潘敬科 鄔浩明 王瑤 胡旭麟 唐璐 李開南 董志紅
收稿日期:2023-03-20
基金項(xiàng)目:成都市科技局技術(shù)創(chuàng)新研發(fā)項(xiàng)目(2021-YF0501871-SN);成都市衛(wèi)健委醫(yī)學(xué)科研項(xiàng)目(2021059);
四川省科技廳成果轉(zhuǎn)化示范項(xiàng)目(23ZHSF0321);成都大學(xué)國家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)計(jì)劃(202211079001S)。
作者簡介:潘敬科,碩士,主要從事生物醫(yī)用材料的制備研究工作。
*通訊作者:董志紅,博士,教授,碩士生導(dǎo)師,主要從事生物醫(yī)用材料及表面處理。
摘要:糖尿病足潰瘍(Diabetic foot ulcer,DFU)是糖尿病的一種慢性非愈合性并發(fā)癥,主要影響因素有血管生長受限、神經(jīng)再生困難、容易合并感染以及創(chuàng)傷面難以清理,會(huì)導(dǎo)致足部功能性障礙,嚴(yán)重者會(huì)導(dǎo)致截肢。開發(fā)高效新型敷料水凝膠是解決DFU有效的途徑之一,它不僅可以提供傷口恢復(fù)所需的濕潤環(huán)境、清除傷口滲出物、防止繼發(fā)感染、還可促進(jìn)組織再生,加速傷口愈合。水凝膠治療DFU要求較高,本文通過敷料水凝膠的特點(diǎn)及類型,從生物材料的天然,合成及接枝改性角度,搭載納米粒子、藥物、及生長因子等探討各種不同類型的敷料水凝膠,用于DFU傷口治療,闡述敷料水凝膠治療效果,為新型敷料的制備及研究提供指導(dǎo)。
關(guān)鍵詞:糖尿病足潰瘍;水凝膠;傷口敷料;天然和合成聚合物;活性物質(zhì);納米顆粒
中圖分類號(hào):R318.08? ? ? ? ?文獻(xiàn)標(biāo)志碼:A? ? ? ? ?文章編號(hào):1001-8751(2023)06-0390-07
A Novel Carrier Strategy for Treating Diabetic Foot Ulcer with Dressing Hydrogels
Pan Jing-Ke1,? ?Wu Hao-Ming2,? ?Wang Yao2,? ?Hu Xun-Lin2,? ?Tang Lu2,? ?Li kai-nan2,? ?Dong Zhi-Hong1
(1 School of Mechanical Engineering,Chengdu University,? ?Chengdu? ? 610106;
2 Clinical Medical College and Affiliated Hospital of Chengdu University,? ?Chengdu? ? 610081)
Abstract: Diabetic foot ulcer (DFU) is a chronic non-healing complication of diabetes. The main influencing factors include vascular growth restriction, nerve regeneration, easy co-infection and cleaning of wound surface, which lead to foot functional disorders, even, amputation. The development of efficient new dressing hydrogels is one of the most effective ways to solve DFU, which can not only provide moist environment for wound recovery, remove wound exudation, preventing secondary infection, but also promote tissue regeneration and accelerate wound healing. Hydrogel treatment of DFU requires higher requirements. Based on the characteristics and types of dressing hydrogels, this paper discussed different types of dressing hydrogels for DFU wound treatment by using nanoparticles, drugs and growth factors from the natural, synthetic and grafting modification of biomaterials, and expounds the therapeutic effect of dressing hydrogels. It is a good guidance for the preparation and research of new dressing.
