郭鑫虎,馬靜,李仲峰,初金鵬,徐海成,賈殿勇,代興龍,賀明榮
長期定位條件下栽培模式對(duì)麥田土壤理化性質(zhì)和氮素平衡的影響
郭鑫虎1,馬靜1,李仲峰1,初金鵬1,徐海成2,賈殿勇3,代興龍1,賀明榮1
1山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/作物生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室/農(nóng)業(yè)農(nóng)村部作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018;2濰坊科技學(xué)院,山東濰坊 262799;3南陽師范學(xué)院,河南南陽 473061
【目的】基于2009—2010小麥生長季開始設(shè)置的長期定位試驗(yàn),研究栽培模式對(duì)土壤理化性質(zhì)、冬小麥氮素營養(yǎng)指數(shù)、麥田氮素供需平衡狀況、氮素吸收利用和籽粒產(chǎn)量的影響,以期為進(jìn)一步優(yōu)化土壤-作物系統(tǒng)綜合管理模式提供理論指導(dǎo)?!痉椒ā吭囼?yàn)共設(shè)置當(dāng)?shù)剞r(nóng)戶模式(T1)、農(nóng)戶基礎(chǔ)上的改良模式(T2)、不計(jì)生產(chǎn)成本的高產(chǎn)更高產(chǎn)模式(T3)和土壤-作物系統(tǒng)綜合管理模式(T4)4個(gè)栽培模式?!窘Y(jié)果】歷經(jīng)13個(gè)小麥-玉米生長季后,T1、T2、T3、T4模式小麥播前容重分別降低6.21%、9.80%、12.25%和13.56%,有機(jī)質(zhì)含量分別提高21.88%、26.80%、32.05%和36.39%,全氮含量分別提高34.16%、12.38%、39.60%和20.79%,堿解氮含量分別提高47.85%、48.87%、74.49%和62.21%,速效磷含量分別提高62.73%、36.56%、297.93%和68.68%,速效鉀含量分別提高14.36%、40.00%、221.20%和59.60%。0—100 cm土層無機(jī)氮積累量分別提高了33.96%、10.32%、52.77%和19.49%。pH分別從最初的7.50下降至6.28、6.68、5.35和6.64。2020—2022生長季4個(gè)栽培模式間籽粒產(chǎn)量和氮素的吸收利用差異顯著。與T1模式相比,T2、T3、T4模式的籽粒產(chǎn)量分別提高14.14%、27.65%、22.52%,氮素利用率分別提高54.80%、19.97%、49.15%,氮肥利用率分別提高72.95%、37.54%、48.15%,氮素表觀損失量分別降低49.76%、11.62%、44.14%,氮素表觀損失率分別降低24.63%、11.62%、26.68%。T4模式開花期的整株和成熟期的穗子處于氮素供需平衡?!窘Y(jié)論】歷經(jīng)13個(gè)小麥-玉米生長季后,4個(gè)栽培模式0—20 cm土層土壤酸化趨勢明顯,表層土壤容重降低,有機(jī)質(zhì)、全氮、速效氮磷鉀養(yǎng)分含量升高,0—100 cm土層無機(jī)氮積累量相應(yīng)升高。與其他3種模式相比,T4模式更有利于實(shí)現(xiàn)土壤理化性狀、小麥籽粒產(chǎn)量和氮素吸收利用的協(xié)同改善,但其氮肥利用率仍有待進(jìn)一步提高,且在現(xiàn)有基礎(chǔ)上僅通過降低施氮量無法實(shí)現(xiàn)其產(chǎn)量和氮素吸收利用的進(jìn)一步協(xié)同優(yōu)化。
土壤理化性質(zhì);小麥籽粒產(chǎn)量;氮素利用率;氮素營養(yǎng)指數(shù);氮素平衡
【研究意義】近年來,土壤-作物系統(tǒng)綜合管理被廣泛用于提高糧食作物產(chǎn)量和養(yǎng)分利用效率,同時(shí)減少環(huán)境污染[1-3]。本課題組以協(xié)同提高小麥產(chǎn)量和氮素利用效率為目標(biāo),在系統(tǒng)開展種植密度、播期、氮肥用量、播種方式等單因子和互作效應(yīng)研究的基礎(chǔ)上[4-11],從2009—2010年小麥生長季開始設(shè)計(jì)和構(gòu)建了4種綜合管理模式,即當(dāng)?shù)剞r(nóng)戶模式、農(nóng)戶基礎(chǔ)上的改良模式、不計(jì)生產(chǎn)成本的高產(chǎn)更高產(chǎn)模式和土壤-作物系統(tǒng)綜合管理模式。其中,土壤-作物系統(tǒng)綜合管理模式以寬幅密植、減量施氮和適當(dāng)延后播期為顯著特征。與此同時(shí),與其他課題組合作,開展了小麥-玉米周年高產(chǎn)高效土壤-作物系統(tǒng)綜合管理模式的構(gòu)建和研究?!厩叭搜芯窟M(jìn)展】相關(guān)的研究表明,土壤-作物系統(tǒng)綜合管理的應(yīng)用利于實(shí)現(xiàn)作物產(chǎn)量、資源利用效率和經(jīng)濟(jì)效益的協(xié)同提高[12-16],可在減少21.39%的氮肥投入量的基礎(chǔ)上,較農(nóng)戶習(xí)慣模式提高小麥-玉米周年產(chǎn)量33.56%[17]。歷經(jīng)13個(gè)小麥-玉米生長季,實(shí)現(xiàn)了小麥產(chǎn)量較當(dāng)?shù)剞r(nóng)民習(xí)慣模式平均提高22.52%,麥田氮素利用效率平均提高49.15%的效果?!颈狙芯壳腥朦c(diǎn)】長期定位條件下,土壤-作物系統(tǒng)綜合管理無疑會(huì)對(duì)麥田土壤肥力性狀和氮素供需平衡狀況產(chǎn)生顯著的影響。明確這種影響的性質(zhì)、方向和大小,對(duì)于構(gòu)建與變化后的土壤肥力相適應(yīng)的土壤-作物系統(tǒng)綜合管理模式具有指導(dǎo)意義?!緮M解決的關(guān)鍵問題】基于13個(gè)小麥-玉米生長季的長期定位試驗(yàn),系統(tǒng)研究不同栽培模式對(duì)土壤理化性質(zhì)、小麥氮素吸收利用、植株氮素營養(yǎng)指數(shù)、麥田氮素供需平衡狀況和籽粒產(chǎn)量的影響,以期為進(jìn)一步優(yōu)化土壤-作物系統(tǒng)綜合管理模式,在更高水平上實(shí)現(xiàn)小麥籽粒產(chǎn)量和氮素吸收利用的協(xié)同提高提供理論指導(dǎo)。
長期定位試驗(yàn)田位于山東省泰安市大汶口鎮(zhèn)東武村(35°57′N,117°3′E),該地區(qū)屬溫帶大陸性季風(fēng)氣候區(qū),年均日照時(shí)間2 627 h,≥10 ℃年積溫4 213℃,年均無霜期195 d,年均降雨量697 mm,但多集中于6—9月,近40年小麥生長季平均降雨量為188.31 mm。種植制度為冬小麥(L.)-夏玉米(L.)輪作,一年兩熟,土壤質(zhì)地為粉砂壤土。
