王朝暉,李勇,曹珂,朱更瑞,方偉超,陳昌文,王新衛(wèi),吳金龍,王力榮
189份桃種質(zhì)肉質(zhì)性狀形成相關(guān)位點(diǎn)基因型鑒定及組合分析
王朝暉,李勇,曹珂,朱更瑞,方偉超,陳昌文,王新衛(wèi),吳金龍,王力榮
中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹(shù)研究所,鄭州 450009
【目的】通過(guò)分子標(biāo)記與生物信息學(xué)手段,鑒定189份桃種質(zhì)與肉質(zhì)形成相關(guān)的F-M基因座、啟動(dòng)子區(qū)轉(zhuǎn)座子插入、編碼區(qū)9 bp插入的基因型及3個(gè)位點(diǎn)組合情況,為深入研究桃果實(shí)肉質(zhì)形成機(jī)制及育種親本選配提供理論基礎(chǔ)。【方法】通過(guò)PCR擴(kuò)增、競(jìng)爭(zhēng)性等位基因特異PCR(kompetitive allele specific PCR,KASP)、高分辨率溶解曲線(xiàn)(high resolution melting analysis,HRM)技術(shù),對(duì)F-M基因座倍型、轉(zhuǎn)座子插入、9 bp插入進(jìn)行檢測(cè);同時(shí)結(jié)合重測(cè)序數(shù)據(jù)利用生物信息學(xué)方法進(jìn)一步驗(yàn)證,從而準(zhǔn)確鑒定189份桃種質(zhì)肉質(zhì)性狀形成相關(guān)位點(diǎn)基因型及組合情況。【結(jié)果】F-M基因座編碼多聚半乳糖醛酸酶(endo-PG)的與是調(diào)控桃果實(shí)肉質(zhì)形成的兩個(gè)重要基因。189份桃種質(zhì)中,與分別有159份(84%)、99份(52%)。F-M基因座共發(fā)現(xiàn)H0、H1、H2、H3 4種單倍型,占比分別為33%、39%、4%、24%。在F-M基因座,不溶質(zhì)粘核以H3H3、H2H3組合為主,溶質(zhì)粘核以H0H0、H0H1組合為主,溶質(zhì)離核以H1H1、H0H1組合為主。發(fā)現(xiàn)18份含有硬質(zhì)基因型的種質(zhì),在啟動(dòng)子區(qū)含有轉(zhuǎn)座子純合插入。HRM結(jié)果表明,編碼區(qū)9 bp插入純合(早熟)有45份種質(zhì)、插入雜合(中熟)有71份種質(zhì)、無(wú)插入(晚熟)有73份種質(zhì),中熟與晚熟種質(zhì)占比77%;其中6份種質(zhì)基因型與表型差別較大。不溶質(zhì)粘核、溶質(zhì)粘核、溶質(zhì)離核3種常見(jiàn)肉質(zhì)類(lèi)型,在3個(gè)位點(diǎn)最多的基因型組合分別是mmffHdHdI、MMffHdHdI、MMFFHdHdL?!窘Y(jié)論】通過(guò)分子試驗(yàn)與生物信息學(xué)相結(jié)合進(jìn)一步證實(shí)了F-M基因座存在4種單倍型;發(fā)現(xiàn)18份含有硬質(zhì)基因型的種質(zhì);開(kāi)發(fā)了一種用于鑒定桃成熟期的分子標(biāo)記;鑒定出不同種質(zhì)在肉質(zhì)相關(guān)位點(diǎn)的基因型組合形式。
桃;肉質(zhì);基因型鑒定;基因型組合
【研究意義】桃[(L.) Batsch]是薔薇科李屬重要的經(jīng)濟(jì)樹(shù)種,與其他果樹(shù)相比具有豐富的肉質(zhì)類(lèi)型[1]。桃果實(shí)肉質(zhì)是成熟期中果皮薄壁細(xì)胞經(jīng)歷一系列生理與生化變化的結(jié)果,也是影響消費(fèi)者評(píng)判桃品質(zhì)的一個(gè)重要因素[2]?,F(xiàn)階段育種過(guò)程中,對(duì)桃果實(shí)肉質(zhì)類(lèi)型的評(píng)判往往以育種者的感官評(píng)價(jià)和簡(jiǎn)單的生理指標(biāo)為主,限制了對(duì)肉質(zhì)性狀的精準(zhǔn)評(píng)價(jià)。鑒于此,通過(guò)分子試驗(yàn)與生物信息學(xué)手段,分析桃基因組中與肉質(zhì)性狀形成的相關(guān)位點(diǎn)。從基因型角度評(píng)價(jià)肉質(zhì)類(lèi)型,對(duì)構(gòu)建肉質(zhì)評(píng)價(jià)體系、明晰骨干親本肉質(zhì)類(lèi)型及育種親本選配具有重要指導(dǎo)意義?!厩叭搜芯窟M(jìn)展】目前,對(duì)質(zhì)量性狀控制的肉質(zhì)類(lèi)型研究較為透徹,主要分為溶質(zhì)/不溶質(zhì)、硬質(zhì)/非硬質(zhì)兩大類(lèi);而數(shù)量性狀控制的慢溶質(zhì)以及與成熟期有關(guān)的慢成熟類(lèi)型肉質(zhì)研究相對(duì)較少[3-5]。BAILEY等[6]最早發(fā)現(xiàn)溶質(zhì)(Melting)與不溶質(zhì)(Non-melting)為一對(duì)等位基因控制,并且溶質(zhì)(M)為顯性性狀,后續(xù)許多研究表明肉質(zhì)形成主要與細(xì)胞壁果膠成分降解有關(guān),其中編碼多聚半乳糖醛酸酶()被視為主要候選基因[7]。在桃參考基因組發(fā)布后,將定位到第4號(hào)染色體上的F-M基因座;同時(shí)發(fā)現(xiàn)該位點(diǎn)不僅調(diào)控溶質(zhì)與不溶質(zhì),還同時(shí)控制粘核(Clingstone)與離核(Freestone)性狀的形成,是肉質(zhì)形成的關(guān)鍵位點(diǎn)[8]。GU等[9]提出F-M基因座存在H1、H2、H3三種單倍型,相互組合形成溶質(zhì)離核、溶質(zhì)粘核、不溶質(zhì)粘核3種肉質(zhì)表型;但NAKANO等[10]研究發(fā)現(xiàn)F-M基因座該位點(diǎn)存在M0、M1、M2、M3這4種基礎(chǔ)的單倍型,并在4種單倍型基礎(chǔ)上共發(fā)現(xiàn)了11種亞單倍型。硬質(zhì)(stony hard)類(lèi)型肉質(zhì)由YOSHIDA等[11]首先報(bào)道,同時(shí)表明該性狀由單基因控制。