Key word: diabetic foot ulcer;? ?hydrogel;? ?wound dressing;? ?natural and synthetic polymers;? ?active substance;? ?nanoparticle
1 介紹
糖尿病足潰瘍(Diabetic foot ulcer ,DFU)是一種嚴(yán)重的糖尿病并發(fā)癥[1]。它是由胰島細(xì)胞減少引起的碳水化合物、脂質(zhì)和蛋白質(zhì)代謝紊亂疾病[2],其特征是血清中葡萄糖水平升高,導(dǎo)致感知能力下降,進(jìn)而導(dǎo)致血管并發(fā)癥、血管失神經(jīng)和傷口區(qū)域的低氧供應(yīng)[3]。及時(shí)地注射長效胰島素可補(bǔ)充治療,但糖尿病是不可治愈的一種疾病,隨著病情進(jìn)展,高血糖會(huì)影響全身的血管,導(dǎo)致組織壞死,發(fā)炎,甚至潰爛。而傷口的愈合是一個(gè)復(fù)雜過程,包括止血、炎癥、增殖(肉芽組織形成)、再上皮化和重塑幾個(gè)階段,需要細(xì)胞的成熟和分化,以及生長因子的搭載配合,才能達(dá)到細(xì)胞增殖并構(gòu)建細(xì)胞外基質(zhì)目的,從而增強(qiáng)傷口閉合[4-6]。臨床上治療DFU常用方法為手術(shù)清創(chuàng)[7],采用紗布換藥、脈沖灌洗、水療和低頻超聲,減少水腫以增加動(dòng)脈氧壓[8],但不能從根本上根治DFU。而采用敷料類水凝膠,不僅可保持傷口的潤濕性,吸收傷口的滲出物;同時(shí),還可促進(jìn)角質(zhì)形成細(xì)胞的遷移和分化[9],膠原蛋白形成及血管生成,移除時(shí)不會(huì)受損傷口,加速慢性傷口的愈合(圖1)[10-11]。
近幾十年來,敷料水凝膠研究證明不僅可以促進(jìn)和加速傷口愈合的過程,并且潮濕的微環(huán)境可誘導(dǎo)成纖維細(xì)胞增殖和角質(zhì)形成分化,同時(shí)也可以增強(qiáng)膠原合成,從而減少疤痕(圖2)[12-13]。優(yōu)勢就在于:(1)允許氣體交換、隔熱,并有助于清除排泄物和碎屑,以促進(jìn)組織重建過程;(2)具有生物相容性,無毒,不易引起任何免疫或過敏反應(yīng);(3)防止生物膜形成和繼發(fā)感染,易于移除而不會(huì)造成二次創(chuàng)傷[14]。因此,開發(fā)多元化的水凝膠敷料是DFU當(dāng)前亟須解決的問題[15]。從DFU病理生理學(xué)和分子生物學(xué)角度考慮,最好的治療策略是,選擇正確的生物材料凝膠搭載納米粒子、生物因子等,來積極促進(jìn)傷口愈合。
因此,水凝膠類的敷料在治療DFU中,發(fā)揮著較好的優(yōu)勢,本研究介紹不同類型的水凝膠敷料及搭載,為研究人員提供治療糖足潰瘍最新策略和方法。
2 天然水凝膠敷料
天然水凝膠敷料能夠模擬天然組織結(jié)構(gòu)和功能,細(xì)胞更好地附著和生長,具有較好的生物相容性且無毒[16]。常見的天然敷料材料主要包括殼聚糖(Chitosan, CS)、海藻酸鹽(Alginate, GLA)、透明質(zhì)酸(Hyaluronic Acid, HA)、膠原蛋白(Collagen, Col)及細(xì)胞外基質(zhì)(ECM)等。CS是甲殼素的N-脫乙酰基衍生物,是一種天然陽離子多糖,不但具有生物學(xué)特性,還具有抗菌、止血功效[17]。Escarcega-Galaz等[18]對(duì)8名DFU患者進(jìn)行人體臨床試驗(yàn),在傷口區(qū)用2%殼聚糖凝膠和殼聚糖膜后,所有患者在傷口區(qū)均形成肉芽和新生組織。GLA是一種天然多糖,較好的生物相容性和黏附性,是細(xì)胞搭載的一種較好生物材料,通過添加二價(jià)陽離子(Ca2+、Mg2+及Mn2+等),在生理?xiàng)l件下更易于凝膠化[19]。Rezvanian等[20]利用鏈脲佐菌素(Streptozotocin, STZ)誘導(dǎo)糖尿病大鼠傷口愈合模型中,通過負(fù)載辛伐他汀的藻酸鹽—果膠水凝膠膜,發(fā)現(xiàn)血管生成增加,膠原合成加速,可改善傷口愈合。