以大穗型冬小麥品種泰農(nóng)18為供試材料,設(shè)置4種栽培模式,分別為當(dāng)?shù)剞r(nóng)戶模式(T1)、農(nóng)戶基礎(chǔ)上的改良模式(T2)、不計(jì)生產(chǎn)成本的高產(chǎn)更高產(chǎn)模式(T3)和土壤-作物系統(tǒng)綜合管理模式(T4)。T1模式為冬小麥播前玉米秸稈旋耕還田,夏玉米免耕播種+小麥秸稈覆蓋,其他3種模式為冬小麥播前玉米秸稈翻耕還田,夏玉米播前旋耕+秸稈還田。采用水表和微噴帶精確灌溉,每次灌水量為70 mm,其中T1模式在播種后、越冬期、返青期、開花期、花后15 d灌水,其他3種模式在播種后、拔節(jié)期、開花期和花后15 d灌水。各栽培模式的播期、種植密度和肥料運(yùn)籌詳見表1,其他管理措施和高產(chǎn)麥田一致。試驗(yàn)采取隨機(jī)區(qū)組設(shè)計(jì),每個(gè)栽培模式設(shè)置4個(gè)重復(fù),小區(qū)面積為240 m2(40 m×6 m)。以13個(gè)生長季的長期定位試驗(yàn)為研究平臺(tái),于2020—2022年設(shè)置小區(qū)面積為60 m2(10 m×6 m)的不施氮小區(qū)以計(jì)算各模式的凈礦化量和氮肥利用率。
表1 4種栽培模式的種植密度、播期和肥料運(yùn)籌
T1:當(dāng)?shù)剞r(nóng)戶模式;T2:農(nóng)戶基礎(chǔ)上的改良模式;T3:不計(jì)生產(chǎn)成本的高產(chǎn)更高產(chǎn)模式;T4:土壤-作物系統(tǒng)綜合管理模式。R:冬小麥返青期;J:冬小麥、夏玉米拔節(jié)期;VT:夏玉米抽雄期;VT7:夏玉米抽雄后7 d。下同
T1: local farmer mode; T2: farmer-based improvement mode; T3: high-yield and higher-yield mode regardless of production cost; T4: soil-crop system integrated management mode. R: Regreening stage of winter wheat; J: Jointing stage of winter wheat or summer maize; VT: Tasseling stage of summer maize; VT7: 7 days after tasseling stage of summer maize.the same as below
1.3.1 土壤理化性質(zhì) 于冬小麥播前采用環(huán)刀法測定0—20 cm土層土壤的容重。用土鉆在每個(gè)小區(qū)取5點(diǎn),取0—100 cm土層土壤(20 cm/層),剔除石礫和植物殘根等雜物后混勻過10目篩,將0—100 cm土層土壤保存于-20 ℃的冰箱中待測無機(jī)氮(銨態(tài)氮與硝態(tài)氮),另取播前0—20 cm土層土壤測定有機(jī)質(zhì)、全氮、堿解氮、速效磷、速效鉀含量和pH等理化指標(biāo),具體測定方法詳見《土壤農(nóng)業(yè)化學(xué)分析方法》[18]。
1.3.2 地上部氮素積累量 分別于冬小麥的返青期和拔節(jié)期取30株長勢均勻的整株,于開花期、花后15 d、花后25 d和成熟期取30個(gè)長勢均勻的單莖。將花后各期所取單莖分為莖、葉和穗器官(除開花期為整個(gè)穗外,其他時(shí)期將穗子分為籽粒和穎殼+穗軸兩部分)。105 ℃殺青30 min后,75 ℃烘干至恒重然后稱重。稱重后的植株和器官采用微型植物粉碎機(jī)粉碎,然后采用半微量凱氏定氮法測定全氮,各器官的干重與氮素含量的乘積為地上部氮素積累量。
1.3.3 氮素供需平衡 根據(jù)氮平衡原理計(jì)算氮素表觀損失量[19],氮輸入包括施氮量、播前0—100 cm無機(jī)氮積累量和凈礦化量3部分,氮輸出包括成熟期地上部氮素積累量、成熟期0—100 cm無機(jī)氮積累量和氮表觀損失量3部分,其中凈礦化量在不考慮氮肥激發(fā)效應(yīng)情況下通過不施氮小區(qū)計(jì)算而得。
無機(jī)氮積累量(kg·hm-2)=土層厚度(cm)×容重(g·cm-3)×無機(jī)氮含量(mg·kg-1)×0.1;
氮凈礦化量(kg·hm-2)=不施氮小區(qū)地上部氮素積累量(kg·hm-2)+不施氮小區(qū)成熟期0—100 cm無機(jī)氮積累量(kg·hm-2)-不施氮小區(qū)播前0—100 cm無機(jī)氮積累量(kg·hm-2);
氮表觀損失量(kg·hm-2)=施氮量(kg·hm-2)+播前0—100 cm無機(jī)氮積累量(kg·hm-2)+凈礦化量(kg·hm-2)-成熟期地上部氮素積累量(kg·hm-2)-成熟期0—100 cm無機(jī)氮積累量(kg·hm-2);
氮表觀損失率(%)=氮表觀損失量(kg·hm-2)/施氮量(kg·hm-2)×100。
1.3.4 氮素吸收利用和氮素營養(yǎng)指數(shù) 氮素吸收利用的相關(guān)指標(biāo)參考初金鵬等[20]的計(jì)算方法。
土壤供氮量(kg·hm-2)=施氮量(kg·hm-2)+播前0—100 cm土層土壤無機(jī)態(tài)氮積累量(kg·hm-2);
氮素利用率(kg·kg-1)=籽粒產(chǎn)量(kg·hm-2)/土壤供氮量(kg·hm-2);
氮素吸收效率(%)=成熟期地上部氮素積累量(kg·hm-2)/土壤供氮量(kg·hm-2)×100;
氮素內(nèi)在利用效率(kg·kg-1)=籽粒產(chǎn)量(kg·hm-2)/成熟期地上部氮素積累量(kg·hm-2);
氮肥利用率(%)=(施氮小區(qū)植株地上部氮累積量(kg·hm-2)-不施氮小區(qū)地上部植株氮累積量(kg·hm-2))/施氮量(kg·hm-2)×100。
氮素營養(yǎng)指數(shù)(nitrogen nutrition index,NNI)為實(shí)際氮濃度(Na,%)與臨界氮濃度(Nc,%)的比值[21],當(dāng)NNI>1時(shí),說明氮供應(yīng)盈余;當(dāng)NNI<1時(shí),說明氮供應(yīng)虧缺;當(dāng)NNI = 1時(shí),說明氮素供需平衡。臨界氮濃度的計(jì)算公式隨著生育時(shí)期的推進(jìn)有所不同,冬小麥開花期前關(guān)注整株的營養(yǎng)狀態(tài),采用公式(2)[21-22],開花期后關(guān)注穗子的營養(yǎng)狀態(tài),采用公式(3)[23],開花期則分別計(jì)算整株和穗子的氮素營養(yǎng)狀態(tài)。
NNI = Na/ Nc(1)
Nc= 5.35 × WP-0.44(2)