后續(xù)研究發(fā)現(xiàn)硬質(zhì)與非硬質(zhì)主要與乙烯合成不足關(guān)系密切,經(jīng)外源乙烯處理后的結(jié)果表明,硬質(zhì)基因獨(dú)立于溶質(zhì)/不溶質(zhì)基因,且對(duì)溶質(zhì)/不溶質(zhì)基因具有上位作用[12]。Pan等[13]最早認(rèn)為上內(nèi)含子區(qū)TC重復(fù)與硬質(zhì)有關(guān);曾文芳等[14]與國(guó)外學(xué)者TATSUKI等[15]認(rèn)為啟動(dòng)子區(qū)域存在的CACTA型轉(zhuǎn)座子插入與硬質(zhì)有關(guān);與此同時(shí),孟君仁等[16]基于SNP變異,開(kāi)發(fā)了與硬質(zhì)有關(guān)的KASP分子標(biāo)記,可用于高效、快速、低成本鑒定硬質(zhì)基因型。田間育種實(shí)踐中發(fā)現(xiàn),桃果實(shí)成熟期對(duì)肉質(zhì)類(lèi)型有一定的影響。早熟品種肉質(zhì)普遍較差、往往沒(méi)來(lái)得及離核就變軟[17]。PIRONA等[18]發(fā)現(xiàn)第3個(gè)外顯子上9 bp的插入與桃早熟表型關(guān)聯(lián);余銀梅[19]也利用199份種質(zhì)在眾多成熟期標(biāo)記中篩選到-indel是唯一可以區(qū)分不同成熟期的標(biāo)記。綜上所述,桃果實(shí)肉質(zhì)性狀的形成與基因組上3個(gè)關(guān)鍵位點(diǎn)有關(guān),涉及眾多復(fù)雜生理與生化過(guò)程?!颈狙芯壳腥朦c(diǎn)】桃肉質(zhì)性狀由基因組上多個(gè)位點(diǎn)共同決定,盡管已有研究利用分子標(biāo)記對(duì)不同肉質(zhì)類(lèi)型分別開(kāi)展鑒定,但未對(duì)F-M基因座、啟動(dòng)子區(qū)、編碼區(qū)indel的3個(gè)關(guān)鍵位點(diǎn)同時(shí)進(jìn)行綜合分析?!緮M解決的關(guān)鍵問(wèn)題】基于分子試驗(yàn)與重測(cè)序數(shù)據(jù)結(jié)合,明確F-M基因座單倍型種類(lèi);鑒定189份桃種質(zhì)中包含F(xiàn)-M基因座、啟動(dòng)子區(qū)轉(zhuǎn)座子插入、編碼區(qū)indel三個(gè)肉質(zhì)性狀形成關(guān)鍵位點(diǎn)的基因型及組合情況,為開(kāi)發(fā)肉質(zhì)性狀分子標(biāo)記、建立不同肉質(zhì)評(píng)價(jià)標(biāo)準(zhǔn)及育種利用提供科學(xué)指導(dǎo)。
試驗(yàn)于2021—2022年在中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹(shù)研究所進(jìn)行。
采樣于2021年9月進(jìn)行,試驗(yàn)中的189份種質(zhì)(附表1)均取自國(guó)家園藝種質(zhì)資源庫(kù)桃種質(zhì)資源圃。其中147份種質(zhì)具有重測(cè)序數(shù)據(jù),在筆者課題組前期研究中已上傳至NCBI網(wǎng)站(登錄號(hào)為PRJNA388029、PRJNA630113)。在材料選擇時(shí)優(yōu)先考慮肉質(zhì)性狀明顯的種質(zhì)、名特優(yōu)的地方種質(zhì)、肉質(zhì)類(lèi)型較為公認(rèn)的種質(zhì)、廣泛作為育成品種親本的種質(zhì)。
選取新鮮的嫩葉約30 mg裝入2 mL離心管內(nèi),放入液氮內(nèi)充分冷凍。采用CTAB法提取基因組DNA,具體流程參考何雪嬌等[20]。提取后,用NanoDrop 1000(Thermo Scientific)紫外分光光度計(jì)檢測(cè)DNA提取質(zhì)量和濃度,然后用無(wú)菌水將DNA濃度稀釋到100 ng?μL-1左右便于后續(xù)試驗(yàn)。
本試驗(yàn)所用到的引物序列詳細(xì)信息見(jiàn)表1,引物均由上海生工生物工程技術(shù)服務(wù)有限公司合成,PCR反應(yīng)酶為南京諾維贊公司高保真Mix。PCR反應(yīng)總體系為10 μL:Mix 5 μL,上、下游引物各0.4 μL(濃度為10 μmol?μL-1),ddH2O為3.2 μL,模板為1 μL。PCR擴(kuò)增儀器為Eppendorf Master cycler,反應(yīng)程序?yàn)椋?5 ℃ 3 min;95 ℃ 15 s;退火(表1)30 s,72 ℃延伸,共35個(gè)循環(huán);72 ℃ 5 min;4 ℃保存。
表1 PCR試驗(yàn)中所用到的引物
KASP試驗(yàn)流程及引物序列參考孟君仁等[16],儀器為L(zhǎng)ight Cycler 480(LC480);KASP酶為廣州固德生物有限公司的FLU-ARMS for KASP 2×PCR Mix,反應(yīng)體系為:Mix 5 μL,F(xiàn)AM、HEX引物各0.1 μL,Common引物0.3 μL,ddH2O 5 μL,模板0.5 μL。
高分辨率溶解曲線(xiàn)(HRM)試驗(yàn)引物序列為:NAC-F:TCAGAACTCAGCGGGTTGAT;NAC-R:TGCACTCCCCTTCTACTTTCA。所用酶為北京百瑞極公司的Fast Super Eva Green qPCR Master Mix飽和試劑,反應(yīng)體系為:Mix 10 μL,上、下游引物各0.4 μL,ddH2O 8.7 μL,模板0.5 μL,反應(yīng)在Light Cycler 480(LC480)上進(jìn)行,具體程序參考殷豪等[21]。