HA是某些哺乳動(dòng)物結(jié)締組織(如軟骨、臍帶和滑液)細(xì)胞外基質(zhì)(Extracellular matrix, ECM)的主要成分,在組織形成、修復(fù)和重塑中具有關(guān)鍵作用[21]。Zhang等[22]設(shè)計(jì)了一種接枝甲基丙烯酸酐的透明質(zhì)酸基水凝膠,這種水凝膠可以通過光引發(fā)甲基丙烯酸酯部分之間的自由基交聯(lián),在3 s內(nèi)原位光聚合,可延長培養(yǎng)基的釋放。Col是人體組織(如皮膚、骨骼、軟骨、肌腱和韌帶)中天然存在的ECM最豐富的蛋白質(zhì),是用于傷口愈合應(yīng)用的最常見材料之一。III型膠原(Col III)[23]已被鑒定為在無瘢痕傷口愈合過程中促進(jìn)細(xì)胞遷移和增殖的重要結(jié)構(gòu)蛋白。Chen等[24]對(duì)小鼠和豬的研究表明,膠原水凝膠在治療急性傷口和其他遺傳性皮膚病方面潛力巨大。然而,由于天然聚合物在體內(nèi)降解速度快,機(jī)械性能弱,在臨床應(yīng)用中也受到限制,作為DFU敷料,研究人員進(jìn)行了大量的改進(jìn)。
3 合成水凝膠敷料
合成聚合物可改善機(jī)械性能、能夠較容易地調(diào)節(jié)其降解速率、易于對(duì)其結(jié)構(gòu)進(jìn)行修飾和功能化,克服了天然聚合物的局限性,這有助于提高天然聚合物在復(fù)合DFU敷料中的性能,常用的聚合物在DFU敷料上的使用主要有聚丙交酯—共乙交酯(PLGA)、聚乙烯醇(PVA)聚乙二醇(PEG)及聚氨酯(PU)等[25],合成水凝膠大大改善了DFU的治療,表1總結(jié)了常見的聚合物水凝膠特點(diǎn)。
PLGA是一種生物可降解聚合物,具有較好的生物相容性、可控的生物降解性和實(shí)現(xiàn)生物活性物質(zhì)持續(xù)釋放的潛力[26]。Zhuang等[27]制備了聚(D, L-乳酸-共甘酸)—聚乙二醇—(D,L-乳酸—乙醇酸)—水凝膠敷料,該種敷料不僅保持了溫度誘導(dǎo)的凝膠化,而且在體內(nèi)表現(xiàn)出更穩(wěn)定的降解曲線,可有效的控制血糖濃度,提高血漿胰島素水平,進(jìn)而促進(jìn)糖尿病傷口愈合。PVA[28]是一種可生物降解、生物相容、親水、無毒和非致癌的聚合物,通過水解、醇解或氨解從乙酸乙烯酯中獲得,已用于傷口敷料的開發(fā),用于治療急、慢性傷口愈合。Zhao等[29]通過使用聚乙烯醇(PVA)與活性氧(ROS)響應(yīng)接頭交聯(lián)而開發(fā)的一種水凝膠,可以作為有效的ROS清除劑,通過降低ROS水平和調(diào)節(jié)傷口周圍的M2表型巨噬細(xì)胞來促進(jìn)傷口閉合。PEG是一種生物相容的親水性聚合物,天然不降解,經(jīng)過改性以獲得可降解性,由海藻酸鈉和PEG組成的復(fù)合支架在傷口愈合應(yīng)用中表現(xiàn)出較好的效果[30]。通過丙烯酸酯基團(tuán)來修飾PEG,獲得PEGDA,為細(xì)胞黏附和支持提供介質(zhì);通過苯甲醛—乙二醇光交聯(lián)改性,可以促進(jìn)成纖維細(xì)胞的遷移和增殖,增強(qiáng)血小板內(nèi)皮細(xì)胞的黏附,加速肉芽組織形成和膠原沉積[31],下表1總結(jié)常見的聚合物結(jié)構(gòu)及復(fù)合水凝膠。
4 新型搭載水凝膠敷料
無論是天然還是合成生物材料,在DFU治療中,都需要復(fù)合或者搭載藥物、生長因子等,才能達(dá)到治愈的效果,促進(jìn)本身組織生長以及預(yù)防外源性感染,促進(jìn)潰瘍修復(fù)[36]。
4.1 搭載納米顆粒
