[8],顯著降低耕層(0—20 cm)土壤有機(jī)碳含量。此外覆膜提高了耕層土壤容重,影響了有機(jī)碳轉(zhuǎn)化的微環(huán)境,從而改變微生物多樣性和關(guān)鍵類群[36]。趙晶等[37]在本試驗(yàn)田的前期研究發(fā)現(xiàn),免耕不覆蓋比傳統(tǒng)耕作生物產(chǎn)量降低了1.4%,而免耕配合覆蓋措施(NP、NS和NPS)生物產(chǎn)量平均提高了5.0%—39.4%。因此針對(duì)渭北旱塬地區(qū)黑壚土而言,免耕配合覆蓋才是提升作物產(chǎn)量的有效措施。綜上所述,針對(duì)提升黑壚土有機(jī)碳含量、玉米產(chǎn)量及改良土壤結(jié)構(gòu)而言,免耕秸稈覆蓋是最佳處理。
各粒級(jí)團(tuán)聚體含量變化是引起團(tuán)聚體養(yǎng)分貢獻(xiàn)率變化的主導(dǎo)因素[38]。本研究結(jié)果顯示,在耕層土壤總有機(jī)碳累積主要受較大和大團(tuán)聚體有機(jī)碳含量的影響,而犁底層主要受較大團(tuán)聚體與粉黏粒組分有機(jī)碳的影響,這與李娟等[16]研究結(jié)果相似。保護(hù)性耕作措施改變土壤環(huán)境條件(總孔隙度、容重等),通過微生物群落組成[32]和酶活性[38]來影響有機(jī)碳累積。有機(jī)碳含量可以顯著影響不同粒級(jí)團(tuán)聚體的轉(zhuǎn)化[39]。孫天聰?shù)萚40]研究表明,在黃土高原地區(qū)2—5 mm團(tuán)聚體是土壤礦質(zhì)營養(yǎng)成分的主要載體,各粒級(jí)團(tuán)聚體有機(jī)碳含量可以作為指示因子判斷渭北旱塬地區(qū)團(tuán)聚體有機(jī)碳的變化。加強(qiáng)對(duì)各粒級(jí)團(tuán)聚體分布特征和團(tuán)聚體有機(jī)碳含量的研究,可以進(jìn)一步了解渭北旱塬土壤碳素循環(huán)與轉(zhuǎn)化及其穩(wěn)定性。而且有機(jī)質(zhì)的重要組分土壤腐殖物質(zhì)(胡敏酸、富里酸、胡敏素等)與水穩(wěn)性團(tuán)聚體有著密切聯(lián)系,因此今后應(yīng)開展相關(guān)試驗(yàn),探究各粒級(jí)團(tuán)聚體內(nèi)部腐殖物質(zhì)的含量及結(jié)構(gòu)的關(guān)系,為渭北旱塬地區(qū)黑壚土的耕地質(zhì)量提升提供理論支撐。
4.1 免耕及結(jié)合覆蓋措施影響了黑壚土容重和團(tuán)聚體的分布。長期免耕及結(jié)合覆蓋措施(NT、NP、NS和NSP)均提高了耕層(0—20 cm)土壤容重,其中0—10 cm土壤容重顯著提高7.1%— 17.8%,促進(jìn)耕層土壤微團(tuán)聚體向大團(tuán)聚體的轉(zhuǎn)化,其中免耕秸稈覆蓋大團(tuán)聚體數(shù)量在0—10和10—20 cm土層增幅分別為11.9%和4.8%,其微團(tuán)聚體數(shù)量的降幅為4.7%和9.2%。
4.2 與傳統(tǒng)耕作相比,免耕無覆蓋和免耕地膜覆蓋分別降低了黑壚土0—40 cm土層和耕層(0—20 cm)各粒級(jí)團(tuán)聚體有機(jī)碳含量。但與免耕無覆蓋相比,結(jié)合覆蓋措施(NS、NP和NSP)均增加了0—40 cm土層各粒級(jí)團(tuán)聚體有機(jī)碳含量。覆蓋措施中,單獨(dú)秸稈覆蓋對(duì)0—40 cm土層各粒級(jí)團(tuán)聚體中有機(jī)碳含量提高效果最優(yōu)(10.4%—41.3%),且0—10 cm土層的土壤容重顯著降低了6.4% ,是免耕不同覆蓋措施中改善土壤結(jié)構(gòu)和提高土壤有機(jī)碳含量的最佳處理。
[1] 胡錦昇, 樊軍, 付威, 王歡, 郝明德. 保護(hù)性耕作措施對(duì)旱地春玉米土壤水分和硝態(tài)氮淋溶累積的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(4): 1188-1198.