Nc= 2.85 × WE-0.17(3)
式中,WP為單位面積冬小麥地上部的干物質(zhì)重(t·hm-2);WE為單位面積冬小麥的穗重(t·hm-2)。
1.3.5 冬小麥籽粒產(chǎn)量 于冬小麥成熟期在長勢均勻的區(qū)域劃出2 m×1.5 m的小區(qū),將小區(qū)內(nèi)的麥穗全部收割,風(fēng)干后脫粒并稱重,用谷物水分分析儀測定實(shí)際含水量,將其含水量調(diào)整為13%得到籽粒產(chǎn)量。
數(shù)據(jù)的整理與分析采用Microsoft Excel 2010和DPS 7.05,差異顯著性檢驗(yàn)采用LSD法進(jìn)行,圖表的繪制采用SigmaPlot 10.0和Microsoft Word 2010。
2020—2022年生長季小麥播前測定結(jié)果顯示(表2),歷經(jīng)13個(gè)小麥-玉米生長季后,4種栽培模式0—20 cm土層的土壤容重均顯著降低,T1、T2、T3、T4模式分別比2009—2010年生長季小麥播前降低6.21%、9.80%、12.25%和13.56%。4個(gè)模式間相比較表現(xiàn)為T1>T2>T3>T4,與T1模式相比較,T2、T3和T4模式分別下降3.83%、6.45%和7.84%。與此同時(shí),0—20 cm土層土壤pH均呈現(xiàn)出明顯酸化趨勢,T1、T2、T3和T4模式的pH分別從最初的7.50下降至6.28、6.68、5.36和6.64,其中T3模式酸化程度最嚴(yán)重。
歷經(jīng)13個(gè)小麥-玉米生長季后,小麥播前0—20 cm土層的有機(jī)質(zhì)、全氮、堿解氮、速效磷和速效鉀含量均顯著提高,T1、T2、T3、T4模式的土壤有機(jī)質(zhì)含量分別提高21.88%、26.80%、32.05%和36.39%,全氮含量分別提高34.16%、12.38%、39.60%和20.79%,堿解氮含量分別提高47.85%、48.87%、74.49%和62.21%,速效磷含量分別提高62.73%、36.56%、297.93%和68.68%,速效鉀含量分別提高14.36%、40.00%、221.20%和59.60%。
4個(gè)模式土壤有機(jī)質(zhì)含量從高到低的排序?yàn)門4>T3>T2>T1。T2、T3、T4模式的表層土壤有機(jī)質(zhì)含量分別比T1模式高4.03%、8.34%和11.90%。全氮含量的排序?yàn)門3>T1>T4>T2。T2、T4模式的全氮含量分別較T1模式低16.24%、9.96%,T3模式則高4.06%。堿解氮含量表現(xiàn)為T3最高,T4次之,T1和T2最低。T2、T3、T4模式堿解氮含量分別比T1模式高0.68%、18.02%和9.71%。速效磷含量表現(xiàn)為T3最高,T4和T1次之,T2最低。T3、T4模式速效磷含量分別較T1模式高144.54%和3.84%,而T2模式降低了16.08%。速效鉀含量表現(xiàn)為T3>T4>T2>T1。與T1模式相比較,T2、T3和T4模式的速效鉀含量分別增加22.42%、180.86%和39.56%。
表2 栽培模式對(duì)冬小麥播前0—20 cm土層土壤理化性質(zhì)的影響
多重比較僅在同一列和同一年份間進(jìn)行,不同字母代表在<0.05水平上差異顯著(n = 4)。下同
Values followed by the different letters within a column in the same year are significantly different at<0.05 level as determined by the LSD test (n = 4). The same as below
冬小麥播前0—100 cm土層無機(jī)氮積累量測定結(jié)果顯示,2020—2022年生長季T1、T2、T3、T4模式兩年均值分別為236.34、194.62、269.51和210.80 kg·hm-2,分別比2009—2010年生長季提高了33.96%、10.32%、52.77%和19.49%。與T1模式相比較,T2和T4模式分別低17.65%和10.81%,而T3模式高14.04%(圖1)。
氮素營養(yǎng)指數(shù)常用來表征小麥植株氮素供需平衡狀況,開花前一般基于地上部氮素積累量計(jì)算氮素營養(yǎng)指數(shù)。由表3可知,返青期各栽培模式的氮素營養(yǎng)指數(shù)均小于1,說明小麥植株處于氮素虧缺狀態(tài),各模式均需要補(bǔ)充氮肥。進(jìn)入拔節(jié)期,T1模式已于返青期追施氮肥,T1和T3模式的氮素營養(yǎng)指數(shù)大于1,說明小麥植株處于氮素盈余狀態(tài)。T2、T4模式的氮素營養(yǎng)指數(shù)小于1,說明小麥植株處于氮虧缺狀態(tài)。拔節(jié)期追施氮肥后,開花期測定的氮素營養(yǎng)指數(shù)顯示,T1、T2模式的氮素營養(yǎng)指數(shù)均小于1,小麥植株處于氮虧缺狀態(tài),其中T2模式的氮素虧缺較為嚴(yán)重。T4模式的氮素營養(yǎng)指數(shù)等于1,小麥植株氮素供需平衡,而T3模式的氮素營養(yǎng)指數(shù)大于1,小麥植株處于氮素盈余狀態(tài)。分析基于穗部氮素積累計(jì)算的氮素營養(yǎng)指數(shù)(開花期-成熟期)可知,隨著花前營養(yǎng)器官中貯藏氮素和花后吸收氮素源源不斷地向穗部轉(zhuǎn)運(yùn),各栽培模式的氮素營養(yǎng)指數(shù)均逐漸提高,到成熟期,T3模式的氮素營養(yǎng)指數(shù)大于1,處于氮素盈余狀態(tài),T4模式的氮素營養(yǎng)指數(shù)等于1,氮素供需平衡,T1、T2模式的氮素營養(yǎng)指數(shù)均小于1,均處于氮素虧缺狀態(tài),其中T1模式的氮素虧缺更為嚴(yán)重。
誤差線表示4次重復(fù)的標(biāo)準(zhǔn)差。多重比較僅在同一年份間進(jìn)行,不同字母代表在P<0.05水平上差異顯著(n = 4)
表3 栽培模式對(duì)2020—2022年冬小麥生育期氮素營養(yǎng)指數(shù)的影響
返青期至開花期a采用公式2計(jì)算氮素營養(yǎng)指數(shù);開花期b至成熟期采用公式3計(jì)算氮素營養(yǎng)指數(shù)
Nitrogen nutrient index formula 2 is used from revival stage to anthesis stage a; Nitrogen nutrient index formula 3 is used from anthesis stage b to maturity stage