納米顆粒不僅可以促進(jìn)皮膚類傷口的愈合,還具有獨(dú)特的抗炎特性、抗氧化和多藥耐藥(MDR)微生物的抗菌性。其機(jī)制是由于它們可能產(chǎn)生活性氧,從而殺死細(xì)菌且具有較好的附著性,附著在DNA或RNA上,從而進(jìn)一步阻礙微生物的復(fù)制和繁殖[37]。常用于制作抗菌涂層、抗菌劑和抗生素輸送系統(tǒng)[38]。常見的抗菌金屬納米顆粒包括銀[39]、金[40]、銅[41]、鈰等納米顆粒[42]。Masood等[32]通過制備CS-PEG敷料水凝膠用來搭載納米顆粒Ag促進(jìn)糖尿病大兔傷口愈合修復(fù),結(jié)果該類水凝膠可以持續(xù)釋放Ag離子顆粒,表現(xiàn)出較好的抗菌性和抗氧化性能,加速傷口愈合。Choudhary等[43]制備的CS/Ca-AlgNps/AgNPs水凝膠對(duì)革蘭陰性(大腸埃希菌、銅綠假單胞菌)和革蘭陽性(枯草芽孢桿菌、金黃色葡萄球菌)均具有廣譜抗菌性能。Zhao等[44]開發(fā)了一種搭載聚多巴胺修飾的納米Ag顆粒的聚苯乙烯—聚乙烯醇導(dǎo)電混合水凝膠(PDA@Ag NPs),不僅可調(diào)節(jié)水凝膠的機(jī)械和電化學(xué)性能、增強(qiáng)其可加工性,以及提升自愈能力和可重復(fù)黏附性,還可以促進(jìn)血管生成、加速膠原沉積、抑制細(xì)菌生長、控制傷口感染,對(duì)糖尿病足部傷口有顯著的治療作用。殼聚糖—明膠—聚乙烯吡咯烷酮搭載納米Ag粒子具有高的熱穩(wěn)定性和水解穩(wěn)定性、較強(qiáng)的機(jī)械性能、最佳的親水性和孔隙率。同時(shí),能顯著減少受傷區(qū)域,表現(xiàn)出強(qiáng)大的抗菌活性。
納米Zn顆粒在DFU治療中也發(fā)揮著重要的作用,納米ZnO顆粒由于其抗炎和防腐劑的特性,可加入皮膚軟膏中治療皮炎及皮膚感染[45-46]。Tavakoli等[47]將甲基丙烯酸基卡拉膠作為水凝膠基質(zhì)用來搭載聚多巴胺修飾氧化鋅(ZnO/PD)納米顆粒來提升水凝膠的力學(xué)、抗菌和細(xì)胞性能。體內(nèi)外研究發(fā)現(xiàn)復(fù)合物納米ZnO水凝膠具有顯著的力學(xué)性能和促進(jìn)傷口恢復(fù)能力,與人體正常皮膚的彈性和黏附性相當(dāng),水凝膠的拉伸強(qiáng)度從64.1 ± 10kPa增強(qiáng)到80.3 ± 8 kPa,伸長率從20 ± 4%上升到61 ± 5%。納米ZnO顆粒能明顯改善水凝膠的特性,使細(xì)胞活力增強(qiáng),更好地促進(jìn)潰瘍修復(fù)。Yin等[48]用敷料水凝膠搭載EGCG修飾納米ZnO顆粒治療糖尿病傷口,可有效清除95.6%的金黃色葡萄球菌和97%的大腸桿菌,殺菌活性大大提高。傷口治療15 d后,大鼠皮膚病變閉合率為96.3%,療效遠(yuǎn)勝于對(duì)照組的65.4%。納米ZnO不僅促進(jìn)了角質(zhì)形成細(xì)胞的遷移,而且可穿透細(xì)菌細(xì)胞膜,導(dǎo)致氧化損傷,從而更好地促進(jìn)傷口愈合,防止感染。Sun等[49]在體內(nèi)大鼠模型中,用SiO2納米顆粒修飾的GelMA/明膠/PEG生物打印支架促進(jìn)了巨噬細(xì)胞向糖尿病骨修復(fù)中的抗炎M2表型極化,達(dá)到糖尿病傷口愈合目的。
4.2 搭載活性物質(zhì)
水凝膠搭載活性物質(zhì),在急性和慢性傷口愈合中已被廣泛研究,如生長因子、蛋白質(zhì),可促進(jìn)組織修復(fù)和傷口愈合。常見的生長因子和/或細(xì)胞因子如表皮生長因子(EGF)、血管內(nèi)皮生長因子(VEGF)、轉(zhuǎn)化生長因子(TGF-β),成纖維細(xì)胞生長因子(FGF)、血小板源性生長因子(PDGF)、胰島素樣生長因子(IGF)、腫瘤壞死因子-α(TNF-α)等,可提高傷口愈合過程中細(xì)胞的生物活力[50]。