重測(cè)序數(shù)據(jù)使用FastQC軟件(version 0.11.9)[22]質(zhì)控后,去除接頭和低質(zhì)量序列。通過(guò)BWA軟件(version 0.7.16a)[23]將質(zhì)控后的序列比對(duì)到桃參考基因組上,使用參數(shù)‘bwa mem-M-R’生成sam文件;利用Samtools軟件(version 1.14)[24]將sam文件轉(zhuǎn)換并排序生成sort.bam文件,同時(shí)構(gòu)建索引文件。用Picard(version 2.27.1)軟件Mark DuplicatesREMOVE_DUPLICATES=true程序,將sort.bam文件去除重復(fù)得到sort.rm-dedup.bam文件,建立索引后下載到本地。利用IGV(Integrative Genomics Viewer)軟件對(duì)F-M基因座、硬質(zhì)相關(guān)的SNP位點(diǎn)和-TE區(qū)、-indel進(jìn)行可視化分析。對(duì)于F-M基因座單倍型檢測(cè),以Delly(version 0.78)[25]軟件默認(rèn)參數(shù)的檢測(cè)結(jié)果為主,同時(shí)借助IGV軟件[26]可視化sort.rm- dedup.bam文件輔助分析。
桃溶質(zhì)/不溶質(zhì)與粘核/離核性狀的候選基因位于4號(hào)染色體上,分別由()與()控制[11]。通過(guò)設(shè)計(jì)引物,分別擴(kuò)增與(圖1),產(chǎn)物分別為3 066 bp與3 353 bp。
189份種質(zhì)中159份有(圖2-A),基因型與表型一致率93%。其中11份表型為不溶質(zhì),但含有;有2份表型為溶質(zhì),但不含。189份種質(zhì)中99份有(圖2-B),基因型與表型一致率88%。其中21份表型為粘核,但含有。
桃4號(hào)染色體上存在一個(gè)大約71 kb(Pp04: 19022760.. 19094035)的F-M基因座,是控制肉質(zhì)形成的關(guān)鍵位點(diǎn);該位點(diǎn)存在不同類(lèi)型結(jié)構(gòu)變異(structure variation,SV),不同SV之間相互組合形成了桃果實(shí)的溶質(zhì)離核、溶質(zhì)粘核、不溶質(zhì)粘核3種肉質(zhì)表型[9]。
本研究通過(guò)重測(cè)序數(shù)據(jù)SV鑒定、IGV可視化分析、PCR試驗(yàn)3種方法,對(duì)F-M基因座的單倍型種類(lèi)進(jìn)行鑒定,結(jié)果表明該位點(diǎn)存在4種單倍型(Haplotype),即H0、H1、H2、H3(圖3)。桃是二倍體植物,4種單倍型之間可以有10種組合方式。
桃參考基因組(Lovell)是典型的H1單倍型代表,在F-M基因座區(qū)域存在、、、、、、、這8個(gè)基因;H0單倍型、、、與參考基因組相比只有部分存在,并且在與之間有一個(gè)8.8 kb的大片段缺失;H2單倍型在與之間存在一個(gè)12.8 kb的缺失,與在此區(qū)間之內(nèi);H3單倍型在至存在一個(gè)70.5 kb的缺失。H0、H2、H3倍型可通過(guò)引物進(jìn)行鑒定(圖4);在189份種質(zhì)中,H0、H1、H2、H3單倍型占比分別為33%、39%、4%和24%(圖4)。
本研究首先對(duì)硬質(zhì)相關(guān)的一個(gè)SNP位點(diǎn)(圖5),采用KASP基因分型技術(shù)對(duì)Pp06: 14090689位點(diǎn)進(jìn)行基因型鑒定(圖6);然后利用重測(cè)序數(shù)據(jù)分析SNP位點(diǎn)、啟動(dòng)子區(qū)轉(zhuǎn)座子插入基因型;最后通過(guò)PCR試驗(yàn)方法對(duì)具有硬質(zhì)基因型的種質(zhì)再次驗(yàn)證,189份桃種質(zhì)硬質(zhì)基因型詳細(xì)結(jié)果見(jiàn)附表1。
圖1 檢測(cè)PGM與PGF的分子標(biāo)記
M:Maker 5000;N:空白對(duì)照。A:189份種質(zhì)PGM擴(kuò)增結(jié)果;B:189份種質(zhì)PGF擴(kuò)增結(jié)果
S:Short,與參考基因組相比該基因不完整,虛線(xiàn)為大片段SV存在位點(diǎn)
KASP結(jié)果有28份種質(zhì)基因型為GG(圖6),但重測(cè)序數(shù)據(jù)及PCR試驗(yàn)(圖7)表明只有18份種質(zhì)(附表1)含有轉(zhuǎn)座子純合插入(hdhd),基因型上為硬質(zhì)類(lèi)型;除‘大果黑桃’‘豐白’‘早紅不軟’外,其余種質(zhì)均有文獻(xiàn)報(bào)道[4,14,27-28]為硬質(zhì)類(lèi)型。綜上,基于Pp06: 14090689位點(diǎn)的SNP標(biāo)記不能準(zhǔn)確鑒定硬質(zhì)基因型,對(duì)于-TE基因型的檢測(cè)以重測(cè)序數(shù)據(jù)或轉(zhuǎn)座子標(biāo)記更準(zhǔn)確。
A:Maker 2000;1、2、3泳道為H0單倍型;4、5、6泳道為H2單倍型;7、8、9泳道為H3單倍型。泳道1—6,依次為美錦、西尾金、08-9-107、鄭黃2號(hào)、NJC83、明星、08-9-106、中油15號(hào)、中油16號(hào);B:189份種質(zhì)在F-M座4種單倍型頻數(shù)分布
A:YUC11模式圖及變異位點(diǎn);B:重測(cè)序數(shù)據(jù)與硬質(zhì)相關(guān)的SNP變異位點(diǎn);C:重測(cè)序數(shù)據(jù)YUC11啟動(dòng)區(qū)轉(zhuǎn)座子插入位點(diǎn),紅色方框?yàn)椴迦胛稽c(diǎn)存在的clipped reads
果實(shí)成熟涉及呼吸變化、乙烯合成、風(fēng)味物質(zhì)產(chǎn)生、顏色變化、果肉軟化等非常復(fù)雜的過(guò)程[29],而果實(shí)成熟期是典型的數(shù)量性狀,開(kāi)發(fā)相應(yīng)的分子標(biāo)記存在一定的難度。桃4號(hào)染色體上的編碼區(qū)9 bp變異與早熟表型相關(guān)聯(lián)[19]。本研究對(duì)該變異位點(diǎn)(Pp04: 11118143)設(shè)計(jì)引物,利用HRM方法鑒定不同基因型(圖8)。
A:189份種質(zhì)KASP標(biāo)記分型結(jié)果(部分),綠色、紅色、藍(lán)色三角形分別代表基因型GG、GT、TT;B:3種基因型頻數(shù)分布圖