如表4所示,2個(gè)生長季的籽粒產(chǎn)量均表現(xiàn)為T3>T4>T2>T1,其中T2、T3、T4模式分別比T1模式提高14.14%、27.65%和22.52%。與籽粒產(chǎn)量有所不同,2個(gè)生長季的氮素利用率均表現(xiàn)為T2>T4>T3>T1,其中T2、T3、T4模式分別比T1模式提高54.80%、19.97%和49.15%。2個(gè)生長季的氮素吸收效率均表現(xiàn)為T2=T4>T3>T1,其中T2、T3、T4模式分別比T1模式提高43.17%、25.93%和43.91%。2個(gè)生長季的氮素內(nèi)在利用效率有所差異,2020—2021年表現(xiàn)為T2>T1=T4>T3,而2021—2022年表現(xiàn)為T2>T4>T1>T3,其中T2、T4模式分別比T1模式提高8.12%和3.64%,T3模式比T1模式降低了4.73%。2個(gè)生長季的氮肥利用率均表現(xiàn)為T2>T4>T3>T1,其中T2、T3、T4模式分別比T1模式提高72.95%、37.54%和48.15%。
由表5可知,2020—2022年冬小麥生長季土壤氮凈礦化量表現(xiàn)為T3模式最高,T4模式次之,T1和T2模式最低。播前土壤無機(jī)氮起始量表現(xiàn)為T3>T1>T4>T2。植株吸氮量則表現(xiàn)為T3>T4>T2>T1。2個(gè)生長季土壤無機(jī)氮起始量與土壤氮凈礦化量之和高達(dá)290.43—406.98 kg·hm-2,已經(jīng)遠(yuǎn)超過小麥植株吸氮量(209.36—285.20 kg·hm-2)。
受施氮量、播前土壤無機(jī)氮起始量、生長季內(nèi)土壤凈礦化量和小麥植株吸氮量的影響,不同模式的氮?dú)埩袅坎町愶@著,2個(gè)生長季均表現(xiàn)為T3>T1>T4>T2,其中T3模式比T1模式增加4.96%,T2和T4模式比T1模式減少25.36%和15.51%。2個(gè)生長季氮素表觀損失量均表現(xiàn)為T1>T3>T4>T2,其中T2、T3和T4模式分別比T1模式降低49.76%、11.62%和44.14%。2個(gè)生長季氮素表觀損失率表現(xiàn)為T1模式最高,T3模式次之,T2和T4模式最低,其中T2、T3和T4模式分別比T1模式降低24.63%、11.62%、26.68%。
表4 栽培模式對(duì)2020—2022年冬小麥籽粒產(chǎn)量和氮素吸收利用的影響
表5 栽培模式對(duì)2020—2022年冬小麥生育期氮素供需平衡的影響
土壤理化性質(zhì)受種植年限、施肥量、秸稈還田、耕作措施等多重因素的影響。前人研究表明,長期氮磷鉀配施有機(jī)肥能夠提高土壤的有機(jī)質(zhì)、全氮及速效養(yǎng)分的含量[24-26]。秸稈還田配合深耕不僅增加耕層厚度、降低土壤容重且增加土壤速效養(yǎng)分,改善土壤質(zhì)量[27-29]。本研究表明,歷經(jīng)13個(gè)小麥-玉米生長季后,各模式0—20 cm的土壤容重均有所降低,且該土層的有機(jī)質(zhì)、全氮、速效養(yǎng)分含量和0—100 cm的無機(jī)氮積累量均有所提高,與此同時(shí),各模式0—20 cm土層土壤的pH均出現(xiàn)明顯的酸化趨勢,且各模式的土壤理化性質(zhì)差異顯著。歷經(jīng)13個(gè)小麥-玉米生長季后的土壤容重表現(xiàn)為T1>T2>T3>T4。秸稈還田量和耕作方式的不同應(yīng)是導(dǎo)致模式間土壤容重存在差異的主要原因。秸稈還田量可通過影響土壤有機(jī)質(zhì)含量進(jìn)而影響土壤容重[30-31]。4種模式中T3模式的秸稈還田量最高,T4模式次之,T1模式最低[15,17]。另外,T1模式長期采取玉米季免耕+小麥季旋耕的耕作方式,使得秸稈積累存留在0—10 cm的土壤中[32-34],其他模式長期采取玉米季旋耕+小麥季深耕的耕作方式,有利于打破犁底層,秸稈深埋和降低土壤容重。土壤有機(jī)質(zhì)的積累受碳輸入量和輸出量的共同影響[35-36]。長期和適量秸稈還田有利于土壤有機(jī)質(zhì)含量的提高[37-41]。大量施氮?jiǎng)t會(huì)導(dǎo)致土壤C﹕N比下降,土壤微生物活性、土壤呼吸和碳循環(huán)相關(guān)酶活性提高,有機(jī)質(zhì)分解加快、含量降低[42-45]。施氮量與秸稈還田量失衡引起的土壤C﹕N比下降和有機(jī)質(zhì)分解加快應(yīng)是T3模式秸稈還田量最大但有機(jī)質(zhì)含量低于T4模式的原因,同時(shí)也解釋了為何T3模式的土壤容重高于T4模式。秸稈還田量低且施氮量與秸稈還田量失衡的共同作用使得T1模式的土壤有機(jī)質(zhì)含量最低。長期大量施用氮肥會(huì)引起土壤中H+積累并加速耕地的酸化速率[46-47]。較高的氮肥總投入量應(yīng)是T1和T3模式土壤酸化程度高于其他兩個(gè)模式的主要原因。正是由于T3模式氮肥總投入量最高,其酸化程度也最嚴(yán)重。全氮和速效養(yǎng)分含量的增加主要與肥料投入盈余積累和土壤的礦化量有關(guān)[48-50]。周年肥料投入量、秸稈還田量和礦化量均高于其他模式應(yīng)是T3模式土壤全氮和速效養(yǎng)分含量最高的原因。較高的秸稈還田量和礦化量則使得T4模式的土壤速效養(yǎng)分含量高于T1和T2模式,但較低施氮量和較高作物吸收量的結(jié)合導(dǎo)致其土壤全氮含量不僅低于T3模式也低于T1模式。低的氮肥、磷肥總投入量使得T2模式的土壤全氮含量和土壤速效磷含量最低。T1模式則因低秸稈還田量和鉀肥總投入量表現(xiàn)出最低的土壤速效鉀含量。0—100 cm土層的無機(jī)氮積累量隨施氮量的增加而增加[51]。較高的氮肥總投入量應(yīng)是T1和T3模式0—100 cm土層無機(jī)氮積累量高于其他兩個(gè)模式的主要原因。T3模式與T1模式比較,因其氮肥總投入量更高,0—100 cm土層中無機(jī)氮積累量也最高。
優(yōu)化氮肥供應(yīng)與作物植株氮素需求的匹配程度能夠減少氮素?fù)p失[52-54]。前人研究表明,減少施氮量、增加追肥比例、采用緩/控釋氮肥可以降低氮素表觀損失量[55-57],而秸稈還田條件下配施氮肥會(huì)增加氮素的表觀損失量[58-59]。T1與T3模式的氮素表觀損失量顯著高于其他模式,共性原因可能在于夏玉米季結(jié)束后土壤中大量的殘留無機(jī)氮和冬小麥季生育期間較高的施氮量。T1模式較低的吸氮量和T3模式較高的氮礦化量進(jìn)一步強(qiáng)化了這種氮素供應(yīng)過量,導(dǎo)致土壤無機(jī)氮超出了作物吸收和土壤及微生物固持氮的極限,冗余的氮素“溢出”土壤-作物系統(tǒng)[51,60]。反觀T4模式,其氮素表觀損失量超過85 kg·hm-2,氮肥利用率也只有32.24%。與T2模式相比較可知,降低施氮量可在顯著降低氮素表觀損失量的同時(shí),提高氮肥利用率。但氮素營養(yǎng)指數(shù)和產(chǎn)量數(shù)據(jù)表明,降低施氮量會(huì)導(dǎo)致小麥植株氮素供應(yīng)不足,產(chǎn)量降低。因此,對(duì)于T4模式而言,僅通過降低施氮量無法實(shí)現(xiàn)產(chǎn)量和氮素吸收利用的進(jìn)一步協(xié)同優(yōu)化。在現(xiàn)有基礎(chǔ)上進(jìn)一步提高產(chǎn)量和氮肥吸收利用水平,應(yīng)綜合考慮選用氮高效品種、采用水肥一體化運(yùn)籌方式、分層施肥、緩控釋肥應(yīng)用、小麥-玉米周年養(yǎng)分統(tǒng)籌等改進(jìn)措施。