臨床上,Park等[51]對(duì)167例患者進(jìn)行局部EGF治療慢性DFU的臨床試驗(yàn),73.2%的治療傷口達(dá)到完全愈合,而對(duì)照組為50.6%。Lee等[52]利用CS復(fù)合水凝膠搭載EGF,表現(xiàn)出明顯的水化能力,包括膨脹程度和平衡含水量,14 d后傷口閉合程度達(dá)到97%,比商業(yè)敷料HeraDerm和紗布組高7.4%和18.9%,同時(shí)可加速傷口上皮化以及膠原沉積。Lin等[53]開發(fā)了一種基于CS的非均質(zhì)復(fù)合水凝膠,該水凝膠包封了全氟化碳乳液、表皮生長因子(EGF)和聚六亞甲基二胍(PHMB),使大鼠的糖尿病傷口愈合效果顯著增強(qiáng),15 d后,膠原成熟度達(dá)到95%,比用商業(yè)敷料治療組高12.6%。Chu[54]等提出了一種改進(jìn)的雙乳化法,負(fù)載rhEGF和PLGA納米顆粒,制備水凝膠敷料,用于治療DFU,在糖尿病大鼠中,這些負(fù)載rhEGF納米顆粒促進(jìn)了成纖維細(xì)胞增殖分化,從而使得傷口更快地愈合。HA也可用于遞送生物制劑以控制釋放,提高治療效果,HA上的EGF和bFGF在2型糖尿病小鼠模型上有助于增強(qiáng)血管生成,促進(jìn)傷口愈合,是糖尿病傷口愈合的有效治療劑[37]。
DFU的損傷還包括神經(jīng)損傷,Li等[55]通過肝素—波洛沙默熱敏水凝膠來搭載堿性成纖維細(xì)胞生長因子(bFGF)和神經(jīng)生長因子(NGF)治療患有坐骨神經(jīng)擠壓損傷的糖尿病大鼠。通過載體遞送的方式不僅對(duì)大量生長因子(GFs)具有良好的親和力,而且釋放可控。在體內(nèi),與單獨(dú)使用的水凝膠或直接給予GFs相比,GFs-HP水凝膠治療能夠促進(jìn)細(xì)胞增殖,增加神經(jīng)相關(guān)結(jié)構(gòu)蛋白的表達(dá),促進(jìn)軸突再生和髓鞘再生,并改善恢復(fù)運(yùn)動(dòng)功能。利用敷料型水凝膠搭載活性物質(zhì)可以從多個(gè)方面促進(jìn)足底潰瘍修復(fù),包括神經(jīng)損傷、血管損傷、抗感染以及隔離創(chuàng)傷面等,這為臨床治療提供了新的研究方向。
4.3 搭載藥物
敷料型水凝膠的搭載作用不僅僅局限于納米顆粒、活性物質(zhì)等。同時(shí)還可以搭載促進(jìn)傷口修復(fù)的藥物。Wang等[56]制備了PVA/CS水凝膠,通過緩慢釋放西藏十八味黨參丸(TEP)的活性成分來治療糖尿病傷口。體外研究表明,TEP負(fù)載的水凝膠可以有效和持續(xù)地釋放TEP的活性成分,并具有抗菌和抗氧化性能。此外,該水凝膠系統(tǒng)對(duì)L929細(xì)胞沒有細(xì)胞毒性,并能顯著促進(jìn)內(nèi)皮細(xì)胞(HUVEC)的增殖。當(dāng)TEP負(fù)載水凝膠用于大鼠糖尿病傷口時(shí),它減少了炎癥反應(yīng),改善了膠原沉積,進(jìn)而促進(jìn)了皮膚愈合。絲蛋白水凝膠金屬螯合二肽—姜黃素,也具有加速糖尿病傷口愈合的潛質(zhì)[57];另一項(xiàng)研究開發(fā)了硫酸軟骨素接枝和熱增強(qiáng)藻酸鹽負(fù)載姜黃素的水凝膠,原位形成注射水凝膠,可調(diào)控藥物釋放,抑制炎癥,加速糖尿病傷口模型中的組織再生。明膠/右旋糖酐搭載芍藥苷,具有抗菌和促血管化,止血功效[58],也可以加入一些抗生素的藥物,如莫匹羅星,來治療原發(fā)性皮膚感染及潰瘍合并感染等。
5 總結(jié)
加速敷料的開發(fā)治療DFU,旨在提高DFU患者的生活質(zhì)量,減輕疼痛,這對(duì)研究人員來說是一個(gè)挑戰(zhàn)。理想的敷料應(yīng)具有水分平衡、蛋白酶隔離、生長因子刺激、抗菌活性、透氧性和促進(jìn)自溶清創(chuàng)的能力,從而促進(jìn)肉芽組織的產(chǎn)生和上皮化過程。此外,在藥物系統(tǒng)的情況下,它應(yīng)具有延長作用時(shí)間、提高效率和改善持續(xù)遞送藥物等功效。
已經(jīng)開發(fā)的傳統(tǒng)敷料最新替代品包括混合不同的聚合物,并使用更有效的交聯(lián)方法來確保傷口最佳微環(huán)境的保障。如,天然(CS、HA、ALG、COL)或合成(PVA、PEG、PVP、PU)聚合物已被組合或交聯(lián);此外,裝載納米粒子及藥物敷料已被認(rèn)為可有效送遞藥物或其他生物活性因子,加速組織的再生和抗菌特性,被用于DFU的治療。搭載抗生素、血小板衍生物、患者自身干細(xì)胞、生長因子等的水凝膠敷料可平衡慢性傷口炎癥,促進(jìn)愈合;摻入一些天然提取物,在治療DFU方面也能發(fā)揮巨大潛力。隨著新材料的開發(fā)和新技術(shù)的出現(xiàn),在水凝膠敷料治療DFU領(lǐng)域,會(huì)開發(fā)出更高效、更經(jīng)濟(jì)、具有更良好的生物相容性和生物降解性能的復(fù)合水凝膠敷料,加速患者傷口愈合及修復(fù)。