HU J S, FAN J, FU W, WANG H, HAO M D. Effects of conservation tillage measures on soil water and NO3--N leaching in dryland maize cropland. Chinese Journal of Applied Ecology, 2019, 30(4): 1188-1198. (in Chinese)
[2] 尚金霞, 李軍, 賈志寬, 張麗華. 渭北旱塬春玉米田保護(hù)性耕作蓄水保墑效果與增產(chǎn)增收效應(yīng). 中國農(nóng)業(yè)科學(xué), 2010, 43(13): 2668-2678. doi:10.3864/j.issn.0578-1752.2010.13.006.
SHANG J X, LI J, JIA Z K, ZHANG L H. Soil water conservation effect, yield and income increments of conservation tillage measures in spring maize field on Weibei highland. Scientia Agricultura Sinica, 2010, 43(13): 2668-2678. doi:10.3864/j.issn.0578-1752.2010.13.006. (in Chinese)
[3] 潘雅文, 樊軍, 郝明德, 陳旭. 黃土塬區(qū)長期不同耕作、覆蓋措施對(duì)表層土壤理化性狀和玉米產(chǎn)量的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2016, 22(6): 1558-1567.
PAN Y W, FAN J, HAO M D, CHEN X. Effects of long-term tillage and mulching methods on properties of surface soil and maize yield in tableland region of the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1558-1567. (in Chinese)
[4] 陳強(qiáng), 孫濤, 宋春雨. 免耕對(duì)土壤物理性狀及作物產(chǎn)量影響. 草業(yè)科學(xué), 2014, 31(4): 38-42.
CHEN Q, SUN T, SONG C Y. Influence of no-tillage on soil physical properties and crop production. Pratacultural Science, 2014, 31(4): 38-42. (in Chinese)
[5] 吳楊, 賈志寬, 邊少鋒, 王永軍. 不同方式周年覆蓋對(duì)黃土高原玉米農(nóng)田土壤水熱的調(diào)控效應(yīng). 中國農(nóng)業(yè)科學(xué), 2018, 51(15): 2872-2885. doi: 10.3864/j.issn.0578-1752.2018.15.004.
WU Y, JIA Z K, BIAN S F, WANG Y J. Regulation effects of different mulching patterns during the whole season on soil water and temperature in the maize field of loess plateau. Scientia Agricultura Sinica, 2018, 51(15): 2872-2885. doi: 10.3864/j.issn.0578-1752.2018. 15.004. (in Chinese)
[6] 陳林, 楊新國, 翟德蘋, 宋乃平, 楊明秀, 候靜. 檸條秸稈和地膜覆蓋對(duì)土壤水分和玉米產(chǎn)量的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(2): 108-116.
CHEN L, YANG X G, ZHAI D P, SONG N P, YANG M X, HOU J. Effects of mulching withCaragana powder and plastic film on soil water and maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 108-116. (in Chinese)
[7] 朱琳, 李世清. 地表覆蓋對(duì)玉米籽粒氮素積累和干物質(zhì)轉(zhuǎn)移“源-庫”過程的影響. 中國農(nóng)業(yè)科學(xué), 2017, 50(13): 2528-2537. doi:10.3864/j.issn.0578-1752.2017.13.012.
ZHU L, LI S Q. Effect of soil surface mulching on the maize source-sink relationship of nitrogen accumulation and dry matter transfer. Scientia Agricultura Sinica, 2017, 50(13): 2528-2537. doi:10.3864/j.issn.0578-1752.2017.13.012. (in Chinese)
[8] 劉萌, 付威, 樊軍, 代子俊, 郝明德. 耕作與覆蓋措施對(duì)黃土塬區(qū)春玉米田土壤水氣傳輸?shù)挠绊? 植物營養(yǎng)與肥料學(xué)報(bào), 2021, 27(5): 814-825.