歷經(jīng)13個(gè)小麥-玉米生長季后,4個(gè)栽培模式的土壤理化性質(zhì)呈現(xiàn)相似的變化趨勢,即表層土壤容重降低,表層土壤有機(jī)質(zhì)、全氮、速效氮磷鉀養(yǎng)分含量及0—100 cm土層無機(jī)氮積累量提高,表層土壤呈現(xiàn)出明顯的酸化趨勢。其中,T3模式除全氮含量之外的上述指標(biāo)變化幅度最大,表層土壤酸化最嚴(yán)重。在當(dāng)前土壤肥力條件下,T3模式籽粒產(chǎn)量最高,T4模式的籽粒產(chǎn)量比T3模式降低4.02%,但氮肥與氮素利用率分別提高7.72%和24.32%。然而,T4模式的氮素表觀損失量仍居高位,氮肥利用率仍偏低。如何在T4模式基礎(chǔ)上實(shí)現(xiàn)籽粒產(chǎn)量和氮素高效利用的進(jìn)一步協(xié)同改善,有待進(jìn)一步研究。
[1] CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, YUE S C, ROEMHELD V, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399-6404.
[2] CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489.
[3] CUI Z L, DOU Z, YING H, ZHANG F S. Producing more with less: reducing environmental impacts through an integrated soil-crop system management approach. Frontiers of Agricultural Science and Engineering, 2020, 7(1): 14-20.
[4] 王樹麗, 賀明榮, 代興龍, 周曉虎. 種植密度對(duì)冬小麥氮素吸收利用和分配的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(10): 1276-1281.
WANG S L, HE M R, DAI X L, ZHOU X H. Effect of planting density on nitrogen uptake, utilization and distribution in winter wheat. Chinese Journal Eco-Agriculture, 2012, 20(10): 1276-1281. (in Chinese)
[5] DAI X L, ZHOU X H, JIA D Y, XIAO L L, HE M R. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Research, 2013, 154(3): 100-109.
[6] ZHANG Y, DAI X L, JIA D Y, LI H Y, WANG Y C, LI C X, XU H C, HE M R. Effects of plant density on grain yield, protein size distribution, and breadmaking quality of winter wheat grown under two nitrogen fertilisation rates. European Journal of Agronomy, 2016, 73: 1-10.
[7] DAI X L, WANG Y C, DONG X C, QIAN T F, YIN L J, DONG S X, CHU J P, HE M R. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. The Crop Journal, 2017, 5(6): 541-552.
[8] YIN L J, DAI X L, HE M R. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crops Research, 2018, 221: 90-97.
[9] 朱元?jiǎng)? 初金鵬, 張秀, 鈐太峰, 代興龍, 賀明榮. 不同播期冬小麥氮素出籽效率與氮素利用及轉(zhuǎn)運(yùn)的相關(guān)性. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(4): 1151-1160.
ZHU Y G, CHU J P, ZHANG X, QIAN T F, DAI X L, HE M R. Correlation between nitrogen fruiting efficiency and nitrogen utilization and remobilization in winter wheat at different sowing dates. Chinese Journal of Applied Ecology, 2019, 30(4): 1151-1160. (in Chinese)
[10] 鄭飛娜, 初金鵬, 張秀, 費(fèi)立偉, 代興龍, 賀明榮. 播種方式與種植密度互作對(duì)大穗型小麥品種產(chǎn)量和氮素利用率的調(diào)控效應(yīng). 作物學(xué)報(bào), 2020, 46(3): 423-431.
ZHENG F N, CHU J P, ZHANG X, FEI L W, DAI X L, HE M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agronomica Sinica, 2020, 46(3): 423-431. (in Chinese)
[11] 劉運(yùn)景, 鄭飛娜, 張秀, 初金鵬, 于海濤, 代興龍, 賀明榮. 寬幅播種對(duì)強(qiáng)筋小麥籽粒產(chǎn)量、品質(zhì)和氮素吸收利用的影響. 作物學(xué)報(bào), 2022, 48(3): 716-725.