A:擴(kuò)增出600 bp條帶說(shuō)明含有轉(zhuǎn)座子插入;B:擴(kuò)增出3 015 bp條帶說(shuō)明含有轉(zhuǎn)座子插入。泳道1—19依次為:08-9-106、美錦、西尾金、霞脆、有明白桃、中油20號(hào)、中油15號(hào)、京玉、秦王、華玉、空白、白如玉、空白、早玉、中油16號(hào)、大果黑桃、豐白、早紅不軟、陰性對(duì)照
在《桃種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)》中依據(jù)果實(shí)發(fā)育期將成熟期分類(lèi),極早熟<60 d、早熟60—90 d、中熟90—120 d、晚熟120—150 d、極晚熟>150 d。HRM結(jié)果(附表1)表明,Pp04: 11118143位點(diǎn)插入純合(早熟)有45份種質(zhì)、插入雜合(中熟)有71份種質(zhì)、無(wú)插入(晚熟)有73份種質(zhì),中熟與晚熟種質(zhì)占比77%。但是將189份種質(zhì)成熟期基因型與表型對(duì)照時(shí),發(fā)現(xiàn)‘五月鮮扁干’‘天津水蜜’‘五月鮮’‘大紅袍’‘六月白’‘六月空’6份種質(zhì)基因型與表型不符。重測(cè)序數(shù)據(jù)與試驗(yàn)結(jié)果均顯示不含9 bp純合插入,但表型均為早熟;表明該標(biāo)記對(duì)于成熟期的鑒定能力有限。
F-M基因座組成的肉質(zhì)分為不溶質(zhì)粘核、溶質(zhì)粘核、溶質(zhì)離核3種類(lèi)型,尚未報(bào)道不溶質(zhì)離核的肉質(zhì)類(lèi)型[5],在本研究189份種質(zhì)中也并未發(fā)現(xiàn)僅含有的不溶質(zhì)離核類(lèi)型。通過(guò)上文研究可知,肉質(zhì)形成的F-M基因座、-TE、-indel三個(gè)關(guān)鍵位點(diǎn)分別有10、3、3種組合;基因型分別有5、3、3種,本研究中未發(fā)現(xiàn)在F-M基因座含有H0H2、H1H2組合的種質(zhì)(附表1)。
本研究中189份種質(zhì)的表型評(píng)價(jià)多達(dá)14種,基于GU等[9]與QIAN等[30]發(fā)現(xiàn)在F-M基因座僅有與參與肉質(zhì)的形成,被視作溶質(zhì)、離核性狀的候選基因,因此將189種質(zhì)分為不溶質(zhì)粘核、溶質(zhì)粘核(溶質(zhì)粘核、軟溶質(zhì)粘核、硬溶質(zhì)粘核、硬肉粘核、硬質(zhì)粘核)、溶質(zhì)離核(粉質(zhì)離核、綿離核、溶質(zhì)離核、軟溶質(zhì)半離核、軟溶質(zhì)離核、硬溶質(zhì)半離核、硬溶質(zhì)離核、硬肉離核)3大類(lèi)。
不溶質(zhì)粘核、溶質(zhì)粘核、溶質(zhì)離核都含有成熟期的3種基因型(表2);的3種基因型在3種表型中也都存在,均以HdHd基因型為主,并且在18份含有硬質(zhì)基因型的種質(zhì)中F-M基因座的組合類(lèi)型含有6種、成熟期基因型含有3種(附表1);F-M基因座,在表型為不溶質(zhì)粘核時(shí)以H3H3、H2H3組合為主,在表型為溶質(zhì)粘核時(shí)以H0H0、H0H1組合為主,在表型為溶質(zhì)離核時(shí)以H1H1、H0H1組合為主;在3個(gè)位點(diǎn),3種表型最多的基因型組合依次是mmffHdHdI、MMffHdHdI、MMFFHdHdL。上述結(jié)果說(shuō)明,在肉質(zhì)形成的3個(gè)關(guān)鍵位點(diǎn)中F-M基因座影響最大。
表2 不同肉質(zhì)表型對(duì)應(yīng)基因型組合
A:189份種質(zhì)HRM分型結(jié)果(部分),綠色、紅色、藍(lán)色三角形分別代表基因型0 bp/0 bp、9 bp/9 bp、9 bp/0 bp;B:成熟期3種基因型與表型關(guān)系
在眾多細(xì)胞壁水解酶、植物激素、轉(zhuǎn)錄因子等因素共同作用下,果實(shí)在成熟和采收后肉質(zhì)變化具有多樣性——變軟、變硬、粉質(zhì)化、纖維化、變脆[31-33]。
以番茄為代表的多聚半乳糖醛酸酶調(diào)控的呼吸躍變型果實(shí)[34-35],草莓為代表的果膠裂解酶調(diào)控的非呼吸躍變型果實(shí)[31,36],均表明細(xì)胞壁水解酶類(lèi)直接參與肉質(zhì)形成。內(nèi)切型多聚半乳糖醛酸酶(Endo-PG)是調(diào)控桃果實(shí)軟化最主要的水解酶,在F-M基因座僅有與參與肉質(zhì)形成[30]。對(duì)189份種質(zhì)分析發(fā)現(xiàn)F-M位點(diǎn)存在4種單倍型,與NAKANO等[10]的研究完全一致,而并非GU等[9]報(bào)道的3種;H0、H1、H2、H3單倍型分別對(duì)應(yīng)溶質(zhì)粘核、溶質(zhì)離核、溶質(zhì)粘核、不溶質(zhì)表型。桃不同倍型組合與肉質(zhì)表型關(guān)系為:溶質(zhì)粘核H0H0、H0H2、H0H3、H2H2與H2H3;溶質(zhì)離核H0H1、H1H1、H1H2與H1H3;不溶質(zhì)H3H3。GU等[9]利用引物分別擴(kuò)增與鑒定F-M基因組座的倍型,該方法對(duì)于基因組上大片段的缺失或基因部分缺失鑒定時(shí)存在一定局限性。因此,在4種倍型中,GU等[9]僅鑒定出來(lái)3種,與本研究中H1、H2、H3相對(duì)應(yīng)。H0倍型在GU等[9]研究中歸為H2之中,本研究正是利用了生物信息學(xué)在鑒定基因組上大片段結(jié)構(gòu)變異的優(yōu)勢(shì),從而鑒定出H0倍型。本研究中,‘C17’‘C18’‘中桃金典’‘鄭黃2號(hào)’‘NJC83’‘明星’‘敦煌冬桃’‘鄭黃4號(hào)’種質(zhì)表型為不溶質(zhì)卻含有,但是這些種質(zhì)在F-M單倍型為H2H2或H2H3,根據(jù)NAKANO等[10]與BAILEY等[6]研究結(jié)果的可能原因是H2、H3單倍型上的不發(fā)揮功能;同時(shí)也有研究表明與之間存在相互拮抗作用[17]。綜上,在對(duì)溶質(zhì)/不溶質(zhì)與粘核/離核性狀鑒定時(shí)應(yīng)對(duì)F-M座進(jìn)行分析,而不同單倍型功能是否一致、與之間調(diào)控關(guān)系也需要進(jìn)一步深入研究。