LIU M, FU W, FAN J, DAI Z J, HAO M D. Effects of tillage and mulching methods on soil water and gas transport in spring maize field on the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 814-825. (in Chinese)
[9] 胡錦昇, 樊軍, 付威, 郝明德. 不同管理措施對(duì)黃土塬區(qū)農(nóng)田土壤水分調(diào)控和硝態(tài)氮淋溶累積的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2019, 25(2): 213-222.
HU J S, FAN J, FU W, HAO M D. Effect of different agricultural measures on soil water and NO3--N leaching and accumulation in cropland of the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 213-222. (in Chinese)
[10] BLANCO-CANQUI H, RUIS S J. No-tillage and soil physical environment. Geoderma, 2018, 326: 164-200.
[11] 閆雷, 董天浩, 喇樂鵬, 劉鳴一, 孫小賀, 孟慶堯, 張鈺瑩, 張乃文, 孟慶峰. 免耕和秸稈還田對(duì)東北黑土區(qū)土壤團(tuán)聚體組成及有機(jī)碳含量的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(22): 181-188.
YAN L, DONG T H, LA Y P, LIU M Y, SUN X H, MENG Q Y, ZHANG Y Y, ZHANG N W, MENG Q F. Effects of no-tillage and straw returning on soil aggregates composition and organic carbon content in black soil areas of Northeast China. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 181-188. (in Chinese)
[12] 周虎, 呂貽忠, 楊志臣, 李保國. 保護(hù)性耕作對(duì)華北平原土壤團(tuán)聚體特征的影響. 中國農(nóng)業(yè)科學(xué), 2007, 40(9): 1973-1979. doi:10. 3321/j.issn: 0578-1752.2007.09.017.
ZHOU H, Lü Y Z, YANG Z C, LI B G. Effects of conservation tillage on soil aggregates in Huabei plain, China. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979. doi:10.3321/j.issn: 0578-1752.2007.09.017. (in Chinese)
[13] 榮勤雷, 李若楠, 黃紹文, 周春火, 唐繼偉, 王麗英, 張彥才. 不同施肥模式下設(shè)施菜田土壤團(tuán)聚體養(yǎng)分和微生物量特征. 植物營養(yǎng)與肥料學(xué)報(bào), 2019, 25(7): 1084-1096.
RONG Q L, LI R N, HUANG S W, ZHOU C H, TANG J W, WANG L Y, ZHANG Y C. Characteristics of nutrients and microbial biomass in soil aggregates under different fertilization modes in greenhouse vegetable production. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1084-1096. (in Chinese)
[14] NDZELU B S, DOU S, ZHANG X W, ZHANG Y F, MA R, LIU X. Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil and Tillage Research, 2021, 213: 105090.
[15] 高洪軍, 彭暢, 張秀芝, 李強(qiáng), 賈立輝, 朱平. 不同秸稈還田模式對(duì)黑鈣土團(tuán)聚體特征的影響. 水土保持學(xué)報(bào), 2019, 33(1): 75-79.
GAO H J, PENG C, ZHANG X Z, LI Q, JIA L H, ZHU P. Effects of different straw returning modes on characteristics of soil aggregates in chernozem soil. Journal of Soil and Water Conservation, 2019, 33(1): 75-79. (in Chinese)
[16] 李娟, 廖洪凱, 龍健, 陳彩云. 喀斯特山區(qū)土地利用對(duì)土壤團(tuán)聚體有機(jī)碳和活性有機(jī)碳特征的影響. 生態(tài)學(xué)報(bào), 2013, 33(7): 2147-2156.
LI J, LIAO H K, LONG J, CHEN C Y. Effect of land use on the characteristics of organic carbon and labile organic carbon in soil aggregates in Karst Mountain areas. Acta Ecologica Sinica, 2013, 33(7): 2147-2156. (in Chinese)
[17] MODAK K, BISWAS D R, GHOSH A, PRAMANIK P, DAS T K, DAS S, KUMAR S, KRISHNAN P, BHATTACHARYYA R. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical India. Soil and Tillage Research, 2020, 202: 104649.
[18] 王秀穎, 高曉飛, 劉和平, 路炳軍. 土壤水穩(wěn)性大團(tuán)聚體測(cè)定方法綜述. 中國水土保持科學(xué), 2011, 9(3): 106-113.