參 考 文 獻(xiàn)
Ahmed I, Goldstein B. Diabetes mellitus [J]. Clin Dermatol, 2006, 24(4): 237-246.
Hussain Z, Thu H E, Katas H, et al. Hyaluronic acid-based biomaterials: A versatile and smart approach to tissue regeneration and treating traumatic, turgical, and chronic wounds [J]. Polym Rev, 2017, 57(4): 594-630.
Fadini G P, Albiero M, Bonora B M, et al. Angiogenic abnormalities in diabetes mellitus: mechanistic and clinical aspects [J]. J Clin Endocrinol Metab, 2019, 104(11): 5431-5444.
Li Z, Zhao Y, Liu H, et al. pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing [J]. Mater Des, 2021, 210:2587-2604.
Li N, Zhan A, Jiang Y, et al. A novel matrix metalloproteinases-cleavable hydrogel loading deferoxamine accelerates diabetic wound healing [J]. Int J Biol Macromol, 2022, 222(Pt A): 1551-1559.
Ozdemir D, Feinberg M W. MicroRNAs in diabetic wound healing: Pathophysiology and therapeutic opportunities [J]. Trends Cardiovasc Med, 2019, 29(3): 131-137.
Skorkowska-Telichowska K, Czemplik M, Kulma A, et al. The local treatment and available dressings designed for chronic wounds [J]. J Am Acad Dermatol, 2013, 68(4): 117-126.
Crystal Holmes C J, Garneisha T, Sari P. Wound debridement for diabetic foot ulcers:A clinical practice review [J]. The Diabetic Foot Journal Vol 2019: 64.
Junker J P, Kamel R A, Caterson E J, et al. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments [J]. Adv Wound Care (New Rochelle), 2013, 2(7): 348-536.
Korting H C, Schollmann C, White R J. Management of minor acute cutaneous wounds: importance of wound healing in a moist environment [J]. J Eur Acad Dermatol, 2011, 25(2): 130-137.