LIU Y J, ZHENG F N, ZHANG X, CHU J P, YU H T, DAI X L, HE M R. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat. Acta Agronomica Sinica, 2022, 48(3): 716-725. (in Chinese)
[12] LI Z J, HU K L, LI B G, HE M R, ZHANG J W. Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach. Agricultural Water Management, 2015, 159: 19-34.
[13] 王月超, 李傳興, 代興龍, 周曉燕, 張宇, 李華英, 賀明榮. 栽培模式對(duì)冬小麥光能利用和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(9): 2707-2713.
WANG Y C, LI C X, DAI X L, ZHOU X Y, ZHANG Y, LI H Y, HE M R. Effects of cultivation patterns on the radiation use and grain yield of winter wheat. Chinese Journal of Applied Ecology, 2015, 26(9): 2707-2713. (in Chinese)
[14] 馬鑫, 代興龍, 王曉婧, 董述鑫, 王月超, 徐海成, 朱元?jiǎng)? 賀明榮. 冬小麥高產(chǎn)高效群體的年際間穩(wěn)產(chǎn)性能. 應(yīng)用生態(tài)學(xué)報(bào), 2017, 28(12): 3926-3934.
MA X, DAI X L, WANG X J, DONG S X, WANG Y C, XU H C, ZHU Y G, HE M R. Stability of a winter wheat population with high yield and high resource use efficiency. Chinese Journal of Applied Ecology, 2017, 28(12): 3926-3934. (in Chinese)
[15] XU H C, DAI X L, CHU J P, WANG Y C, YIN L J, MA X, DONG S X, HE M R. Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat. Journal of Integrative Agriculture, 2018, 17(2): 315-327.
[16] CHENG Y, DAI X L, FENG H, WANG Y C, LIU P, HE M R. Precision double cropping synergistically improves wheat and maize yields as well as resource efficiency. Agronomy Journal, 2020, 112(2): 1035-1048.
[17] LIU Z, GAO J, GAO F, DONG S T, LIU P, ZHAO B, ZHANG J W. Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat-summer maize. Field Crops Research, 2018, 221: 196-206.
[18] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京: 中國農(nóng)業(yè)科技出版社, 2000.
LU R K. Soil Agrochemical Analysis Methods. Beijing: China Agricultural Science and Technology Publishers, 2000. (in Chinese)
[19] 劉學(xué)軍, 趙紫娟, 巨曉棠, 張福鎖. 基施氮肥對(duì)冬小麥產(chǎn)量、氮肥利用率及氮平衡的影響. 生態(tài)學(xué)報(bào), 2002, 22(7): 1122-1128.
LIU X J, ZHAO Z J, JU X T, ZHANG F S. Effect of N application as basal fertilizer on grain yield of winter wheat, fertilizer N recovery and N balance. Acta Ecologica Sinica, 2002, 22(7): 1122-1128. (in Chinese)
[20] 初金鵬, 朱文美, 尹立俊, 石玉華, 鄧淑珍, 張良, 賀明榮, 代興龍. 寬幅播種對(duì)冬小麥‘泰農(nóng)18’產(chǎn)量和氮素利用率的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2018, 29(8): 2517-2524.
CHU J P, ZHU W M, YIN L J, SHI Y H, DENG S Z, ZHANG L, HE M R, DAI X L. Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. Chinese Journal of Applied Ecology, 2018, 29(8): 2517-2524. (in Chinese)
[21] LEMAIRE G, JEUFFROY M H, GASTAL F. Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. European Journal of Agronomy, 2008, 28(4): 614-624.
[22] JUSTES E, MARY B, MEYNARD J M, MACHET J M, THELIER- HUCHE L. Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 1994, 74: 397-407.
[23] ZHAO B, NIU X L, ATA-UL-KARIM S T, WANG L G, DUAN A W, LIU Z D, LEMAIRE G. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. European Journal of Agronomy, 2020, 113: 125967.
[24] 林治安, 趙秉強(qiáng), 袁亮, HWAT B S. 長期定位施肥對(duì)土壤養(yǎng)分與作物產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2009, 42(8): 2809-2819.
LIN Z A, ZHAO B Q, YUAN L, HWAT B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. (in Chinese)
[25] 魏猛, 張愛君, 諸葛玉平, 李洪民, 唐忠厚, 陳曉光. 長期不同施肥對(duì)黃潮土區(qū)冬小麥產(chǎn)量及土壤養(yǎng)分的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2017, 23(2): 304-312.
WEI M, ZHANG A J, ZHUGE Y P, LI H M, TANG Z H, CHEN X G. Effect of different long-term fertilization on winter wheat yield and soil nutrient contents in yellow fluvo-aquic soil area. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 304-312. (in Chinese)
[26] THAKUR A, SHARMA R P, SANKHYAN N K, SEPEHYA S. Effect of 46 years’ application of fertilizers, FYM and lime on physical, chemical and biological properties of soil under maize-wheat system in an acid Alfisol of northwest Himalayas. Soil Use and Management, 2023, 39: 357-367.
[27] LIU C, LU M, CUI J, LI B, FANG C M. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biology, 2014, 20: 1366-1381.
[28] 韓上, 武際, 李敏, 陳峰, 王允青, 程文龍, 唐杉, 王慧, 郭熙盛, 盧昌艾. 深耕結(jié)合秸稈還田提高作物產(chǎn)量并改善耕層薄化土壤理化性質(zhì). 植物營養(yǎng)與肥料學(xué)報(bào), 2020, 26(2): 276-284.
HAN S, WU J, LI M, CHEN F, WANG Y Q, CHENG W L, TANG S, WANG H, GUO X S, LU C A. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese)
[29] CUI H X, LUO Y L, CHEN J, JIN M, LI Y, WANG Z L. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. European Journal of Agronomy, 2022, 133: 126436.
[30] 李冬初, 黃晶, 馬常寶, 薛彥東, 高菊生, 王伯仁, 張楊珠, 柳開樓, 韓天富, 張會(huì)民. 中國農(nóng)耕區(qū)土壤有機(jī)質(zhì)含量及其與酸堿度和容重關(guān)系. 水土保持學(xué)報(bào), 2020, 34(6): 252-258.
LI D C, HUANG J, MA C B, XUE Y D, GAO J S, WANG B R, ZHANG Y Z, LIU K L, HAN T F, ZHANG H M. Soil organic matter content and its relationship with pH and bulk density in agricultural areas of China. Journal of Soil and Water Conservation, 2020, 34(6): 252-258. (in Chinese)
[31] XU X, PANG D W, CHEN J, LUO Y L, ZHENG M J, YIN Y P, LI Y X, LI Y, WANG Z L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Research, 2018, 221: 71-80.