WANG X Y, GAO X F, LIU H P, LU B J. Review of analytical methods for aggregate size distribution and water-stability of soil macro-aggregates. Science of Soil and Water Conservation, 2011, 9(3): 106-113. (in Chinese)
[19] 王歡, 付威, 胡錦昇, 樊軍, 郝明德. 渭北旱塬管理措施對(duì)冬小麥地土壤剖面物理性狀的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2019, 25(7): 1097-1106.
WANG H, FU W, HU J S, FAN J, HAO M D. Effects of agricultural measures on soil profile physical properties of winter wheat field in Weibei highland, China. Journal of Plant Nutrition and Fertilizers,, 2019, 25(7): 1097-1106. (in Chinese)
[20] HUANG T, YANG H, HUANG C, JU X. Effects of nitrogen management and straw return on soil organic carbon sequestration and aggregate-associated carbon. European Journal of Soil Science, 2018, 69(5): 913-923.
[21] HAN X H, ZHAO F Z, TONG X G, DENG J, YANG G H, CHEN L M, KANG D. Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation. Catena, 2017, 150: 317-327.
[22] ZHAO F Z, FAN X D, REN C J, ZHANG L, HAN X H, YANG G H, WANG J, DOUGHTY R. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. Catena, 2018, 171: 622-631.
[23] QIN X L, HUANG T T, LU C, DANG P F, ZHANG M M, GUAN X K, WEN P F, WANG T C, CHEN Y L, SIDDIQUE K H M. Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency. Agricultural Water Management, 2021, 256: 107128.
[24] KETEMA H, YIMER F. Soil property variation under agroforestry based conservation tillage and maize based conventional tillage in Southern Ethiopia. Soil and Tillage Research, 2014, 141: 25-31.
[25] 武均, 蔡立群, 齊鵬, 張仁陟, Yeboah Stephen, 岳丹, 高小龍. 不同耕作措施下旱作農(nóng)田土壤團(tuán)聚體中有機(jī)碳和全氮分布特征. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2015, 23(3): 276-284.
WU J, CAI L Q, QI P, ZHANG R Z, STEPHEN Y, YUE D, GAO X L. Distribution characteristics of organic carbon and total nitrogen in dry farmland soil aggregates under different tillage methods in the Loess Plateau of central Gansu Province. Chinese Journal of Eco- Agriculture, 2015, 23(3): 276-284. (in Chinese)
[26] 王浩. 黃土旱塬麥玉輪作田長期定位耕作的土壤改良及耕地生產(chǎn)力提升效應(yīng)研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2020.
WANG H. Study on soil improvement and productivity improvement effect of long-term fixed tillage in wheat-jade rotation field on loess plateau[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[27] KAN Z R, LIU W X, LIU W S, LAL R, DANG Y P, ZHAO X, ZHANG H L. Mechanisms of soil organic carbon stability and its response to no-till: a global synthesis and perspective. Global Change Biology, 2022, 28(3): 693-710.
[28] 白怡婧, 劉彥伶, 李渝, 黃興成, 張雅蓉, 蔣太明, 秦松. 長期不同施肥和耕作對(duì)坡耕地黃壤團(tuán)聚體組成及有機(jī)碳的影響. 中國水土保持科學(xué), 2021, 19(2): 52-60.
BAI Y J, LIU Y L, LI Y, HUANG X C, ZHANG Y R, JIANG T M, QIN S. Effect of long-term different tillage and fertilization measures on aggregates composition and organic carbon in yellow soil slope cultivated land. Science of Soil and Water Conservation, 2021, 19(2): 52-60. (in Chinese)
[29] 李景, 吳會(huì)軍, 武雪萍, 王碧勝, 姚宇卿, 呂軍杰. 長期免耕和深松提高了土壤團(tuán)聚體顆粒態(tài)有機(jī)碳及全氮含量. 中國農(nóng)業(yè)科學(xué), 2021, 54(2): 334-344. doi: 10.3864/j.issn.0578-1752.2021.02.009.