Okan D, Woo K, Ayello E A, et al. The role of moisture balance in wound healing [J]. Adv Skin Wound Care, 2007, 20(1): 39-53.
Moura L I, Dias A M, Carvalho E, et al. Recent advances on the development of wound dressings for diabetic foot ulcer treatment-a review [J]. Acta Biomater, 2013, 9(7): 7093-7114.
Bardill J R, Laughter M R, Stager M, et al. Topical gel-based biomaterials for the treatment of diabetic foot ulcers [J]. Acta Biomater, 2022, 138: 73-91..
Fuchs S, Ernst A U, Wang L H, et al. Hydrogels in emerging technologies for type 1 diabetes [J]. Chem Rev, 2021, 121(18): 458-526.
Wang Y, Wu Y, Long L, et al. Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment [J]. ACS Appl Mater Interfaces, 2021, 13(28): 84-99.
Ullah S, Chen X. Fabrication, applications and challenges of natural biomaterials in tissue engineering [J]. Appl Mater, 2020, 20:7357-7373
Wang C H, Cherng J H, Liu C C, et al. Procoagulant and antimicrobial effects of chitosan in wound healing [J]. Int J Mol Sci, 2021, 22(13):88-98
Escarcega-Galaz A A, Cruz-Mercado J L, Lopez-Cervantes J, et al. Chitosan treatment for skin ulcers associated with diabetes [J]. Saudi J Biol Sci, 2018, 25(1): 130-135.
d'Ayala G G, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: chemical modification approaches [J]. Molecules, 2008, 13(9): 2069-2106.
Rezvanian M, Ng S F, Alavi T, et al. In vivo evaluation of Alginate-pectin hydrogel film loaded with simvastatin for diabetic wound healing in streptozotocin-induced diabetic rats [J]. Int J Biol Macromol, 2021, 171: 308-319.
Figueira T G, Dos Santos F V, Yoshioka S A. Development, characterization and in vivo evaluation of the ointment containing hyaluronic acid for potential wound healing applications[J]. J Biomat Sci-Polym E, 2022, 33(12): 1511-1530.
Zhang Y, Zheng Y, Shu F, et al. In situ-formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair [J]. Carbohydr Polym, 2022, 276: 118-132.
Xu L, Liu Y, Tang L,et al. Preparation of recombinant human collagen III protein hydrogels with sustained release of extracellular vesicles for skin wound healing [J]. Int J Mol Sci, 2022, 23(11)3421-3426.
Chen M, Jin Y, Han X, et al. MSCs on an acellular dermal matrix (ADM) sourced from neonatal mouse skin regulate collagen reconstruction of granulation tissue during adult cutaneous wound healing [J]. RSC Advances, 2017, 7(37): 2998-3010.
Mir M, Ali M N, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review [J]. Prog Biomater, 2018, 7(1): 1-21.
Wu N, Yu J, Lang W, et al. Flame retardancy and toughness of poly(lactic acid)/GNR/SiAHP composites [J]. Polymers (Basel), 2019, 11(7):1129.
Zhuang Y, Yang X, Li Y, et al. Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications [J]. ACS Appl Mater Interfaces, 2019, 11(33): 04-18.
Chen X, Lu B, Zhou D, et al. Photocrosslinking maleilated hyaluronate/methacrylated poly (vinyl alcohol) nanofibrous mats for hydrogel wound dressings [J]. Int J Biol Macromol, 2020, 155: 03-10.
Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds [J]. Biomaterials, 2020, 258: 120-126.
Ilhan E, Cesur S, Guler E, et al. Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material [J]. Int J Biol Macromol, 2020, 161: 40-54.
Asawa R R, Belkowski J C, Schmitt D A, et al. Transient cellular adhesion on poly(ethylene-glycol)-dimethacrylate hydrogels facilitates a novel stem cell bandage approach [J]. PLoS One, 2018, 13(8): 2300-2306
Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits [J]. Int J Pharm, 2019, 559: 23-36.
Li Y, Xu T, Tu Z, et al. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair [J]. Theranostics, 2020, 10(11): 29-43.
Cheng C, Zhong H, Zhang Y, et al. Bacterial responsive hydrogels based on quaternized chitosan and GQDs-epsilon-PL for chemo-photothermal synergistic anti-infection in diabetic wounds [J]. Int J Biol Macromol, 2022, 210: 77-93.