植物激素在果實(shí)生長(zhǎng)發(fā)育、成熟過(guò)程中均發(fā)揮重要作用[32-33,37];果實(shí)成熟時(shí)呼吸躍變型果實(shí)(番茄等)乙烯大量合成[38],而非呼吸躍變型果實(shí)(甜瓜等)成熟時(shí)脫落酸大量合成[39]。乙烯參與桃果實(shí)成熟后軟化過(guò)程,變異是乙烯合成受阻進(jìn)而產(chǎn)生硬質(zhì)桃的原因[4]。相較于溶質(zhì)/不溶質(zhì)性狀,硬質(zhì)這一概念提出較晚。因此,在18份具有硬質(zhì)基因型的種質(zhì)中有8份種質(zhì)評(píng)價(jià)為溶質(zhì)離核,但F-M基因座顯示均含有H1單倍型;可能轉(zhuǎn)座子插入純合時(shí)僅對(duì)溶質(zhì)()有上位作用,或乙烯合成受阻時(shí)存在其他途徑調(diào)控果實(shí)軟化。
在成熟過(guò)程中有眾多轉(zhuǎn)錄因子參與調(diào)控肉質(zhì)、顏色、香氣、風(fēng)味物質(zhì)的形成:較為常見(jiàn)的NAC家族、MADS家族、ERF家族、NAP家族[40-43]。HUANG等[44]報(bào)道了兩個(gè)MADS家族基因共同調(diào)控番茄形成全肉質(zhì)型表型;MIGICOVSK等[45]研究發(fā)現(xiàn)對(duì)蘋(píng)果成熟期、成熟期硬度、儲(chǔ)藏后硬度、硬度變化4個(gè)表型有一定影響,其中對(duì)成熟期影響最大。本研究中189份種質(zhì)的編碼區(qū)9 bp插入,除少量種質(zhì)外基因型與成熟期基本吻合;推測(cè)可能為調(diào)控桃果實(shí)成熟期的主效基因。3個(gè)位點(diǎn)基因型組合分析發(fā)現(xiàn),部分早熟品種含有,但表型鑒定被視為粘核;不溶質(zhì)粘核和溶質(zhì)粘核的成熟期基因型大多數(shù)為中熟,而溶質(zhì)離核的成熟期基因型大多數(shù)為晚熟,可能原因是控制溶質(zhì)/不溶質(zhì)的受乙烯調(diào)控,而主要受果實(shí)發(fā)育的影響[17]。因此,成熟期的差異會(huì)影響桃果實(shí)發(fā)育情況,進(jìn)而間接影響肉質(zhì)表型。但值得注意的是,即使基因型一致時(shí)果實(shí)發(fā)育期(成熟期)也會(huì)有一個(gè)月差異,進(jìn)一步表明成熟期是多基因調(diào)控的復(fù)雜性狀。
桃肉質(zhì)是質(zhì)量性狀與數(shù)量性狀同時(shí)存在的典型性狀?;蚪M上多個(gè)位點(diǎn)共同參與肉質(zhì)的形成,如硬質(zhì)桃就是由位點(diǎn)和F-M基因座共同決定[5]。本研究對(duì)3個(gè)位點(diǎn)基因型組合分析時(shí)發(fā)現(xiàn)溶質(zhì)粘核的MMFFHdHdE數(shù)量?jī)H次于MMffHdHdI數(shù)量,也暗示在評(píng)價(jià)肉質(zhì)表型時(shí),若未考慮成熟期時(shí)可能會(huì)存在誤差。基于郭健[46]、PAN等[13]與GU等[9]轉(zhuǎn)錄組數(shù)據(jù)表明,在肉質(zhì)形成的3個(gè)關(guān)鍵位點(diǎn)中,位點(diǎn)在果實(shí)發(fā)育期發(fā)揮作用,而位點(diǎn)與F-M基因座主要在成熟期起關(guān)鍵作用。因此,3個(gè)位點(diǎn)之間的關(guān)系可能為:F-M基因座編碼的細(xì)胞壁水解酶是肉質(zhì)形成的直接參與者,位于調(diào)控網(wǎng)絡(luò)的最下游;位點(diǎn)通過(guò)控制乙烯合成,進(jìn)而調(diào)控F-M基因座水解酶的活性;位點(diǎn)則決定果實(shí)發(fā)育程度,影響位點(diǎn)乙烯合成并激活下游F-M基因座水解酶的時(shí)間。綜上,在對(duì)肉質(zhì)性狀進(jìn)行研究時(shí),應(yīng)該對(duì)參與肉質(zhì)形成的多個(gè)位點(diǎn)綜合進(jìn)行考慮,建議按照成熟期、硬質(zhì)/非硬質(zhì)、溶質(zhì)/不溶質(zhì)、粘/離核順序進(jìn)行表型評(píng)價(jià)。
桃果實(shí)肉質(zhì)形成過(guò)程中伴隨著顏色、香氣、硬度等一系列變化,這一過(guò)程受到內(nèi)外因素的共同調(diào)控,機(jī)制非常復(fù)雜。除本研究涉及的3個(gè)關(guān)鍵位點(diǎn)外,果膠裂解酶[47]、眾多轉(zhuǎn)錄因子[29]也參與桃果實(shí)肉質(zhì)形成;此外,在轉(zhuǎn)錄水平上、蛋白質(zhì)翻譯過(guò)程中、蛋白質(zhì)翻譯后也會(huì)影響肉質(zhì)的形成[48]。因此,未來(lái)可借助多組學(xué)手段揭示肉質(zhì)形成調(diào)控網(wǎng)絡(luò),從而深入了解桃果實(shí)肉質(zhì)成熟軟化過(guò)程中的分子機(jī)制。
通過(guò)分子試驗(yàn)和生物信息學(xué)手段,進(jìn)一步證實(shí)了F-M基因座存在4種單倍型,H0、H1單倍型占比較高,H3H3、H2H3是形成不溶質(zhì)粘核表型的主要組合類(lèi)型,H0H0、H0H1是形成溶質(zhì)粘核表型的主要組合類(lèi)型、H1H1、H0H1是形成溶質(zhì)離核表型的主要組合類(lèi)型。進(jìn)一步補(bǔ)充了鑒定肉質(zhì)基因型的分子標(biāo)記;發(fā)現(xiàn)18份具有硬質(zhì)基因型的種質(zhì);開(kāi)發(fā)出一種可用于鑒定成熟期的分子標(biāo)記;不溶質(zhì)粘核、溶質(zhì)粘核、溶質(zhì)離核表型最多的基因型組合分別是mmffHdHdI、MMffHdHdI、MMFFHdHdL。
[1] 王力榮. 中國(guó)桃品種改良?xì)v史回顧與展望. 果樹(shù)學(xué)報(bào), 2021, 38(12): 2178-2195.