LI J, WU H J, WU X P, WANG B S, YAO Y Q, Lü J J. Long-term conservation tillage enhanced organic carbon and nitrogen contents of particulate organic matter in soil aggregates. Scientia Agricultura Sinica, 2021, 54(2): 334-344. doi: 10.3864/j.issn.0578-1752.2021.02. 009. (in Chinese)
[30] 李輝信, 袁穎紅, 黃欠如, 胡鋒, 潘根興. 不同施肥處理對(duì)紅壤水稻土團(tuán)聚體有機(jī)碳分布的影響. 土壤學(xué)報(bào), 2006, 43(3): 422-429.
LI H X, YUAN Y H, HUANG Q R, HU F, PAN G X. Effects of fertilization on soil organic carbon distribution in various aggregates of red paddy soil. Acta Pedologica Sinica, 2006, 43(3): 422-429. (in Chinese)
[31] MESSIGA A J, ZIADI N, ANGERS D A, MOREL C, PARENT L E. Tillage practices of a clay loam soil affect soil aggregation and associated C and P concentrations. Geoderma, 2011, 164(3/4): 225-231.
[32] RAKHSH F, GOLCHIN A, BEHESHTI AL AGHA A, NELSON P N. Mineralization of organic carbon and formation of microbial biomass in soil: Effects of clay content and composition and the mechanisms involved. Soil Biology and Biochemistry, 2020, 151: 108036.
[33] 薛斌, 黃麗, 魯劍巍, 李小坤, 殷志遙, 劉智杰, 陳濤. 連續(xù)秸稈還田和免耕對(duì)土壤團(tuán)聚體及有機(jī)碳的影響. 水土保持學(xué)報(bào), 2018, 32(1): 182-189.
XUE B, HUANG L, LU J W, LI X K, YIN Z Y, LIU Z J, CHEN T. Effects of continuous straw returning and no-tillage on soil aggregates and organic carbon. Journal of Soil and Water Conservation, 2018, 32(1): 182-189. (in Chinese)
[34] 楊永輝, 武繼承, 丁晉利, 張潔梅, 潘曉瑩, 何方. 長期免耕對(duì)不同土層土壤結(jié)構(gòu)與有機(jī)碳分布的影響. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017, 48(9): 173-182.
YANG Y H, WU J C, DING J L, ZHANG J M, PAN X Y, HE F. Effects of long-term no-tillage on soil structure and organic carbon distribution in different soil layers. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 173-182. (in Chinese)
[35] 李琳, 李素娟, 張海林, 陳阜. 保護(hù)性耕作下土壤碳庫管理指數(shù)的研究. 水土保持學(xué)報(bào), 2006, 20(3): 106-109.
LI L, LI S J, ZHANG H L, CHEN F. Study on soil C pool management index of conversation tillage. Journal of Soil and Water Conservation, 2006, 20(3): 106-109. (in Chinese)
[36] ZHENG F J, WU X P, ZHANG M N, LIU X T, SONG X J, LU J J, WANG B S, JAN VAN GROENIGEN K, LI S P. Linking soil microbial community traits and organic carbon accumulation rate under long-term conservation tillage practices. Soil and Tillage Research, 2022, 220: 105360.
[37] 趙晶, 劉萌, 付威, 牛育華, 郝明德. 傳統(tǒng)耕作結(jié)合秸稈地膜雙元覆蓋是提高渭北旱塬春玉米產(chǎn)量和養(yǎng)分吸收的有效措施. 植物營養(yǎng)與肥料學(xué)報(bào), 2021, 27(7): 1151-1163.
ZHAO J, LIU M, FU W, NIU Y H, HAO M D. Coventional tillage and dual mulching of straw and plastic film has stable effects on spring maize yield and nutrient absorption in Weibei dryland. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1151-1163. (in Chinese)
[38] 邱莉萍, 張興昌, 張晉愛. 黃土高原長期培肥土壤團(tuán)聚體中養(yǎng)分和酶的分布. 生態(tài)學(xué)報(bào), 2006, 26(2): 364-372.
QIU L P, ZHANG X C, ZHANG J A. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization. Acta Ecologica Sinica, 2006, 26(2): 364-372. (in Chinese)
[39] 高會(huì)議, 郭勝利, 劉文兆, 車升國, 李淼. 不同施肥處理對(duì)黑壚土各粒級(jí)團(tuán)聚體中有機(jī)碳含量分布的影響. 土壤學(xué)報(bào), 2010, 47(5): 931-938.