[32] GUAN D H, ZHANG Y S, AL-KAISI M M, WANG Q Y, ZHANG M C, LI Z H. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil and Tillage Research, 2015, 146: 286-295.
[33] MEURER K H E, HADDAWAY N R, BOLINDER M A, K?TTERER T. Tillage intensity affects total SOC stocks in boreo- temperate regions only in the topsoil—A systematic review using an ESM approach. Earth-Science Reviews, 2018, 177: 613-622.
[34] ZHAO J H, LIU Z, LAI H J, YANG D Q, LI X D. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat-peanut rotation system. Journal of Environmental Management, 2022, 306: 114468.
[35] YANG X Y, REN W D, SUN B H, ZHANG S L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma, 2012, 177/178: 49-56.
[36] ZHANG S X, LI Q, XIAO X P, WEI K, CHEN L J, LIANG W J. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil and Tillage Research, 2012, 124: 196-202.
[37] LI Z, LI D, LEI M, YU Y, ZHAO B, ZHANG J. Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain. Journal of Soils and Sediments, 2019, 19: 618-628.
[38] HAO X X, HAN X Z, WANG S Y, LI L J. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil and Tillage Research, 2022, 215: 105221.
[39] CAO B B, QU C Y, GUO Y Y, LIU C H, LIANG Z Y, JIAO Y P, SHI J L, TIAN X H. Long-term nitrogen and straw application improves wheat production and soil organic carbon sequestration. Journal of Soil Science and Plant Nutrition, 2022, 22: 3364-3376.
[40] ZHAO H L, SHAR A G, LI S, CHEN Y L, SHI J L, ZHANG X Y, TIAN X H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil and Tillage Research, 2018, 175: 178-186.
[41] ZHU L Q, HU N J, ZHANG Z W, XU J L, TAO B, MENG Y L. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena, 2015, 135: 283-289.
[42] LU M, ZHOU X H, LUO Y Q, YANG Y H, FANG C M, CHEN J K, LI B. Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture, Ecosystems and Environment, 2011, 140(1): 234-244.
[43] 楊蘇, 劉耀武, 章歡, 李輝信, 張永春, 艾玉春, 汪吉東. 土壤不同形態(tài)碳氮含量和酶活性對(duì)培養(yǎng)時(shí)間及外源碳投入的響應(yīng). 水土保持學(xué)報(bào), 2020, 34(4): 340-346.
YANG S, LIU Y W, ZHANG H, LI H X, ZHANG Y C, AI Y C, WANG J D. Responses of different forms of soil carbon and nitrogen contents and enzyme activities to cultivation time and exogenous carbon input. Journal of Soil and Water Conservation, 2020, 34(4): 340-346. (in Chinese)
[44] DAI X L, ZHOU W, LIU G R, LIANG G Q, HE P, LIU Z B. Soil C/N and pH together as a comprehensive indicator for evaluating the effects oforganic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma, 2019, 337: 1116-1125.
[45] ZHANG H Y, NIU L A, HU K L, HAO J M, LI F, WANG X, CHEN H. Long-term effects of nitrogen and phosphorus fertilization on soil aggregate stability and aggregate-associated carbon and nitrogen in the North China Plain. Soil Science Society of America Journal, 2021, 85(3): 732-745.
[46] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
[47] HUANG P, ZHANG J B, XIN X L, ZHU A N, ZHANG C Z, MA D H, ZHU Q G, YANG S, WU S J. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain. Journal of Integrative Agriculture, 2015, 14(1): 148-157.
[48] LI J G, WAN X, LIU X X, CHEN Y, SLAUGHTER L C, WEINDORF D C, DONG Y H. Changes in soil physical and chemical characteristics in intensively cultivated greenhouse vegetable fields in North China. Soil and Tillage Research, 2019, 195: 104366.
[49] ?IMANSKY V, JONCZAK J, HORVáTHOVá J, IGAZ D, AYDIN E, KOVá?IK P. Does long-term application of mineral fertilizers improve physical properties and nutrient regime of sandy soils?. Soil and Tillage Research, 2022, 215: 105224.
[50] HE M Q, XIN X L, MENG L, YAN X Y, ZHAO C, CAI Z C, ZHU A N, ZHANG J B, MüLLER C. Long-term appropriate N management can continuously enhance gross N mineralization rates and crop yields in a maize-wheat rotation system. Biology and Fertility of Soils, 2021, doi: 10.1007/s00374-021-01595-9.
[51] 王東, 于振文, 于文明, 石玉, 周忠新. 施氮水平對(duì)高產(chǎn)麥田土壤硝態(tài)氮時(shí)空變化及氨揮發(fā)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2006, 17(9): 1593-1598.
WANG D, YU Z W, YU W M, SHI Y, ZHOU Z X. Effect of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field. Chinese Journal of Applied Ecology, 2006, 17(9): 1593-1598. (in Chinese)
[52] 馬興華, 于振文, 梁曉芳, 顏紅, 史桂萍. 施氮量和底追比例對(duì)小麥氮素利用和土壤硝態(tài)氮含量的影響. 水土保持學(xué)報(bào), 2006, 20(5): 95-98.
MA X H, YU Z W, LIANG X F, YAN H, SHI G P. Effects of nitrogen application rate and ratio of base and topdressing on nitrogen utilization and soil NO3-N content in winter wheat. Journal of Soil and Water Conservation, 2006, 20(5): 95-98. (in Chinese)
[53] 崔振嶺, 陳新平, 張福鎖, 徐久飛, 石立委, 李俊良. 華北平原冬小麥/夏玉米輪作體系土壤硝態(tài)氮的適宜含量. 應(yīng)用生態(tài)學(xué)報(bào), 2007, 18(10): 2227-2232.
CUI Z L, CHEN X P, ZHANG F S, XU J F, SHI L W, LI J L. Appropriate soil nitrate N content for a winter wheat/summer maize rotation system in North China Plain. Chinese Journal of Applied Ecology, 2007, 18(10): 2227-2232. (in Chinese)
[54] DHILLON J, EICKHOFF E, AULA L, OMARA P, WEYMEYER G, NAMBI E, OYEBIYI F, CARPENTER T, RAUN W. Nitrogen management impact on winter wheat grain yield and estimated plant nitrogen loss. Agronomy Journal, 2020, 112(1): 564-577.
[55] 郭天財(cái), 宋曉, 馮偉, 馬冬云, 謝迎新, 王永華. 高產(chǎn)麥田氮素利用、氮平衡及適宜施氮量. 作物學(xué)報(bào), 2008, 34(5): 886-892.