WANG L R. History and prospect of peach breeding in China. Journal of Fruit Science, 2021, 38(12): 2178-2195. (in Chinese)
[2] LI Y, CAO K, LI N, ZHU G R, FANG W C, CHEN C W, WANG X W, GUO J, WANG Q, DING T Y, WANG J, GUAN L, WANG J X, LIU K Z, GUO W W, ARúS P, HUANG S W, FEI Z, WANG L R. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Research, 2021, 31(4): 592-606.
[3] 孟君仁. 桃慢溶質(zhì)性狀調(diào)控機(jī)制初步研究[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2021.
MENG J R. Preliminary study on regulation mechanism of slow melting flesh characteristics in peach [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[4] 牛良, 曾文芳, 潘磊, 孟君仁, 魯振華, 崔國(guó)朝, 王志強(qiáng). 硬質(zhì)桃研究現(xiàn)狀及展望. 果樹(shù)學(xué)報(bào), 2020, 37(8): 1227-1235.
NIU L, ZENG W F, PAN L, MENG J R, LU Z H, CUI G C, WANG Z Q. Research status and perspective for stony-hard peach. Journal of Fruit Science, 2020, 37(8): 1227-1235. (in Chinese)
[5] 曾文芳, 王志強(qiáng), 牛良, 潘磊, 丁義峰, 魯振華, 崔國(guó)朝. 桃果實(shí)肉質(zhì)研究進(jìn)展. 果樹(shù)學(xué)報(bào), 2017, 34(11): 1475-1482.
ZENG W F, WANG Z Q, NIU L, PAN L, DING Y F, LU Z H, CUI G C. Research process on peach fruit flesh texture. Journal of Fruit Science, 2017, 34(11): 1475-1482. (in Chinese)
[6] BAILEY J S, FRENCH A P. The inheritance of certain fruit and foliage characteristics in the peach[R]. Massachusetts Agricultural Experimental Station Bulletin,452,University of Massachusetts,1949.
[7] LESTER D R, SHERMAN W B, ATWELL B J. Endopolygalacturonase and the melting flesh (M) locus in peach. Journal of the American Society for Horticultural Science, 1996, 121(2): 231-235.
[8] DIRLEWANGER E, COSSON P, BOUDEHRI K, RENAUD C, CAPDEVILLE G, TAUZIN Y, LAIGRET F, MOING A. Development of a second-generation genetic linkage map for peach[(L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes, 2006, 3(1): 1-13.
[9] GU C, WANG L, WANG W, ZHOU H, MA B Q, ZHENG H Y, FANG T, OGUTU C, VIMOLMANGKANG S, HAN Y P. Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach. Journal of Experimental Botany, 2016, 67(6): 1993-2005.
[10] NAKANO R, KAWAI T, FUKAMATSU Y, AKITA K, WATANABE S, ASANO T, TAKATA D, SATO M, FUKUDA F, USHIJIMA K. Postharvest properties of ultra-late maturing peach cultivars and their attributions to melting flesh (M) locus: Re-evaluation of M locus in association with flesh texture. Frontiers in Plant Science, 2020, 11: 554158.
[11] YOSHIDA M. Genetical studies on the fruit quality of peach varieties. 3. Texture and keeping quality[R]. Bulletin of the Fruit Tree Research Station. Series A. Hiratsuka, 1976.
[12] HAJI T, YAEGAKI H, YAMAGUCHI M. Inheritance and expression of fruit texture melting, non-melting and stony hard in peach. Scientia Horticulturae, 2005, 105(2): 241-248.
[13] PAN L, ZENG W F, NIU L, LU Z H, LIU H, CUI G C, ZHU Y Q, CHU J F, LI W P, FANG W C, CAI Z G, LI G H, WANG Z Q. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015, 66(22): 7031-7044.
[14] 曾文芳, 丁義峰, 潘磊, 王小貝, 牛良, 魯振華, 崔國(guó)朝, 王志強(qiáng). 桃硬質(zhì)性狀可能源于PpYUC11基因啟動(dòng)子區(qū)域CACTA型轉(zhuǎn)座子的插入. 果樹(shù)學(xué)報(bào), 2017, 34(10): 1239-1248.