GAO H Y, GUO S L, LIU W Z, CHE S G, LI M. Effect of fertilization on organic carbon distribution in various fractions of aggregates in caliche soils. Acta Pedologica Sinica, 2010, 47(5): 931-938. (in Chinese)
[40] 孫天聰, 李世清, 邵明安. 長期施肥對(duì)褐土有機(jī)碳和氮素在團(tuán)聚體中分布的影響. 中國農(nóng)業(yè)科學(xué), 2005, 38(9): 1841-1848.
SUN T C, LI S Q, SHAO M A. Effects of long-term fertilization on distribution of organic matters and nitrogen in cinnamon soil aggregates. Scientia Agricultura Sinica, 2005, 38(9): 1841-1848. (in Chinese)
Effect of No-Tillage Combined with Mulching on the Structure and Organic Carbon Content of Aggregates in Heilu Soil of the Weibei Dry Plateau
ZHOU MingXing1, DAI ZiJun1, FAN Jun1, 2, FU Wei1, HAO MingDe1, 2
1State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, Shaanxi;2Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi
【Objective】The aim of this study was to clarify the effects of long-term no-tillage and mulching measures on soil aggregate structure and organic carbon content in Weibei dry plateau farmland, and to explore suitable tillage measures to improve the local soil.【Method】On the basis of continuous 16-year field positioning experiments, a total of 5 field management measures were selected as experiment treatments, including traditional tillage (CT), no-tillage and no mulch (NT), no-tillage + straw mulch (NS), no-tillage + plastic film mulching (NP), and no-tillage + straw + plastic film mulching (NSP). The 0-40 cm ring knife and profile soil samples were collected during the spring maize harvest in October 2019, and the bulk density, aggregate particle size distribution and organic carbon content were determined.【Result】(1) No-tillage and mulching measures (NT, NP, NS and NSP) affected the bulk density and aggregate size distribution of Heilu soil. No-tillage and mulching measures both increased the soil bulk density of the plough layer (0-20 cm), of which 0-10 cm increased significantly (6.8%-17.8%). The changes of bulk density and porosity of the plough layer were opposite to those of the plough layer. The proportion of micro-aggregates was significantly reduced, which promoted the transformation of micro-aggregates into macro-aggregates. The weight percentage of aggregates of each particle size in the plough layer (0-20 cm) was distributed as follows: larger aggregates (0.25-2 mm)>large aggregates (>2 mm)>micro aggregates (0.053-0.25 mm)>powder. The clay fraction (<0.053 mm), the larger aggregates and silty clay fractions in the plow bottom layer (20-40 cm) were significantly higher than the macroaggregates and microaggregates. (2) Under no-tillage and mulching measures, the organic carbon content increased with the increase of aggregate particle size. In the 0-40 cm soil layer, the organic carbon content of the aggregates of each particle size under NT treatment was significantly lower than that under CT treatment, while the NS and NSP treatments were significantly higher than those under CT treatment. (3) The particle size distribution of aggregates was the dominant factor causing the change of the nutrient contribution rate of aggregates. The total organic carbon accumulation in the plough layer was dominated by aggregates>0.25 mm, and the plough layer was mainly composed of silty clay components and organic carbon in larger aggregates. 【Conclusion】Long-term no-tillage and mulching measures promoted the transformation of micro-aggregates into macro-aggregates in the plough layer. Compared with traditional tillage, no-tillage and plastic film mulching decreased the organic carbon content of aggregates of various particle sizes in Heilong soil and in the plough layer, respectively. However, no-tillage mulching (NS, NP and NSP) increased the organic carbon content of aggregates of each particle size compared with no mulching. Straw mulching alone had the best effect, and significantly improved the bulk density and the organic carbon content of each particle size aggregate increased the most, which was the best treatment in this study.
no-tillage; coated; straw mulching; organic carbon; aggregate; Helu soil; Weibei dry plateau
10.3864/j.issn.0578-1752.2023.12.008
2022-05-05;
2022-08-09
中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDA23070202)、國家自然科學(xué)基金項(xiàng)目(41830754)
周明星,E-mail:zmx19980407@163.com。通信作者樊軍,E-mail:fanjun@ms.iswc.ac.cn
(責(zé)任編輯 李云霞)