Almasian A, Najafi F, Eftekhari M, et al. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies [J]. Mater Sci Eng C Mater Biol Appl, 2020, 114: 11-39.
Arvizo R R, Bhattacharyya S, Kudgus R A, et al. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future [J]. Chem Soc Rev, 2012, 41(7): 43-70.
Hobizal K B, Wukich D K. Diabetic foot infections: current concept review [J]. Diabet Foot Ankle, 2012, 3:5150-5154.Tian J, Wong K K Y, Ho C-M, et al. Topical delivery of silver nanoparticles promotes wound healing [J]. Chem Rev, 2007, 2(1): 29-36.
Dunn K, Edwards-Jones V. The role of Acticoat? with nanocrystalline silver in the management of burns[J]. Burns, 2004, 30: S1-S9.
Chen S A, Chen H M, Yao Y D, et al. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products [J]. Eur J Pharm Sci, 2012, 47(5): 75-83.
Tiwari M, Narayanan K, Thakar M B, et al. Biosynthesis and wound healing activity of copper nanoparticles [J]. IET Nanobiotechnol, 2014, 8(4): 2-7.
Chigurupati S, Mughal M R, Okun E, et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing [J]. Biomaterials, 2013, 34(9): 194-201.
Choudhary M, Chhabra P, Tyagi A, et al. Scar free healing of full thickness diabetic wounds: A unique combination of silver nanoparticles as antimicrobial agent, calcium alginate nanoparticles as hemostatic agent, fresh blood as nutrient/growth factor supplier and chitosan as base matrix [J]. Int J Biol Macromol, 2021, 178: 41-52.
Zhao Y, Li Z, Song S, et al. Skin-Inspired Antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings [J]. Adv Funct Mater, 2019, 29(31):1901474.
Jaiswal M, Gupta A, Dinda A K, et al. An investigation study of gelatin release from semi-interpenetrating polymeric network hydrogel patch for excision wound healing on Wistar rat model [J] J Appl Polym Sci, 2015, 132(25): 1735-1746.
Stoica A E, Chircov C, Grumezescu A M. Nanomaterials for wound dressings: an up-to-date overview [J]. Molecules, 2020, 25(11):11-30
Tavakoli S, Mokhtari H, Kharaziha M, et al. A multifunctional nanocomposite spray dressing of kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for diabetic wounds[J]. Mater Sci Eng C, 2020, 111: 110837.
Yin X, Huang S, Xu S, et al. Preparation of pro-angiogenic, antibacterial and EGCG-modified ZnO quantum dots for treating bacterial infected wound of diabetic rats[J]. Biomaterials Advances, 2022, 133: 112638.
Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus [J]. Bioact Mater, 2021, 6(3): 57-69.
Barrientos S, Stojadinovic O, Golinko M S, et al. Growth factors and cytokines in wound healing [J]. Wound Repair Regen, 2008, 16(5): 585-601.
Park K H, Han S H, Hong J P,et al. Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: A phase III multicenter, double-blind, randomized, placebo-controlled trial [J]. Diabetes Res Clin Pract, 2018, 142: 35-44.
Lee Y H, Hong Y L, Wu T L. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing [J]. Mater Sci Eng C Mater Biol Appl, 2021, 118: 75-85.
Lin Y J, Chien B Y C, Lee Y H. Injectable and thermoresponsive hybrid hydrogel with antibacterial, anti-inflammatory, oxygen transport, and enhanced cell growth activities for improved diabetic wound healing[J]. Eur Polym, 2022, 175: 111364.
Chu Y, Yu D, Wang P, et al. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats[J]. Wound Repair Regen, 2010, 18(5): 499-505.
Li R, Li Y, Wu Y, et al. Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats [J]. Biomaterials, 2018, 168: 24-37.
Wang Z, Gao S, Zhang W, et al. Polyvinyl alcohol/chitosan composite hydrogels with sustained release of traditional Tibetan medicine for promoting chronic diabetic wound healing [J]. Biomater Sci, 2021, 9(10): 1-9.
Sonamuthu J, Cai Y, Liu H, et al. MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound [J]. Int J Biol Macromol, 2020, 153: 58-69.
Shah S A, Sohail M, Khan S A, et al. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels[J]. Mater Sci.Eng C, 2021, 126: 112169.