GUO T C, SONG X, FENG W, MA D Y, XIE Y X, WANG Y H. Utilization and balance of nitrogen and proper application amount of nitrogen fertilizer in winter wheat in high-yielding regions. Acta Agronomica Sinica, 2008, 34(5): 886-892. (in Chinese)
[56] SHI Z L, LI D D, JING Q, CAI J, JIANG D, CAO W X, DAI T B. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice-wheat rotation. Field Crops Research, 2012, 127: 241-247.
[57] 趙營, 劉曉彤, 羅健航, 趙天成, 張學(xué)軍. 緩/控釋肥條施對(duì)春玉米產(chǎn)量、吸氮量與氮平衡的影響. 中國土壤與肥料, 2020(5): 34-39.
ZHAO Y, LIU X T, LUO J H, ZHAO T C, ZHANG X J. Yield, N uptake, and apparent N balance in spring maize as affected by side bar application of slow/controlled release fertilizers. Soils and Fertilizers Sciences in China, 2020(5): 34-39. (in Chinese)
[58] 李瑋, 喬玉強(qiáng), 陳歡, 曹承富, 杜世州, 趙竹. 玉米秸稈還田配施氮肥對(duì)冬小麥土壤氮素表觀盈虧及產(chǎn)量的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2015, 21(3): 561-570.
LI W, QIAO Y Q, CHEN H, CAO C F, DU S Z, ZHAO Z. Effects of combined maize straw and N application on soil nitrogen surplus amount and yield of winter wheat. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 561-570. (in Chinese)
[59] 王新媛, 趙思達(dá), 鄭險(xiǎn)峰, 王朝輝, 何剛. 秸稈還田和氮肥用量對(duì)冬小麥產(chǎn)量和氮素利用的影響. 中國農(nóng)業(yè)科學(xué), 2021, 54(23): 5043-5053.
WANG X Y, ZHAO S D, ZHENG X F, WANG Z H, HE G. Effects of straw returning and nitrogen application rate on grain yield and nitrogen utilization of winter wheat. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053. (in Chinese)
[60] 楊憲龍, 路永莉, 同延安, 林文, 梁婷. 長期施氮和秸稈還田對(duì)小麥-玉米輪作體系土壤氮素平衡的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19(1): 65-73.
YANG X L, LU Y L, TONG Y A, LIN W, LIANG T. Effects of long-term N application and straw returning on N budget under wheat-maize rotation system. Journal of Plant Nutrition and Fertilizer, 2013, 19(1): 65-73. (in Chinese)
Effects of Cultivation Modes on Soil physicochemical Properties and Nitrogen Balance in Wheat Fields under Long-Term Positioning Conditions
GUO XinHu1, MA Jing1, LI ZhongFeng1, CHU JinPeng1, XU HaiCheng2, JIA DianYong3, DAI XingLong1, HE MingRong1
1College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Taian 271018, Shandong;2Weifang University of Science and Technology, Weifang 262799, Shandong;3Nanyang Normal University, Nanyang 473061, Henan
【Objective】From the 2009-2010 wheat growing season, four cultivation modes were designed and set up. The effects of cultivation modes on soil physical and chemical properties, nitrogen nutrition index of winter wheat, nitrogen supply and demand balance in wheat field, uptake and utilization of nitrogen and grain yield were investigated, in order to provide a theoretical guidance for further optimizing the soil-crop system integrated management mode.【Method】Four cultivation modes were designed: local farmer mode (T1), improvement mode based on farmers (T2), high-yield and higher-yield mode regardless of production cost (T3), and soil-crop system integrated management mode (T4).【Result】After 13 wheat-maize growing seasons, the soil bulk density of surface soil for T1, T2, T3 and T4 modes decreased by 6.21%, 9.80%, 12.25% and 13.56%, respectively; the content of organic matter for four modes increased by 21.88%, 26.80%, 32.05% and 36.39%, respectively; the corresponding increases were 34.16%, 12.38%, 39.60% and 20.79% for the contents of total nitrogen; 47.85%, 48.87%, 74.49% and 62.21% for the contents of alkali-hydrolysable nitrogen, respectively; 62.73%, 36.56%, 297.93% and 68.68% for the contents of available phosphorus; 14.36%, 40.00%, 221.20% and 59.60% for the contents of available potassium, respectively. The increases of 33.96%, 10.32%, 52.77% and 19.49% were observed in the inorganic nitrogen accumulation in the 0-100 cm soil layer, respectively. Correspondingly, the pH for T1, T2, T3 and T4 modes decreased from 7.50 to 6.28, 6.68, 5.35 and 6.64, respectively. There were significant differences in grain yield and nitrogen uptake and utilization among the four cultivation modes in 2020-2022 growing season. Compared with T1 mode, the grain yield of T2, T3 and T4 modes increased by 14.14%, 27.65% and 22.52%, respectively; the nitrogen use efficiency increased by 54.80%, 19.97% and 49.15%, respectively; the nitrogen recovery efficiency increased by 72.95%, 37.54% and 48.15%, respectively; the nitrogen surplus decreased by 49.76%, 11.62% and 44.14%, respectively; the nitrogen surplus rate decreased by 24.63%, 11.62% and 26.68%, respectively. The whole plant at anthesis stage and spikes at maturity stage under T4 mode were in nitrogen supply and demand balance.【Conclusion】After 13 wheat-maize growing seasons, the soil acidification trend of 0-20 cm was obvious, and the bulk density of surface soil decreased, but the contents of organic matter, total nitrogen and available nutrients such as nitrogen, phosphorus, potassium increased for the all four cultivation modes. Meanwhile, the accumulation of inorganic nitrogen in 0-100 cm soil layer increased accordingly. Compared with other three cultivation modes, a synergistic improvement was obtained under T4 mode in soil physicochemical properties, wheat grain yield and nitrogen use efficiency. However, the nitrogen use efficiency at present under T4 mode was not high enough and still needed to be further improved. As showed by present study, further synergistic optimization in grain yield and nitrogen use efficiency could not be achieved only by reducing nitrogen input.
soil physicochemical property; wheat grain yield; nitrogen use efficiency; nitrogen nutrition index; nitrogen balance
10.3864/j.issn.0578-1752.2023.12.003
2022-10-21;
2023-01-08
山東省重點(diǎn)研發(fā)計(jì)劃(LJNY202103)、國家重點(diǎn)研發(fā)計(jì)劃(2016YFD0300403)
郭鑫虎,E-mail:xinhuguo@163.com。通信作者代興龍,E-mail:adaisdny@163.com。通信作者賀明榮,E-mail:mrhe@sdau.edu.cn
(責(zé)任編輯 楊鑫浩,岳梅)