ZENG W F, DING Y F, PAN L, WANG X B, NIU L, LU Z H, CUI G C, WANG Z Q. A CACTA transposable element in agene promoter is associated with the stony hard phenotype in peach. Journal of Fruit Science, 2017, 34(10): 1239-1248. (in Chinese)
[15] TATSUKI M, SOENO K, SHIMADA Y, SAWAMURA Y, SUESADA Y, YAEGAKI H, SATO A, KAKEI Y, NAKAMURA A, BAI S L, MORIGUCHI T, NAKAJIMA N. Insertion of a transposon-like sequence in the 5’-flanking region of thegene causes the stony hard phenotype. The Plant Journal, 2018, 96(4): 815-827.
[16] 孟君仁, 曾文芳, 鄧麗, 潘磊, 魯振華, 崔國(guó)朝, 王志強(qiáng), 牛良. 桃若干重要性狀的KASP分子標(biāo)記開(kāi)發(fā)與應(yīng)用. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(15): 3295-3307.
MENG J R, ZENG W F, DENG L, PAN L, LU Z H, CUI G C, WANG Z Q, NIU L. Development and application of KASP molecular markers of some important traits for peach. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307. (in Chinese)
[17] 孟君仁, 牛良, 鄧麗, 潘磊, 魯振華, 崔國(guó)朝, 王志強(qiáng), 曾文芳. 控制桃粘/離核PG基因的BAC克隆篩選與序列分析. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(20): 4396-4404. doi: 10.3864/j.issn.0578-1752.2021. 20.013.
MENG J R, NIU L, DENG L, PAN L, LU Z H, CUI G C, WANG Z Q, ZENG W F. Screening and sequence analysis of BAC clone contained PG gene controlling clingstone/freestone characteristic of peach. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404. doi: 10.3864/j.issn.0578-1752.2021.20.013. (in Chinese)
[18] PIRONA R, EDUARDO I, PACHECO I, DA SILVA LINGE C, MICULAN M, VERDE I, TARTARINI S, DONDINI L, PEA G, BASSI D, ROSSINI L. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology, 2013, 13(1): 166.
[19] 余銀梅. 桃果實(shí)成熟期調(diào)控基因、的表達(dá)分析及功能初探[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2018.
YU Y M. Expression analysis and functional exploration ofandrelated to peach fruit maturity date [D]. Zhengzhou: Henan Agricultural University, 2018. (in Chinese)
[20] 何雪嬌, 鄭濤, 蘇金強(qiáng), 陳振東. 改良CTAB法提取野牡丹科7種植物DNA. 熱帶農(nóng)業(yè)科學(xué), 2011, 31(10): 73-77.
HE X J, ZHENG T, SU J Q, CHEN Z D. DNA extraction of 7 species plants of Melastomaceae using modified CTAB method. Chinese Journal of Tropical Agriculture, 2011, 31(10): 73-77. (in Chinese)
[21] 殷豪, 王彩虹, 田義軻, 李節(jié)法, 王然, 戴洪義. 利用高分辨率熔解曲線(xiàn)(HRM)分析梨微衛(wèi)星標(biāo)記. 園藝學(xué)報(bào), 2011, 38(8): 1601-1606.
YIN H, WANG C H, TIAN Y K, LI J F, WANG R, DAI H Y. Differentiation of microsatellites in pear by high resolution melting (HRM) analysis. Acta Horticulturae Sinica, 2011, 38(8): 1601-1606. (in Chinese)
[22] WINGETT S W, ANDREWS S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 2018, 7: 1338.
[23] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.
[24] Li H, Handsaker R E, Wysoker A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.
[25] RAUSCH T, ZICHNER T, SCHLATTL A, STüTZ A M, BENES V, KORBEL J O. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 2012, 28(18): i333-i339.
[26] THORVALDSDóTTIR H, ROBINSON J T, MESIROV J P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics, 2013, 14(2): 178-192.
[27] CIRILLI M, GIOVANNINI D, CIACCIULLI A, CHIOZZOTTO R, GATTOLIN S, ROSSINI L, LIVERANI A, BASSI D. Integrative genomics approaches validate PpYUC11-like as candidate gene for the stony hard trait in peach (L. Batsch). BMC Plant Biology, 2018, 18(1): 1-12.
[28] 韓晴. 桃果肉質(zhì)地和粘離核性狀兩個(gè)關(guān)鍵PpPG基因的表達(dá)和調(diào)控關(guān)系分析[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2019.
HAN Q. Expression and regulation relationship analysis of two keygenes related to peach flesh texture and adhension traits [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[29] SHI Y N, LI B J, SU G Q, ZHANG M X, GRIERSON D, CHEN K S. Transcriptional regulation of fleshy fruit texture. Journal of Integrative Plant Biology, 2022, 64(9): 1649-1672.
[30] QIAN M, ZHANG Y K, YAN X Y, HAN M Y, LI J J, LI F, LI F R, ZHANG D, ZHAO C P. Identification and expression analysis of polygalacturonase family members during peach fruit softening. International Journal of Molecular Sciences, 2016, 17(11): 1933.
[31] ZHANG W W, ZHAO S Q, ZHANG L C, XING Y, JIA W S. Changes in the cell wall during fruit development and ripening in. Plant Physiology and Biochemistry, 2020, 154: 54-65.
[32] ZHU N, ZHAO C N, WEI Y Q, SUN C D, WU D, CHEN K S. Biosynthetic labeling with 3-O-propargylcaffeyl alcohol revealscell-specific patterned lignification in loquat fruits during development and postharvest storage. Horticulture Research, 2021, 8: 61.
[33] 王巍. 生長(zhǎng)素應(yīng)答基因PpIAA5-ARF8對(duì)桃果實(shí)成熟軟化的調(diào)控作用[D]. 北京: 北京農(nóng)學(xué)院, 2021.
WANG W. Auxin-responsive gene PpIAA-ARF8 on peach fruit ripening and softing [D]. Beijing: Beijing University of Agriculture, 2021. (in Chinese)
[34] KUMAR R, KHURANA A, SHARMA A K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 2014, 65(16): 4561-4575.
[35] LIU Y D, TANG M F, LIU M C, SU D D, CHEN J, GAO Y S, BOUZAYEN M, LI Z G. The molecular regulation of ethylene in fruit ripening. Small Methods, 2020, 4(8): 1900485.
[36] ZHOU L L, TANG R K, LI X J, TIAN S P, LI B B, QIN G Z. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology, 2021, 22(1): 1-32.
[37] BAI Q, HUANG Y, SHEN Y Y. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Frontiers in Plant Science, 2021, 11: 619953.
[38] ZHU F, JADHAV S S, TOHGE T, SALEM M A, LEE J M, GIOVANNONI J J, CHENG Y J, ALSEEKH S, FERNIE A R. A comparative transcriptomics and eQTL approach identifiesas a tomato fruit ripening regulator. Plant Physiology, 2022, 190(1): 250-266.
[39] WANG J F, TIAN S W, YU Y T, REN Y, GUO S G, ZHANG J, LI M Y, ZHANG H Y, GONG G Y, WANG M, XU Y. Natural variation in the NAC transcription factor NONRIPENING contributes to melon fruit ripening. Journal of Integrative Plant Biology, 2022, 64(7): 1448-1461.
[40] GUO Z H, ZHANG Y J, YAO J L, XIE Z H, ZHANG Y Y, ZHANG S L, GU C. The NAM/ATAF1/2/CUC2transcription factor PpNAC.A59 enhances PpERF.A16 expression to promote ethylene biosynthesis during peach fruit ripening. Horticulture Research, 2021, 8: 209.
[41] 王小貝. 桃ERFs和PpIAA1協(xié)同調(diào)控桃成熟軟化的分子機(jī)制研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2019.
WANG X B. Study on the molecular mechanism of synergistic regulation of peach ripening and softening by ERFs and PpIAA1 [D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[42] 李金金. PpSEP1(SEPALLATA)在不同質(zhì)地桃果實(shí)成熟軟化過(guò)程中的調(diào)控機(jī)制[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2016.
LI J J. Regulatory mechanism of the PpSEP1 (SEPALLATA) gene during fruit ripening and softening in melting and non-melting peachs [D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[43] 李芳. NAP家族成員克隆及其在桃果實(shí)發(fā)育與成熟期間的表達(dá)特性研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2016.
LI F. Cloning and expression characterization of NAP family members during development and ripening of peach [D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[44] HUANG B W, HU G J, WANG K K, FRASSE P, MAZA E, DJARI A, DENG W, PIRRELLO J, BURLAT V, PONS C, GRANELL A, LI Z G, VAN DER REST B, BOUZAYEN M. Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nature Communications, 2021, 12: 6892.
[45] MIGICOVSKY Z, YEATS T H, WATTS S, SONG J, FORNEY C F, BURGHER-MACLELLAN K, SOMERS D J, GONG Y H, ZHANG Z Q, VREBALOV J, VAN VELZEN R, GIOVANNONI J G, ROSE J K C, MYLES S. Apple ripening is controlled by a NAC transcription factor. Frontiers in Genetics, 2021, 12: 671300.
[46] 郭健. 基于基因組結(jié)構(gòu)變異發(fā)掘桃重要農(nóng)藝性狀關(guān)鍵基因[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2021.
GUO J. Identification of causal genes responsible for key agronomic traits based on genome structural variations in peach [D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
[47] LI J J, LI F, QIAN M, HAN M Y, LIU H K, ZHANG D, MA J J, ZHAO C P. Characteristics and regulatory pathway of thegene during ripening and softening in peach fruits. Plant Science, 2017, 257: 63-73.
[48] WANG W H, WANG Y Y, CHEN T, QIN G Z, TIAN S P. Current insights into posttranscriptional regulation of fleshy fruit ripening. Plant Physiology, 2022, 190(22): 921-930.
附表1 189份種質(zhì)肉質(zhì)表型與基因型鑒定關(guān)系
upplementary table 1. Relationship between flesh texture genotype and phenotype
*代表有重測(cè)序數(shù)據(jù)。a:表型評(píng)價(jià)來(lái)源于《中國(guó)桃遺傳資源》;b:表型來(lái)源于文獻(xiàn)報(bào)道;c:表型來(lái)源于田間調(diào)查
* indicate have resequencing data. a: Phenotype from; b: Phenotype from literature report; c: Phenotype from field investigation
Genotype Identification and Combination Analysis of Loci Related to the Peach Flesh Texture Trait via 189 Peach Accessions
WANG ZhaoHui, LI Yong, CAO Ke, ZHU GengRui, FANG WeiChao, CHEN ChangWen, WANG XinWei, WU JinLong, WANG LiRong
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
【Objective】 The molecular markers and bioinformatics were used to identify the genotypes and combinations of the F-M locus, transposon insertion inpromoter region, and 9 bp insert incoding region by 189 peach germplasms, in order to provide the theoretical foundation for the mechanism of peach flesh formation and the selection of breeding parents.【Method】PCR amplification, KASP, and HRM were used to identify genotypes. Results of loci associated with the formation of flesh trait were further validated using bioinformatics by resequencing data in 189 peach germplasms.【Result】Two genes encoding endopolygalacturonase in F-M locus, designatedand, are associated with peach texture. Through primer amplification, 159 (84%)and 99 (52%)were detected in 189 peach germplasms. Four haplotypes (H0, H1, H2, and H3) were found in F-M locus, while H0 and H1 were the major genotypes. The haplotype combination of non-melting flesh, melting flesh, free-stone melting flesh were H3H3 and H2H3, H0H0 and H0H1, H1H1 and H0H1, respectively. In addition, it was found that 18 germplasms contain homozygous transposon insertion. HRM results demonstrated that 45 germplasms were homozygous insertion (early ripening), 71 germplasms were heterozygous insertion (middle ripening), and 73 germplasms were no insertion (late ripening). But six germplasm genotypes were inconsistent with the phenotypes. The most frequent genotypic combinations at the three loci of non-melting flesh, melting flesh, and free-stone melting flesh were mmffHdHdI, MMffHdHdI, MMFFHdHdL, respectively.【Conclusion】The existence of four haplotypes at the F-M locus further was confirmed, 18 germplasms containing stony hard genotype were identified, a molecular marker for the identification of maturity date was developed, and genotype combinations of different germplasms at flesh-related loci were identified.
peach; flesh texture; genotype identification; genotype combinations
10.3864/j.issn.0578-1752.2023.12.011
2022-08-25;
2022-12-28
國(guó)家桃產(chǎn)業(yè)技術(shù)體系(CARS-30-1-04)、中國(guó)農(nóng)業(yè)科學(xué)院創(chuàng)新工程項(xiàng)目(Grant CAAS-ASTIP-2022-ZFRI-01)
王朝暉,E-mail:82101221626@caas.cn。通信作者吳金龍,E-mail:wujinlong@caas.cn。通信作者王力榮,E-mail:wanglirong@caas.cn
(責(zé)任編輯 趙伶俐)